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Abstract

This series of laboratory exercises is concerned with building virtual stringed instruments
and associated effects in the Faust programming language.
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1 Introduction

In this lab sequence, we will make “virtual stringed instruments,” starting from a very simple case
(the Karplus-Strong digitar algorithm) and working up to instruments of practical complexity. All
of the examples can be classified as digital waveguide instruments, although the earliest algorithms
were originally derived under different paradigms, as will be noted.

1.1 Prerequisites

We assume you have read the introductory tutorial entitled “Signal Processing in Faust and PD,”1

or equivalent, and that you have installed the Planet CCRMA2 distribution, or have separately
installed faust, pd, and associated tools described in the tutorial. Familiarity with basic C++
programming in a Linux/GNU environment is assumed.

Finally, elementary signal processing proficiency on the level of [13] and [12] is assumed. Rec-
ommended background reading on digital-waveguide “theory of operation” is given by Chapters 1,
3, 4, and Appendix G of [14];3 however, a detailed understanding of digital waveguide theory is not
necessary for carrying out the laboratory exercises and/or building useful instruments.

1.2 Summary of the Labs

In the first lab exercise, we build a simple synth plugin based on the Karplus-Strong plucked-string
“digitar” algorithm. This is followed by a number of extensions that add more features and improve
sound quality and expressiveness. As the labs progress, a highly versatile “virtual electric guitar”
is built, piece by piece.

Each lab assignment is preceded by a presentation of the basic theory of operation and a
working Faust implementation for the virtual guitar component being considered. The exercises
primarily consist of directed experiments using the provided Faust code, sometimes asking for
simple modifications of the code.

1.3 Software Download

The software discussed in this module can be downloaded as a compressed tarball:

http://ccrma.stanford.edu/~jos/faust strings/freeax.tar.gz

1http://ccrma.stanford.edu/realsimple/faust/
2http://ccrma.stanford.edu/planetccrma/software/
3http://ccrma.stanford.edu/~jos/pasp/Digital Waveguide Theory.html
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2 Karplus-Strong Digitar Algorithm

N samples delayOutput y (n)+

z 1-

1/2

1/2

y (n-N)+

Figure 1: Signal flow graph of the Karplus Strong algorithm viewed as a digital filter
excited from initial conditions: The delay line is initially filled with random numbers.
The feedback filter H(z) = [1 + z−1]/2 can be regarded as a running two-point average.

The KS digitar algorithm can be derived [14] as a simplified digital waveguide synthesis model
for an “idealized” vibrating string (no stiffness, and very specific damping characteristics resulting
in the two-point average). This physical interpretation is used to guide extensions to the basic
algorithm.

The basic Karplus-Strong (KS) digitar algorithm [7]4 consists of a waveform memory that is
read out and modified repeatedly each “period,” where the modification is to replace each sample
in the memory by the average of itself and the previous sample each time it is read. The algorithm
is diagrammed as a digital filter in Fig. 1. There are other modes of operation of the KS algorithm
described in [7], such as for percussive sounds and “bottle mode” that are not reviewed here. In
other words, we consider only the digitar special case of the KS algorithm which simulates plucked
string sounds. We begin our example series with the digitar because it is the simplest known
string-synthesis algorithm that is both interesting to hear and derivable (in retrospect) from the
physics of vibrating strings.

2.1 Exciting the Digitar String

A new “pluck” is obtained in the digitar algorithm by writing new random numbers into the
waveform memory (the delay line in Fig. 1). The fundamental frequency F0 is approximately given
by the sampling rate fs divided by the memory length N , or F0 ≈ fs/N . This relation is not exact
because the two-point average adds a half-sample phase delay [12].5 A more accurate formula is
therefore

F0 =
fs

N + 1
2

. (1)

4See also http://en.wikipedia.org/wiki/Karplus-Strong_string_synthesis
5http://ccrma.stanford.edu/~jos/filters/Phase Delay.html
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This formula can be used as exact for practical purposes, but it is not exact in theory due to the
slight decay per period caused by the two-point average.6

Figure 2 lists a Faust program implementing the digitar algorithm (adapted from the program-
ming example karplus.dsp distributed with Faust), and Fig. 3 shows the block diagram generated
by faust for the resonator definition in Fig. 2 (using the -svg command-line option, as discussed
in the Faust intro7 [15]). If this Faust code is not self-explanatory, see [15] and/or [9].

import("music.lib"); // define noise, SR, delay

// MIDI-driven parameters:

freq = nentry("freq Hz", 440, 20, 20000, 1); // Hz

gain = nentry("gain", 1, 0, 10, 0.01); // 0 to 1

gate = button("gate"); // 0 or 1

// Excitation gate (convert gate to a one-period pulse):

diffgtz(x) = (x-x’) > 0;

decay(n,x) = x - (x>0)/n;

release(n) = + ~ decay(n);

trigger(n) = diffgtz : release(n) : > (0.0);

// Resonator:

average(x) = (x+x’)/2;

P = SR/freq;

resonator = (+ : delay(4096, P)) ~ (average);

process = noise : *(gain) : *(gate : trigger(P))

: resonator;

Figure 2: Faust program ks.dsp specifying the Karplus-Strong (KS) digitar algorithm.

2.2 MIDI Control of the KS Digitar in PD

As discussed in the Faust intro [15], we can create an 8-voiced MIDI synthesizer for pd via the
following shell commands on a Linux system with faust installed:

faust -xml -a puredata.cpp -o ks_pd.cpp ks.dsp

g++ -DPD -Wall -g -shared -Dmydsp=ks -o ks~.pd_linux ks_pd.cpp

faust2pd -s -n 8 ks.dsp.xml

The first line compiles ks.dsp to produce

• ks pd.cpp — the pd external C++ source code, and
• ks.dsp.xml — an XML description of its user interface.

The second line compiles the C++ source, to produce

6Exact resonance tuning is found by determining the poles of the system and their angles in the z-plane [12]. More
relevant perceptually are the frequencies of local maxima in the magnitude frequency response.

7http://ccrma.stanford.edu/realsimple/faust/
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+ delay(4096)(f... 20000, 1):/)

average

resonator

Figure 3: Faust-generated block diagram of the resonator definition in Fig. 2. For the
digitar algorithm, a one-period burst of white noise may be injected as an input signal.
For historical accuracy, the feedback should be eliminated during the excitation noise-
burst (making the adder unnecessary), but this makes little difference in the sound under
normal conditions.

• ks~.pd linux — the loadable binary pd external module.

The last line generates

• ks pd.pd — the pd plugin-wrapper with “graph-on-parent” controls.

As also discussed in the Faust intro, faust2pd comes with the pd abstraction midi-in.pd that
maps MIDI key-number to Faust parameter freq, MIDI velocity to gain, and MIDI note-on/off
to gate. Additional parameters are brought out as sliders et al. in the pd patch, but in this case,
there are no additional parameters.

2.3 Karplus-Strong Laboratory Exercises

Use the above shell script to generate a pd synthesizer, and drive it either from the Virtual Keyboard
or from an external MIDI keyboard, as described in the Faust intro. Answer the following questions:

1. Exploring mistuning: Since the delay line is not interpolated, the fundamental frequencies
are quantized to frequencies given in Eq. (1) on page 4, where N is the (integer) delay-line
length. This tuning error is very noticeable at low sampling rates (e.g., 8 kHz or even 22
kHz). However, it is harder to hear at the standard 48 kHz sampling rate that is standard in
AC-97 CODEC chips.

