Intelligent Audio Systems: A review of the foundations and applications of semantic audio analysis and music information retrieval

Jay LeBoeuf Imagine Research jay{at}imagine-research.com These lecture notes contain hyperlinks to the CCRMA Wiki.

On these pages, you can find additional supplement the lecture material found in the class - providing extra tutorials, support, references for further reading, or demonstration code snippets for those interested in a given topic .

Click on the symbol on the lower-left corner of a slide to access additional resources.

WIKI REFERENCES...

Review from Day 1

- What are the 3 major components of a MIR system?
- Name 3 ways of segmenting audio into frames
- Name 1 feature
- In Matlab, what does frame{1} mean?
- How did the lab go?
- What did you learn from the lab?
- Did you try other audio files?
- Did you do the simple instrument recognition?
- Sound snippet issue

ANALYSIS AND DECISION MAKING

CLASSIFICATION

k-NN

• Explanation...

• Dive into Matlab here for visualization

k-NN

• Steps:

- Measure distance to all points.
- Take the k closest
- Majority rules. (e.g., if k=5, then take 3 out of 5)

Fig. 2.15. k-nearest neighbours classification of two-dimensional data in the two-class case, with k=5. The new datum \mathbf{x} is represented by a non-filled circle. Elements of the training set (X,Y) are represented with dots (those with label -1) and squares (those with label +1). The arrow lengths represent the Euclidean distance between \mathbf{x} and its 5 nearest neighbours. Three of them are squares, which makes \mathbf{x} have the label $\mathbf{y}=+1$.

k-NN

- Instance-based learning training examples are stored directly, rather than estimate model parameters
- Generally choose k being odd to guarantee a majority vote for a class.

Distance Classification

- Find nearest neighbor
- Find representative match via class prototype (e.g., center of group or mean of training data class)

Distance metric

Most common: Euclidean distance

FEATURE EXTRACTION

FFT?

Spectral Features

- Spectral Centroid
- Spectral Bandwidth/Spread
- Spectral Skewness
- Spectral Kurtosis
- Spectral Tilt
- Spectral Roll-Off
- Spectral Flatness Measure
- Spectral Crest Factor

Spectral moments

http://www.jyu.fi/hum/laitokset/musiikki/en/research/coe/materials/mirtoolbox/userguide1.1

FEATURE DEMOS

- Simple re-ordering or slices:
 - Slice up loop into segments and sort via features
 - Play audio
 - Play whole song snippet

Real-world

- YouTube uses AudibleMagic's audio fingerprinting technology, to help identify the audio content of music partners like Warner Music, Sony BMG, and Universal.
- Shazam & Gracenote "Tagging" music listening to your phone

Real-world

• MeapSoft - <u>link</u>

Spectral Bands

Frame 1

Features – Frame 1

Frame	ZC R	Centroid	BW	Skew	Kurtosis	E1	E2	E ₃	E4	E ₅	E6	E ₇	E8	E 9
1	9	2.8kHz	5kHz	2.2	6.7	4000	10100	545	187	77	35	18	9	6

Frame 2

Features: SimpleLoop.wav

Frame	ZC R	Centroid	BW	Skew	Kurtosis	E1	E2	E3	E4	E ₅	E6	E ₇	E8
1	9	2.8kHz	5kHz	2.2	6.7	4000	10100	545	187	77	35	18	9
2	423	3.1kHz	4kHz	2	7.2	24	33	5300	1366	360	180	194	68

Scaling!

	ZCR	Centroid	Bandwidth	Skew		
	1	2	3	4		
1	205	982.0780	0.1452	1.3512e+03	1116	2.6
2	150	621.0359	0.1042	296.0815		
3	120.0000	361.6111	0.0607	263.7817	263	1.45
4	135	809.3978	0.1315	834.4116		
5	220	634.7242	0.0906	274.5483		
6	175	536.3318	0.0837	188.4155		
7	190	567.0412	0.0953	253.0151		
8	135	720.2892	0.1153	333.7646		
9	195.0000	778.5310	0.1407	1.2328e+03		
10	185	514.4315	0.0717	183.0322		

Training...

TRAINING SET

"1" "0"

Lab 2 Prep - Read it over - and we'll go over

> End Day 2