Intelligent Audio Systems: A review of the foundations and applications of semantic audio analysis and music information retrieval

Jay LeBoeuf Imagine Research jay{at}imagine-research.com These lecture notes contain hyperlinks to the CCRMA Wiki.

On these pages, you can find additional supplement the lecture material found in the class - providing extra tutorials, support, references for further reading, or demonstration code snippets for those interested in a given topic .

Click on the symbol on the lower-left corner of a slide to access additional resources.

WIKI REFERENCES...

Review from Day 3

- What does it mean to "wrap" a chromagram?
- True or false it's important to carefully chose meaningful features
- What are the 3 major components of a MIR system?

How did the lab go?

FEATURE EXTRACTION

Developing an innate understanding of the features

Visualizing Features

- 2-D visualization
- Matlab
- Weka's Visualization panes
- SOM, IsoMap, mapping multi-D down to 2D/3D

Listening to Features

Play examples of Matt <u>Hoffman's</u> work (SoundLab)

Temporal Information

- Rise time or Attack time- time interval between the onset and instant of maximal amplitude
- Attack slope

Picture courtesy: Olivier Lartillot

Temporal Informatioที่

Temporal Centroid

Brightness

Amount of energy above a fixed-frequency. (e.g., 1000, 1500, 3000 Hz)

Picture courtesy Olivier Lartillot

MFCCs

The idea of MFCCs is to capture spectrum in accordance with human perception.

- STFT
- 2. log(STFT)
- Perform mel-scaling to group and smooth coefficients.(perceptual weighting)
- 4. Decorrelate with DCT

[...continued...]

Spectral Energy vs. MFCC

ANALYSIS AND DECISION MAKING

Supervised vs. Unsupervised

- Unsupervised "clustering"
- Supervised binary classifiers (2 classes)
- Multiclass is derived from binary

Clustering

- Unsupervised learning find pockets of data to group together
- Statistical analysis techniques

Clustering

- K = # of clusters
- Choosing the number of clusters note that choosing the "best" number of clusters according to minimizing total squared distance will always result in same # of clusters as data points.

Clustering

The basic goal of clustering is to divide the data into groups such that the points within a group are close to each other, but far from items in other groups.

Hard clustering – each point is assigned to one and only one cluster.

K-Means

The key points relating to *k-means clustering are:*

- k-means is an automatic procedure for clustering unlabelled data;
- it requires a prespecified number of clusters;
- Clustering algorithm chooses a set of clusters with the minimum within-cluster variance
- Guaranteed to converge (eventually)
- Clustering solution is dependent on the initialization

K-Means

The initialization method needs to be further specified. There are several possible ways to initialize the cluster centers:

- Choose random data points as cluster centers
- Randomly assign data points to K clusters and compute means as initial centers
- Choose data points with extreme values
- Find the mean for the whole data set then perturb into k means

>end Day 4