(a) At what MIDI key-number do you start to hear the tuning error when the sampling rate
is 44.1 kHz? (MIDI key-number 69 corresponds to A4 at 440 Hz, and key-number 60 is
C4 (“middle C”) at 440 · 260−69/12 ≈ 261.63 Hz.) If possible, determine the first “out
of tune” key-number when the sampling rate is 8 KHz.

(b) Repeat the previous problem using fdelay in place of delay, and explain why your
results make sense.

2. Measure the final signal value for three different notes after sound is no longer audible.

(a) Explain why the signal usually does not decay to zero.
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(b) What final values are possible?

(c) What property of the excitation noise burst can guarantee that the signal will decay to
zero?

3 Extended Karplus-Strong Algorithm

The Extended Karplus-Strong (EKS) algorithm [4] extends the KS digitar in a number of ways that
will be introduced one-by-one and then brought together in the complete program listing shown in
Figures 9 and 10 starting on page 16. The EKS extensions were motivated by the demands of a
musical composition8 and the interpretation of the KS algorithm as a transfer-function model of
a simplified physical string [11, pp. 158–198]. They illustrate how several small digital filters can
achieve various desired musical effects. We will see that the EKS can be regarded as a blend of
spectral and physical (transfer-function) modeling techniques.

Noise
Burst

Input
OutputHβ(z)

Hρ(z) Hs(z)

HL(z)Hp(z)

Hd(z)

z−N

Figure 4: Extended Karplus-Strong (EKS) filters.

Figure 4 illustrates where the various filters may be located in the patch. The filters in series
outside the feedback loop can of course be implemented in any order, and the filters within the
feedback loop can be arbitrarily reordered. (The series order of linear, time-invariant filters may
matter in fixed-point, but generally not in floating-point.)

3.1 Pick-Direction Lowpass Filter

The EKS pick-direction lowpass filter is simply a unity-dc-gain one-pole filter with a different
coefficient for an “up-pick” than for a “down-pick”. Thus, the filter transfer function is

Hp(z) =
1− p

1− p z−1

where p takes on two different (real) values (such as 0 and 0.9), depending on the picking direction.
The idea is that real up-picks may be at different angles than down-picks, thus resulting in different
plucking stiffness, among other possible effects.

In Faust, a unity-dc-gain one-pole filter can be defined by

pickdir = *(1.0-(p)) : + ~ *(p);

where p is the pole location. This pole position can be modulated by a pick-direction “toggle”
signal as follows:

p = 0.9 * checkbox("pick_direction"); // [0 or 0.9]

8“Silicon Valley Breakdown” by David A. Jaffe
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3.2 Pick-Position Comb Filter

A natural model of string excitation is an input signal summed into a virtual physical location
along the length of a digital waveguide string model, as described in [14]. This model can then
be factored into a pick-position comb filter in series with a filtered delay loop, as used in the EKS
[4, 11] and derived in [14].9

The EKS pick-position comb filter has the transfer function

Hβ(z) = 1− z−⌊βP ⌋

where P is the period (total loop delay) in samples, and β ∈ (0, 1) denotes normalized position
along the string (0 being at the “bridge” and 1 being at the “nut”). The notation ⌊x⌋ means the
“greatest integer less than or equal to x,” also called truncation to the next lower integer.10 This
transfer-function model of pick position is easily derived by simply factoring the transfer-function
of the string from the picking point to any other point along the string, such as the bridge point
[14, 11].

In Faust, a feedforward comb filter is readily implemented using the delay function defined in
music.lib:

ppdel = beta*P; // pick position as fraction of period

pickpos = _ <: delay(Pmax,ppdel) : - ;

where Pmax is some power of 2 larger than ppdel (see the definition of delay in music.lib to
understand why a power of 2). In Faust, we can bring out a “continuous” pick-position control
spanning half the string as follows:

beta = hslider("pick_position", 0.13, 0, 0.5, 0.01); // 0-1/2

The block diagram generated by “faust -svg --simple-names” is shown in Fig. 5. Pick position
accuracy is normally not critical, hence the 1% slider steps and lack of delay-line interpolation in
the comb filter.

�����
�

��	
���

Figure 5: Faust-generated block diagram of the pick-position comb filter.

9http://ccrma.stanford.edu/ jos/pasp/Equivalent Forms.html
10One may also use rounding to the nearest integer, which can be defined as ⌊x+ 0.5⌋.
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3.3 One-Zero String Damping Filter

The original EKS string-damping filter replaced the two-point average of the KS digitar algorithm
by a weighted two-point average

Hd(z) = (1− S) + Sz−1 (2)

where S ∈ [0, 1] is called the “stretching factor,” and it adjusts the relative decay-rate for high
versus low frequencies in the string. This filter goes in the string feedback loop, as shown in Fig. 4
above. At S = 0 or 1, the decay time is “stretched infinitely” (no decay), while fastest decay is
obtained when S = 1/2, where it reduces to the KS digitar damping filter. The decay-time is
always infinity for dc, and higher frequencies decay faster than lower frequencies when S ∈ (0, 1).

To control the overall decay rate, another (frequency-independent) gain multiplier ρ ∈ (0, 1)
was introduced to give the loop filter

Hd(z) = ρ[(1− S) + Sz−1].

Since this filter is applied once per period P at the fundamental frequency, an attenuation by the
factor |Hd(e

j2π/P )| ≈ ρ occurs once each P samples. Setting ρ to achieve a decay of −60 dB in t60
seconds is obtained by solving

ρ
t60
PT = 0.001 ⇒ ρ = (0.001)PT/t60 .

In Faust, we can calculate ρ from the desired decay-time in seconds as follows:

t60 = hslider("decaytime_T60", 4, 0, 10, 0.01); // seconds

rho = pow(0.001,1.0/(freq*t60));

where freq is the fundamental frequency (computed from the MIDI key number in the example of
Fig. 9 on page 16).

The following Faust code implements the original EKS damping filter in terms of a “brightness”
parameter B between 0 and 1:

B = hslider("brightness", 0.5, 0, 1, 0.01); // 0-1

b1 = 0.5*B; b0 = 1.0-b1; // S and 1-S

dampingfilter1(x) = rho * (b0 * x + b1 * x’);

Relating to Eq. (2), we have the relation S = B/2.

3.4 Two-Zero String Damping Filter

A disadvantage of the decay-stretching parameter is that it affects tuning, except when S = 0. This
can be alleviated by going to a second-order, symmetric, linear-phase FIR filter having a transfer
function of the form [19]

Hd(z) = g1 + g0z
−1 + g1z

−2 = z−1
[

g0 + g1(z + z−1)
]

.

Due to the symmetry of the impulse response hd = [g1, g0, g1, 0, 0, . . .] about time n = 1, only two
multiplies and two additions are needed per sample. The previous one-zero loop-filter required one
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multiply and two additions per sample. Since the delay is equal to one sample at all frequencies (in
the needed coefficient range), we obtain tuning invariance for the price of one additional multiply
per sample. We also obtain a bit more lowpass filtering. Listening to both cases, one might agree
that the one-zero loop filter has a “lighter, sweeter” tone than the two-zero case. In general, the
tone is quite sensitive to the details of all filtering in the feedback path of Fig. 4.

See [14]11 for a derivation of the FIR filter coefficients h0,h1 as a function of brightness B. A
Faust implementation may then be written as follows:

t60 = hslider("decaytime_T60", 4, 0, 10, 0.01); // sec

B = hslider("brightness", 0.5, 0, 1, 0.01); // 0-1

rho = pow(0.001,1.0/(freq*t60));

h0 = (1.0 + B)/2;

h1 = (1.0 - B)/4;

dampingfilter2(x) = rho * (h0 * x’ + h1*(x+x’’));

3.4.1 Second-Order FIR Damping Filter Exercises

1. With brightness set to B = 0 and t60 set to 1 second, measure and report the decay time
for all notes ‘A’ over the range of the piano keyboard. (A-440 is a sixth above middle-C.)
Explain any systematic deviations measured. [The faust2octave utility can be useful for
this exercise.]

2. Repeat the previous problem with B = 1.

3.5 Dynamic Level Lowpass Filter

In real strings, the spectral centroid typically rises as plucking/striking becomes more energetic.
The EKS dynamic-level lowpass filter (diagrammed at the far right in Fig. 4) qualitatively models
this phenomenon:12

HL,ω1
(z) =

1−RL

1−RLz−1

This is another unity-dc-gain one-pole lowpass, with a pole at z = RL ∈ [0, 1) set such that the
gain is the same for all fundamental frequencies [4]. Here we will derive simplified design formulas.

Assume that the ideal continuous-time filter has the transfer function

HL,ω1
(s) =

ω1

s+ ω1
(3)

where ω1 = 2πf1 denotes the fundamental frequency in radians per second. This lowpass filter has
unity dc gain, −3 dB gain at s = jω1, and rolls off −6 dB/octave for ω ≫ ω1.

13 It also happens
to be the 1st-order Butterworth lowpass with cut-off frequency set to ω1 rad/sec. To achieve the

11http://ccrma.stanford.edu/ jos/pasp/Length FIR Loop Filter.html
12A “spectral modeling filter” of this nature is only needed for spectrally monotonous excitations such as the KS

digitar noise burst. A proper physical string-excitation model should have this behavior built in.
13The −3dB-gain frequency ω1 is often called the break frequency in the context of classical control design. This

is because, as frequency ω increases from 0, the pole at s = −ω1 has little effect on the frequency response until
ω ≈ ω1, where the pole “breaks,” resulting in a −6dB/octave roll-off in the amplitude response for higher frequencies
(ω ≫ ω1).
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dynamic level effect, the output of this filter is linearly panned with its input. If x(n) denotes the
lowpass input signal and y(n) its output, then the formula is

L · L0(L) · x(n) + (1− L) · y(n)

where the level variable L ∈ [0, 1] may be set to achieve a desired dynamic level at the Nyquist
limit, while L0 controls the (lesser) attenuation at low frequencies as a function of level L (e.g.,
L0(L) = L1/3). At maximum level L = 1, the lowpass filter is bypassed. Figure 7 on page 12
shows a family of filter responses at four different dynamic levels and six different fundamental
frequencies.

An example GUI specification for the L calculation in Faust is as follows:

L = hslider("dynamic_level", -10, -60, 0, 1) : db2linear;

where db2linear(x) is defined in music.lib as pow(10, x/20.0).
In [14],14 the impulse-invariant and bilinear transform methods are compared for digitizing

the dynamic-level analog filter Eq. (4), and the bilinear transform method was deemed preferable
because it gives more attenuation of high frequencies, which helps to reduce aliasing due to later
nonlinear processing. A detailed derivation can be found there. The final digital filter so designed
has the transfer function

HL,ω1
(z) =

ω̃1

1 + ω̃1

1 + z−1

1−
(

1−ω̃1

1+ω̃1

)

z−1
(4)

with ω̃1
∆
= ω1T/2.

Figure 6 shows a family of magnitude responses for H0,ω1
(ejωT ) for 6 different fundamental

frequencies ω1.

100005000300010005003001005030

0

-10

-20

-30

-40

-50

-60

Frequency (Hz)

G
ai

n 
(d

B
)

Figure 6: Dynamic level lowpass filter designed by the bilinear-transform method with
L = 0. The filter amplitude response is plotted for 6 values of break frequency (50, 100,
200, 400, 800, and 1600 Hz). The sampling rate is fs = 44100 Hz.

14http://ccrma.stanford.edu/~jos/pasp/Making Virtual Electric Guitars.html
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Figure 7: Dynamic level lowpass filter responses as in Fig. 6, but with L = 0.001, 0.01,
0.1, and 0.32, corresponding to desired Nyquist-limit levels of −60, −40, −20, and −10
dB, respectively. The dc level is defined to be one-third the Nyquist-limit level.

Faust Implementation (effect.lib)

levelfilter(L,freq,x) = (L * L0 * x) + ((1.0-L) * lp2out(x))

with {

L0 = pow(L,1/3);

Lw = PI*freq/SR; // = w1 T / 2

Lgain = Lw / (1.0 + Lw);

Lpole2 = (1.0 - Lw) / (1.0 + Lw);

lp2out = *(Lgain) : + ~ *(Lpole2);

};

To intensify the effect, Nd units can be used in series, with the desired Nyquist-limit level
divided by Nd for each section:

levelfilterN(Nd,freq,L) = seq(i,Nd,levelfilter((L/Nd),freq));

3.5.1 Dynamic Level Filter Laboratory Exercise

1. Implement the above dynamic level filter in a Faust EKS synth plugin, and find a good
mapping for MIDI velocity to dynamic level L. Try to use a simple power law of the form (in
Faust)

L = scale * log(gain) + offset;

where gain is between 0 and 1. Report your values for scale and offset.

2. Record a sequence of notes on a real guitar with progressively increasing amplitude. Plot the
spectral centroid as a function of time for this recording.
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3.6 Tuning the EKS String

At low sampling rates and/or high fundamental frequencies, the string simulation can sound “out
of tune” because the main delay-line length N is an integer, which means that the fundamental
frequency F0 is quantized to values of the form F0 = fs/(N + Nf ) where fs is the sampling rate
and Nf is the delay (in samples) of any filters in the feedback loop. For example, in Fig. 4 on page
7, Nf equals the combined delay of filters Hd(z), Hs(z), and Hη(z). In Eq. (1) on page 4, we had
the digitar tuning formula F0 = fs/(N +1/2) because Nf = 1/2 is the phase delay of the two-point
average y(n) = [x(n) + x(n− 1)]/2 used in the KS digitar algorithm.

In this section, we look at designing a tuning filter Hη(z) so as to fine-tune the fundamental
frequency as desired (even at low sampling rates). Keep in mind, however, that such a filter is
not needed when the sampling rate is sufficiently high compared with the desired fundamental
frequency.

For simplicity, here we will use the two-zero damping filter described in §3.4, so that its phase
delay is always one sample. The tuning formula becomes

F0 =
fs

N + 1 +∆η(ω)
, or ∆η =

fs
F0

−N − 1, (5)

where

∆η(ω)
∆
= −

6 Hη(e
jωT )

ωT

denotes the phase delay of the tuning filter Hη in samples.

3.6.1 Tuning by Linear Interpolation

An overview of linear interpolation, among others, is given in [14].15 The transfer function of
first-order linear-interpolation can be written as

Hη(z) = (1− η) + ηz−1,

where η ∈ [0, 1] denotes the desired delay in samples at low frequencies compared with the sampling
rate.

Faust Implementation.
Faust includes a function fdelay(n,d,x) defined in music.lib which provides fractional (non-

integer) delay by means of linear interpolation:

fdelay(n,d,x) = delay(n,int(d),x)*(1 - frac(d))

+ delay(n,int(d)+1,x)*frac(d);

Note that it also specifies a second delay line. However, a second delay-line is not implemented in
the generated C++ code because Faust has an optimization rule that consolidates all delay-lines
having the same input signal to one shared delay line.

A single-delay-line version can be defined as follows:

linterp(d,x) = (1-d) * x + d * x’;

fdelay1(n,d,x) = delay(n,int(d),x) : linterp(frac(d));

15http://ccrma.stanford.edu/ jos/pasp/Delay Line Interpolation.html.html
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Note that these definitions are not equivalent. While they are equivalent when the delay d is fixed,
they diverge when int(d) changes from one sample to the next. In the dual-delay-line specification,
the desired result is obtained, while in the single-delay-line case, x’ becomes a one-sample delay of
the old delay-line output instead of the new delay-line output. This inconsistency can potentially
cause audible clicks when the tuning is rapidly varied.

A proper implementation of the single-delay-line case involves resetting the linear-interpolator
state variable when the delay-length changes. Conceptually, the linear interpolator should be
implemented as two delay-line taps with gains (1 − η) and η. This structure is produced by the
Faust optimization rules from the dual-delay-line specification as above.

Linear delay-line interpolation works well in a digital waveguide string model as long as the
modeled string is sufficiently damped. Specifically, the string damping must be sufficient to mask
the changing roll-off in the amplitude response of the linear interpolator. In the case of very light
damping (such as when simulating steel strings at normal audio sampling rates), certain notes (such
as B-flat at a sample rate of 44.1 kHz) will jump out as “buzzy” when they correspond to a nearly
integer delay-line length (fundamental frequencies close to the sampling rate divided by an integer).
This artifact diminishes with oversampling factor, of course.

3.6.2 Tuning by Lagrange Interpolation

Researchers at the Helsinki University of Technology have historically used Lagrange interpolation
for digital-waveguide fine-tuning [5, 18, 6]. This has the advantage of being robust under rapidly
time-varying conditions, as opposed to allpass interpolation which can exhibit artifacts when the
delay changes too rapidly. However, Lagrange interpolation, like all FIR filters except pure delays,
has the disadvantage of introducing some gain error in the string feedback loop, unlike allpass
interpolation.

As discussed further in [14],16 the closed-form expression for Lagrange-interpolation coefficients
is

h∆(n) =
N
∏

k=0

k 6=n

∆− k

n− k
, n = 0, 1, 2, . . . , N

where N is the length of the interpolator and ∆ is the desired delay, centered about (N−1)/2. Note
that N = 1 corresponds to linear interpolation. For audio delay-line interpolation, the fourth-order
case N = 4 is often sufficient (and sometimes overkill).

For the same reasons discussed in §3.6.1, fourth-order Lagrange interpolation of a delay line
is best viewed as a five-tap interpolating read of the delay line at the desired fractional delay. In
normal object-oriented languages, an interpolating read is naturally implemented internal to the
interpolating delay-line object. In Faust, the same effect is obtained by specifying five delay lines,
as shown in Fig. 8. While it appears that five delay lines are needed in the Faust implementation,
only one is actually used in the generated C++ code, thanks to compiler optimizations. Faust im-
plementations of Lagrange interpolation of orders 1 through 4 may be found in the file filter.lib
distributed with Faust (starting with version 0.9.9.3).

16http://ccrma.stanford.edu/ jos/pasp/Lagrange Interpolation.html.html
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fdelay4(n,d,x) = delay(n,id,x) * fdm1*fdm2*fdm3*fdm4/24

+ delay(n,id+1,x) * (0-fd*fdm2*fdm3*fdm4)/6

+ delay(n,id+2,x) * fd*fdm1*fdm3*fdm4/4

+ delay(n,id+3,x) * (0-fd*fdm1*fdm2*fdm4)/6

+ delay(n,id+4,x) * fd*fdm1*fdm2*fdm3/24

with {

id = int(d-1);

fd = 1+frac(d);

fdm1 = fd-1;

fdm2 = fd-2;

fdm3 = fd-3;

fdm4 = fd-4;

};

Figure 8: Faust implementation of fourth-order Lagrange interpolation.

3.7 EKS Tuning and Decay Exercises

Use the shell script in §3.9 below to generate a pd synthesizer based on the EKS, and drive it either
from the Virtual Keyboard or from an external MIDI keyboard, as described in the Faust intro.

1. Checking Tuning

(a) Using delay (no interpolation) for the main delay line, determine if you can hear the
tuning error when the sampling rate is 44.1 kHz, and if so, report the lowest MIDI
key-number and other settings used.

(b) Repeat using fdelay (linear interpolation).

(c) Repeat using fdelay4 (4th-order Lagrange interpolation).

2. Uniformity of Decay

(a) Using fdelay for tuning, set the brightness set to 1 and the decaytime to maximum.
Determine the set of MIDI key numbers, if any, at which there is noticeably reduced
decay. These are notes that sound markedly brighter than their neighbors and tend to
“jump out” when playing a chromatic scale.

(b) Repeat with brightness set to 0.

(c) Repeat with brightness set to 1 and using fdelay4 in place of fdelay.

3. Measure and report the decay time (either by ear, or by measuring t60 on a dB-magnitude
waveform display) at notes C1, C2, C3, and C4 when the decay-time parameter is set to its
minimum and maximum values. How good is t60 is a definition of decay time?

3.8 EKS Faust Listing

Figures 9 and 10 give a Faust implementation of the Extended-Karplus-Strong algorithm.
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declare name "EKS Electric Guitar Synth";

declare author "Julius Smith";

declare version "1.0";

declare license "STK-4.3";

declare copyright "Julius Smith";

declare reference "http://ccrma.stanford.edu/~jos/pasp/vegf.html";

// -> Virtual\_Electric\_Guitars\_Faust.html";

import("music.lib"); // Define SR, delay

import("filter.lib"); // smooth, ffcombfilter,fdelay4

import("effect.lib"); // stereopanner

//==================== GUI SPECIFICATION ================

// standard MIDI voice parameters:

// NOTE: The labels MUST be "freq", "gain", and "gate" for faust2pd

freq = nentry("freq", 440, 20, 7040, 1); // Hz

gain = nentry("gain", 1, 0, 10, 0.01); // 0 to 1

gate = button("gate"); // 0 or 1

// Additional parameters (MIDI "controllers"):

// Pick angle in [0,0.9]:

pickangle = 0.9 * hslider("pick_angle",0,0,0.9,0.1);

// Normalized pick-position in [0,0.5]:

beta = hslider("pick_position [midi: ctrl 0x81]", 0.13, 0.02, 0.5, 0.01);

// MIDI Control 0x81 often "highpass filter frequency"

// String decay time in seconds:

t60 = hslider("decaytime_T60", 4, 0, 10, 0.01); // -60db decay time (sec)

// Normalized brightness in [0,1]:

B = hslider("brightness [midi:ctrl 0x74]", 0.5, 0, 1, 0.01);// 0-1

// MIDI Controller 0x74 is often "brightness"

// (or VCF lowpass cutoff freq)

// Dynamic level specified as dB level desired at Nyquist limit:

L = hslider("dynamic_level", -10, -60, 0, 1) : db2linear;

// Note: A lively clavier is obtained by tying L to gain (MIDI velocity).

// Spatial "width" (not in original EKS, but only costs "one tap"):

W = hslider("center-panned spatial width", 0.5, 0, 1, 0.01);

A = hslider("pan angle", 0.5, 0, 1, 0.01);

// Append Part 2 here

Figure 9: Part 1 of Faust program eks.dsp specifying an implementation of the Extended
Karplus Strong (EKS) algorithm.
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//==================== SIGNAL PROCESSING ================

//----------------------- noiseburst -------------------------

// White noise burst (adapted from Faust’s karplus.dsp example)

// Requires music.lib (for noise)

noiseburst(gate,P) = noise : *(gate : trigger(P))

with {

diffgtz(x) = (x-x’) > 0;

decay(n,x) = x - (x>0)/n;

release(n) = + ~ decay(n);

trigger(n) = diffgtz : release(n) : > (0.0);

};

P = SR/freq; // fundamental period in samples

Pmax = 4096; // maximum P (for delay-line allocation)

ppdel = beta*P; // pick position delay

pickposfilter = ffcombfilter(Pmax,ppdel,-1); // defined in filter.lib

excitation = noiseburst(gate,P) : *(gain); // defined in signal.lib

rho = pow(0.001,1.0/(freq*t60)); // multiplies loop-gain

// Original EKS damping filter:

b1 = 0.5*B; b0 = 1.0-b1; // S and 1-S

dampingfilter1(x) = rho * ((b0 * x) + (b1 * x’));

// Linear phase FIR3 damping filter:

h0 = (1.0 + B)/2; h1 = (1.0 - B)/4;

dampingfilter2(x) = rho * (h0 * x’ + h1*(x+x’’));

loopfilter = dampingfilter2; // or dampingfilter1

filtered_excitation = excitation : smooth(pickangle)

: pickposfilter : levelfilter(L,freq); // see filter.lib

stringloop = (+ : fdelay4(Pmax, P-2)) ~ (loopfilter);

//Adequate when when brightness or dynamic level are sufficiently low:

//stringloop = (+ : fdelay1(Pmax, P-2)) ~ (loopfilter);

// Second output decorrelated somewhat for spatial diversity over imaging:

widthdelay = delay(Pmax,W*P/2);

// Assumes an optionally spatialized mono signal, centrally panned:

stereopanner(A) = _,_ : *(1.0-A), *(A);

process = filtered_excitation : stringloop

<: _,_ : widthdelay : stereopanner(A);

Figure 10: Part 2 of Faust program eks.dsp specifying an implementation of the Ex-
tended Karplus Strong (EKS) algorithm.
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3.9 MIDI Control of an EKS Patch in PD

As detailed in the Faust intro17 [15], we create an 8-voiced MIDI synthesizer for pd as follows:

faust -xml -a puredata.cpp -o eks_pd.cpp eks.dsp

g++ -DPD -Wall -g -shared -Dmydsp=eks -o eks~.pd_linux eks_pd.cpp

faust2pd -s eks.dsp.xml

The last line produces eks pd.pd which can be loaded into pd. In addition to the basic three MIDI-
control parameters (gate, freq, and gain), we have the following additional parameters that are
brought out as sliders in pd:

• Brightness

• Decay time (t60)

• Dynamic level

• Pick position

• Pick angle (or direction)

Finally, there are some simply computed parameters associated purely with panning the output
sound into the stereo field:

• Panning angle

• Spatial width

See Fig. 9 and Fig. 10 for details.

3.10 Generality of the EKS Algorithm

As discussed in [14],18 the white-noise excitation used in the KS digitar and EKS algorithms can be
interpreted physically as a random initial displacement and velocity for each string element (spatial
sample), and the resulting string vibration decays exponentially, corresponding to a linear string
model. This type of model works well for plucked and struck strings, particularly a variety of lively
clavier -type instruments. However, to model a real acoustic stringed instrument, such as a classical
guitar or piano, we need to model the body resonator (guitar body, soundboard, etc.).

Note that solid-body electric guitars, such as the Les Paul or Stratocaster, do not need a
resonator model, because their string vibrations are measured directly by magnetic pickups, and
body resonances (which are minimized in solid-body design and construction) have only a small
effect on the pickup signal. Therefore, all we really need for these instruments, beyond our string
model, is guitar effects, such as distortion, and a good amp model, because electric guitar players
classically achieve their ultimate sound in conjunction with the nonlinear operation of a good guitar
amp (preferably a tube amp, as of this writing).

17http://ccrma.stanford.edu/realsimple/faust/
18http://ccrma.stanford.edu/ jos/pasp/Karplus Strong Algorithm.html
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4 Distortion and Amplifier Feedback

This section discusses adding distortion and amplifier feedback to the basic EKS algorithm, as
introduced in [17]. The resulting synthesis model is capable of convincing synthesis of “howling”
overdriven electric guitars.19

4.1 Cubic Nonlinear Distortion

To minimize aliasing, it is helpful to use nonlinearities that are approximated by polynomials of
low order. An often-used cubic nonlinearity is given by [17]

f(x) =















−2
3 , x ≤ −1

x− x3

3 , −1 < x < 1

2
3 , x ≥ 1.

(6)

and diagrammed in Fig. 11.20 An input gain may be used to set the desired degree of distortion.
Analysis of spectral characteristics and associated aliasing due to nonlinearities appears in [14].21

As discussed there, a non-saturating cubic nonlinearity does not alias at all when the input signal
is oversampled by 2 or more and the nonlinearity is followed by a half-band lowpass filter, which
eliminates aliasing since it is confined to the upper half-spectrum between π/2 and π rad/sample.
High quality commercial guitar distortion simulators are said to use oversampling factors of 4 to 8.
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Figure 11: Soft-clipper defined by Eq. (6).

The cubic nonlinearity, being an odd function, produces only odd harmonics. To break the odd
symmetry and bring in some even harmonics, a simple input offset can be used [10]. It was found
empirically that a dc blocker [12]22 was needed to keep the signal properly centered in the output

19http://ccrma.stanford.edu/~jos/pasp/Sound Examples.html
20The faust2pd distribution includes a “Fuzz effect,” based on taking an absolute value, in the file

karplusplus.dsp.
21http://ccrma.stanford.edu/˜jos/pasp/Spectrum Memoryless Nonlinearities.html
22http://ccrma.stanford.edu/˜jos/filters/DC Blocker.html
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dynamic range. Since amplifier loudspeakers have a +12 dB/octave low-frequency response, at
least two dc blockers are appropriate anyway.

While the cubic nonlinearity is the odd nonlinearity with the least aliasing (thereby minimizing
oversampling and guard-filter requirements), it is sometimes criticized as overly weak as a nonlin-
earity, unless driven into the hard-clipping range where it is no longer bandlimited to three times
the input signal bandwidth.

Faust Implementation

In Faust, we can describe the cubic nonlinearity as follows (contained in effect.lib distributed
with Faust):

//--------------------- cubicnl(drive,offset) -----------------------

// Cubic nonlinearity distortion

// USAGE: cubicnl(drive,offset), where

// drive = distortion amount, between 0 and 1

// offset = constant added before nonlinearity to give even harmonics

// Reference:

// http://ccrma.stanford.edu/~jos/pasp/Nonlinear_Distortion.html#18254

//

cubicnl(drive,offset) =

+(offset) : *(pregain) : clip(-1,1) : cubic : dcblocker

with {

pregain = pow(10.0,2*drive);

clip(lo,hi) = min(hi) : max(lo);

cubic(x) = x - x*x*x/3;

};

A simple test program is as follows:

// tcubicnl.dsp

import("effect.lib");

// GUI Controls:

O = hslider("even_harmonics",0,0,0.5,0.01);

D = hslider("distortion [midi: ctrl 0x70]",0.1,0.01,1,0.01);

g = hslider("level [midi: ctrl 0x7]",0.1,0,1,0.01);

process = ramp(0.01) : cubicnl

with {

integrator = + ~ _ ;

ramp(slope) = slope : integrator - 2.0;

};

distortion = cubicnl(O,D); // effect.lib

process = ramp(0.01) : -(1.5) : distortion;

To plot the output signal, say, in a shell, for example,
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faust2octave tcubicnl.dsp

4.2 Nonlinearity Exercises

1. Excite the cubic nonlinearity with a sinusoid of amplitude 0.5 and frequency f = 0.4fs. Find
the amplitude of all spectral components, including the fundamental frequency (normalized
to 0 dB), and any aliased components.

2. Repeat the previous problem with a doubled sampling rate.

4.3 Amplifier Feedback

In [17], amplifier feedback to the strings was simulated as follows: The sum of all vibrating strings
was passed through the cubic nonlinearity, multiplied by a feedback gain, delayed, and summed into
the strings. This is easily implemented in Faust. (See freeax.dsp distributed with this module.)

5 Coupled Strings in Faust

A diagram for two coupled strings is given in [14].23 A Faust template for this block diagram is
displayed in Fig. 12 and specified as follows:

import("music.lib");

g1 = 0.999; g2 = 0.995; P = 200; Pmax = 256; detune = 1;

d1 = fdelay(Pmax,P-2);

d2 = delay(Pmax,P*(1.0 - 0.01*detune)-2);

bridgefilter = + : *(-0.5);

g = g1;

stringloop = ( _,+ : ((d2 <: _,_),(d1 <: _,_))

: (_, (bridgefilter <: _,_) ,_)

: +,+) ~ (*(g2),*(g1)) ;

process = stringloop;

where P is the fundamental period, in samples, and g denotes the round-trip filtering on the string
during one period. (Placeholder values are given in the Faust listing so it will compile and generate
Fig. 12.)

Note that the excitation only enters one of the string loops in Fig. 12. This corresponds, for
example, to plucking the string in the horizontal plane, say (the d1 loop), with the vertical plane
(d2 loop) vibrating “sympathetically”. More generally, the two loops may be excited by varying
amounts of the excitation signal, corresponding to a physically inexact excitation plane.

As discussed in [14],24 the bridgefilter Hb(z) is of the form

Hb(z)
∆
=

2

2 +Rb(s)/R

23http://ccrma.stanford.edu/\char‘~jos/pasp/Two_Ideal_Strings_Coupled.html
24http://ccrma.stanford.edu/ jos/pasp/Two Ideal Strings Coupled.html
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Figure 12: Two strings coupled by a general bridge impedance.

where R is the (real, positive) wave impedance of the string, and Rb(s) denotes the bridge driving-
point impedance (a positive-real function of the Laplace variable s). The special case indicated in
the Faust listing above, Hb(z) = 0.5, corresponds to Rb = 2R, which is similar to the following
simplified diagram (shown in Fig. 13) when g1 = g2 = g:

stringloop = (+ <: d2,d1 : + : *(0.5)) ~ *(g);

This simplified coupling algorithm runs about twice as fast as the full algorithm (based on Faust
benchmarks using the bench.cpp architecture file).
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Figure 13: Two strings coupled at a real bridge impedance equal to twice the string
impedance, i.e., Rb = 2R.
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6 Adding a Wah Pedal

A wah pedal (or wah-wah, or CryBaby pedal) operates by sweeping a single resonance through the
spectrum. The resonance is conventionally second-order.

6.1 Digitizing the CryBaby

Figures 14, 15, and 16 (solid lines) show the amplitude responses of the author’s CryBaby wah
pedal measured (as described in §6.1.2 below) at three representative pedal settings (rocked fully
backward, middle, and forward). Our goal is to “digitize” the CryBaby by devising a second-order
sweeping resonator that audibly matches these three when the “wah” variable is 0, 1/2, and 1,
respectively.
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Figure 14: Measured (solid line) and modeled (dashed line) amplitude responses of the
CryBaby pedal rocked back full.
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Figure 15: Measured (solid line) and modeled (dashed line) amplitude responses of the
CryBaby pedal set to the middle of its excursion.
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Figure 16: Measured (solid line) and modeled (dashed line) amplitude responses of the
CryBaby pedal rocked fully forward.
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6.1.1 Choice of Wah Filter Structure

A classic second-order resonator with separate controls for resonance frequency and resonance Q
(quality factor) is the state variable filter [16, 2, 3]. However, the measurements described below
reveal that resonance-frequency, Q, and gain all vary significantly with pedal angle. For that reason,
and because our Faust implementation uses floating point (thus eliminating the need to consider
special filter structures for improved fixed-point behavior), we choose the simple biquad section
[12]25 to implement the wah resonator.

In Faust, the function TF2(b0,b1,b2,a1,a2) (defined in music.lib) implements a biquad filter
section:

TF2(b0,b1,b2,a1,a2) = sub ~ conv2(a1,a2) : conv3(b0,b1,b2)

with {

conv3(k0,k1,k2,x) = k0*x + k1*x’ + k2*x’’;

conv2(k0,k1,x) = k0*x + k1*x’;

sub(x,y) = y-x;

};

It remains to express the five biquad coefficients as a function of a single wah variable. This
will be done by fitting a biquad to three measured frequency responses and coming up with an
interpolation formula for the varying coefficients.

6.1.2 Measuring the CryBaby Frequency Response

Measuring the frequency response of a wah pedal is relatively easy because it is a single-input,
single-output, analog audio filter, with quarter-inch input/output jacks. A CryBaby pedal26 was
hooked up to an input and output of a Gina3G audio interface connected to a Linux PC (Red
Hat Fedora 7 distribution) with Planet CCRMA installed. The response measurements shown
in Figures 14 through 16 were carried out in pd and Octave27 using software from the RealSimple
Transfer Function Measurement Toolbox (RTFMT) [1].28 The Octave command-line for generating
the test input data (a sine sweep whose frequency increases exponentially with time) was as follows:

generate_sinesweeps(40,10000,48000,2);

This specifies a sine sweep from 40 Hz to 10 kHz lasting 2 seconds, with the sampling rate set to
48 kHz. Next, the shell command-line

pd sinesweeps.pd

opens the pd patch shown in Fig. 17. This pd patch (also distributed with the RTFMT) plays
the sinesweep and records the response when the button labeled “Record Response To The Sine
Sweeps” is clicked. The captured sweep-response is displayed so that the “Output Volume”can be
adjusted to achieve a good level. When the level looks good, the captured response is written to
Resp.wav by clicking the button labeled “Write Response To Disk.” This was repeated for three
settings of the wah pedal as described above (min, middle, and max pedal angles).

25http://ccrma.stanford.edu/~jos/filters/BiQuad Section.html
26“Original CryBaby,” Model GCB-95
27http://www.octave.org
28http://ccrma.stanford.edu/realsimple/imp_meas/
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Figure 17: sinesweeps.pd after making a measurement with an appropriate input level
(from [1]).
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The captured response is in the form of a measured impulse response. The next step is to
convert each of the three measured impulse responses to resonator filter coefficients. There are
many ways of doing this [11]. For this exercise, the matlab29 scripts shown in Figures 18 and 19
were used.

f1 = 40; f2 = 10000; % used in filename (can’t change)

f1z = 300; f2z = 3000; % zoom-in range (improves estimates)

del = [3000 2000 2000]; % measurement system delay (samples)

dur = [2048 1024 1024]; % impulse-response duration to take

dir = sprintf(’wah-2sec-%dHz-%dkHz’,f1,f2/1000);

Q = zeros(1,3);

wp = zeros(1,3);

for i=1:3

ifn = sprintf(’%s/wah%dImpResp.wav’,dir,i-1);

[wahir,fs] = wavread(ifn);

if (del(i)+dur(i))>length(wahir)

error(’Signal is too short (less than system delay)’);

end

wi = wahir(del(i)+1:del(i)+dur(i));

[Qi,wpi,Hp,Hd,w] = invfreqsmethod(wi,f1z,f2z,fs);

Q(i) = Qi; wp(i) = wpi;

disp(’PAUSING - RETURN to continue’); pause;

end

Q % print out estimated Q values

fp = wp/(2*pi) % print out estimated pole frequencies

Figure 18: Listing of a matlab script for estimating the Q and pole-frequency in three
measured frequency responses for the CryBaby wah pedal at three different pedal settings.
The function invfreqsmethod is defined in Fig. 19.

29Here, “matlab” refers to the matlab language, as opposed to the Matlab product by The Mathworks, Inc. The
program octave (http://www.octave.org), including the octave-forge collection, was used to execute all matlab
scripts in this module. In a few cases, octplot was used for figures in place of the standard gnuplot used by octave.
All software used for this project is free and open-source, to the author’s knowledge.
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6.1.3 Notes regarding the matlab script in Fig. 18:

• The del parameter specifies the number of initial samples to skip over in the input sound
(the round-trip delay of the measurement system). It can be a very critical parameter if the
filter-design method is sensitive to frequency-response phase. Since invfreqsmethod converts
the measured frequency response to minimum phase, it is not sensitive to del over a wide
range.

• The frequency-zoom interval f1z to f2z should include the resonance peak. Since the mea-
sured response is noisier at very low and very high frequencies, frequency-zooming improves
the resulting match.

• The estimated Q values printed at the end are

Q = [9.4, 4.0, 1.9],

and the estimated pole frequencies are

fp = [464, 838, 2252] Hz.

While these estimates could be improved by various means [8], they appear to be more than
sufficiently accurate for the application at hand.

• The plot overlays in Figures 14 through 16 are plots of the returned frequency responses Hp
(measured) and Hd (the model) versus sampled radian frequency w.

6.1.4 Notes regarding invfreqsmethod listing in Fig. 19:

• The basic method is to use invfreqs to find the coefficients of a second-order analog filter
having a frequency response close to what we measured. Then, we calculate the Q and
resonance frequency ωr from the simple formulas relating these quantities to the transfer-
function coefficients:

H(s) =
s− ξ

(

s
ωr

)2
+ 2

Q

(

s
ωr

)

+ 1

where ξ is an arbitrary finite zero location near dc. Finally, using the impulse invariant
method,30 we map the estimated Q and ωr to digital biquad coefficients, as shown in the
code.

• A useful quantitative measure of filter approximation error can be defined as follows (insert
after the call to freqs):

err = norm(wt(:) .* (db(Hp(:))-db(Hph(:))))/norm(wt(:) .* Hp(:));

disp(sprintf([’Relative weighted L2 norm of frequency ’,

’db-magnitude response error = %f’],err));

30http://ccrma.stanford.edu/~jos/pasp/Impulse Invariant Method.html
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function [Q,wp,Hp,Hd,w] = invfreqsmethod(h,f1,f2,fs);

%

% INVFREQSMETHOD - use invfreqs to estimate Q and resonance

% frequency from a resonator impulse response.

% USAGE:

% [Q,wp,w,Hp,Hd] = invfreqsmethod(h,f1,f2,fs);

% where

% h = impulse response (power of 2 length preferred)

% f1 = lowest frequency of interest (Hz)

% f2 = highest frequency of interest (Hz)

% fs = sampling rate (Hz)

% Q = estimated resonator Quality factor

% wp = estimated pole frequency (rad/sec)

%

% invfreqs and invfreqz are VERY sensitive to where time 0

% is defined. Normalize this by converting the impulse

% response to its minimum-phase counterpart:

h = minphaseir(h); H = fft(h);

L0 = length(h);

k1 = round(L0*f1/fs); k2 = round(L0*f2/fs);

Hp = H(k1:k2); L0p = length(Hp)

w = 2*pi*[k1:k2]*fs/L0;

wt = 1 ./ w.^2; % Nominal weighting proportional to 1/freq

[Bh,Ah] = invfreqs(Hp,w,2,2,wt);

Hph = freqs(Bh,Ah,w);

% Denominator to canonical form A(s) = s^2 + (wp/Q) s + wp^2:

Ahn = Ah/Ah(1); wp = sqrt(Ahn(3)); Q = wp/Ahn(2);

fp = wp/(2*pi);

disp(sprintf(’Pole frequency = %f Hz’,fp));

disp(sprintf(’Q = %f’,Q));

kp = L0*fp/fs - k1 + 1; % bin number of pole (+1 for matlab)

k1z = max(1,floor(kp*0.5));

k2z = min(length(w),ceil(kp*1.5));

ndx = [k1z:k2z];

% BiQuad fit using z = exp(s T) ~ 1 + sT approximation:

frn = fp/fs; % Normalized pole frequency (cycles per sample)

R = 1 - pi*frn/Q; % pole radius

theta = 2*pi*frn; % pole angle

A = [1, -2*R*cos(theta), R*R];

B = [1 -1]; % zeros guessed by inspection of amp response

Hd = freqz(B,A,w/fs);

gain = max(abs(Hp))/max(abs(Hd))

B = B*gain; Hd = Hd*gain;

Figure 19: Listing of matlab code for estimating the Q and pole-frequency in the measured
frequency response of a second-order resonator (wah pedal).
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• The minphaseir function for converting a spectrum to its minimum-phase counterpart is
listed in Fig. 20 and discussed in [12].31 This is a time-domain version of mps.m from the
RTFMT matlab code.32 The support routines clipdb and fold are similarly listed and
discussed in [12] (and included with the RTFMT matlab code).

Conversion to minimum phase is an important preprocessing step for phase-sensitive filter-
design methods when the desired frequency response is given as the FFT of a measured
impulse response with an unknown excess delay. Otherwise, the leading zeros can be trimmed
away manually. Further discussion on this point appears in [11].

Note that minphaseir will give poor results (in the form of time-aliasing) if there are poles
or zeros too close to the unit circle in the z plane. To address this, the spectrum of h can
be smoothed to eliminate any excessively sharp peaks or nulls. The requirement is that the
inverse-FFT of the log magnitude spectrum H = fft(h) must not time-alias appreciably at
the FFT size used (which is determined by the smoothness and the amount of zero padding
used in the FFT).

• The approximation z = esT ≈ 1 + sT assumes the highest resonance frequency (measured
to be 2.2 kHz here—see Fig. 16) is much less than the sampling rate fs. Since we will use
sampling rates no lower than fs = 44.1 kHz, and since the resonance frequency does not need
to be exact, this approximation is adequate for wah-pedal simulation.

function [hmp] = minphaseir(h)

%

% MINPHASEIR - Convert a real impulse response to its

% minimum phase counterpart

% USAGE:

% [hmp] = minphaseir(h)

% where

% h = impulse response (any length - will be zero-padded)

% hmp = min-phase impulse response (at zero-padded length)

nh = length(h);

nfft = 2^nextpow2(5*nh);

Hzp = fft(h,nfft);

Hmpzp = exp( fft( fold( ifft( log( clipdb(Hzp,-100) )))));

hmpzp = ifft(Hmpzp);

hmp = real(hmpzp(1:nh));

Figure 20: Listing of matlab function minphaseir for converting an impulse response to
its minimum-phase counterpart.

In summary, a second-order analog transfer-function was fit to each RTFMT-measured fre-
quency response using invfreqs in Octave. Closed-form expressions relating the returned coeffi-
cients to Q, peak-frequency, and peak-gain were used to obtain these parameters.

31http://ccrma.stanford.edu/\char‘~jos/filters/Minimum_Phase_Polynomials.html
32http://ccrma.stanford.edu/realsimple/imp_meas/tf_meas.zip
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6.1.5 The Digital CryBaby in Faust

The following Faust code approximately interpolates among the three measured pedal settings as
a function of a single “wah” variable normalized to lie between 0 and 1:

Q = pow(2.0,(2.0*(1.0-wah)+1.0));

fr = 450.0*pow(2.0,2.3*wah);

g = 0.1*pow(4.0,wah);

Closed-form expressions for biquad coefficients in terms of (Q,fr,g) based on z = exp(sT ) ≈ 1+sT
(low-frequency resonance assumed) yield the following Faust code:

// BiQuad fit using z = exp(s T) ~ 1 + sT for low frequencies:

frn = fr/SR; // Normalized pole frequency

R = 1 - PI*frn/Q; // pole radius

theta = 2*PI*frn; // pole angle

a1 = -2.0*R*cos(theta); // biquad coeff

a2 = R*R; // biquad coeff

// biquad denominator A = [1 a1 a2];

Finally, each time-varying biquad coefficient was smoothed by a unity-gain one-pole smoother with
pole at z = 0.999.

A Faust program implementing the digital approximation to the CryBaby wah pedal is shown
Fig. 21, and a test program is listed in Fig. 22. The function crybaby(wah) is included in effect.lib
starting with Faust version 0.9.9.3.

To test that the Faust version is producing the correct response, replace the last line in Fig. 22
with the following:

process = 1-1’ : *(gs) : wahres;

The signal 1-1’ is an impulse, so this process statement produces the impulse response of the
wah model at its default setting (wah = 0.1) which can be edited to check different values. The
amplitude response can then be seen by running

faust2octave tcrybaby.dsp

followed by (in Octave)

freqz(faustout);
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// Excerpt from effect.lib (Faust 0.9.9.3)

//

//------------------------ crybaby(wah) -----------------------------

// Digitized CryBaby wah pedal

// USAGE: crybaby(wah), where wah = "pedal angle" from 0 to 1.

// Requires filter.lib.

// Reference "http://ccrma.stanford.edu/~jos/pasp/vegf.html";

//

crybaby(wah) = *(gs(s)) : tf2(1,-1,0,a1s(s),a2s(s))

with {

s = 0.999; // smoothing parameter (one-pole pole location)

Q = pow(2.0,(2.0*(1.0-wah)+1.0)); // Resonance "quality factor"

fr = 450.0*pow(2.0,2.3*wah); // Resonance tuning

g = 0.1*pow(4.0,wah); // gain (optional)

// BiQuad fit using z = exp(s T) ~ 1 + sT for low frequencies:

frn = fr/SR; // Normalized pole frequency (cycles per sample)

R = 1 - PI*frn/Q; // pole radius

theta = 2*PI*frn; // pole angle

a1 = 0-2.0*R*cos(theta); // biquad coeff

a2 = R*R; // biquad coeff

// dezippering of slider-driven signals:

a1s(s) = a1 : smooth(s);

a2s(s) = a2 : smooth(s);

gs(s) = g : smooth(s);

};

Figure 21: Listing of Faust program tcrybaby.dsp for testing the Digital CryBaby wah
pedal.

// tcrybaby.dsp = test patch for digitized CryBaby pedal.

import("effect.lib"); // Faust 0.9.9.3 and higher

g = hslider("level [midi: ctrl 0x7]",0.1,0,1,0.01);

wah = hslider("wah [midi: ctrl 0x71]",0.4,0,1,0.01);

// MIDI Controller 0x71 is often "resonance" or "timbre"

// Some VST plugin hosts require stereo in and out:

process = + : *(g) : crybaby(wah) <: _,_;

// faust2octave impulse-response test using default wah-slider value:

// process = 1-1’ : crybaby(wah);

Figure 22: Listing of Faust program tcrybaby.dsp for testing the Digital CryBaby wah
pedal.
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6.1.6 Conclusions Regarding the Digital CryBaby

The Faust-generated wah pedal sounds very accurate to the author—in fact too accurate. At
low resonance frequencies, the loudness is significantly greater than at high resonance frequencies.
Therefore, it is planned to determine a new scaling function g(wah) that preserves constant loudness
as much as possible as the pedal varies.

6.1.7 Laboratory Exercises Using the Digital CryBaby

1. Print a plot of the amplitude response for the wah parameter set to 0, 0.5, and 1.

2. Using the Faust architecture file bench.cpp, determine the number of cycles required by the
Digital Crybaby.

3. (Optional) Find a new scaling function g(wah) that preserves constant loudness as much as
possible as the pedal varies.

7 Conclusions

In this series of laboratory exercises, we built a variety of virtual stringed instruments and associated
effects in the Faust programming language which compiled to produce C++ code for a variety of
hosting environments. We hope you have built some plugins that you will enjoy using in your
personal music studio.
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