
Virtual Distortion Electric Guitar Lab

Julius O. Smith III and Nelson Lee,

RealSimple Project∗

Center for Computer Research in Music and Acoustics (CCRMA)
Department of Music, Stanford University

Stanford, California 94305

June 5, 2008

Abstract

With familiarity with Delay Lines from previous labs under your belt, and coverage of how
d’Alembert’s solution to the Wave Equation can be simulated with two Delay Lines, you will
now write C++ classes to simulate an electric guitar followed by an implementation of overdrive
distortion. Starter code is available here.1

1 The String

(15 pts) Write an STK class String.cpp which implements a digital waveguide string model.
Implement the “efficient” block diagram found here.2 The tick() function should accept an input
sample (for exciting the string) and return the current string output. Control parameters governing
construction should include the desired pitch, the plucked position and the observing point. Other
characteristics, such as string damping, can be hard-wired or brought out as controls.

The string loop filter should be a symmetric second-order FIR filter Hl(z) = a + bz−1 + az−2.
The string delay line should be interpolated using allpass interpolation (e.g., using the STK class
DelayA). If hard-wired, the string loop filter coefficients should be b = 1/2, a = 1/4.

2 The Instrument

(15 pts) Writxe an STK class ElecGuitar.cpp which uses a single instance String to simulate a
string vibration. Each ElecGuitar string should have the following features

1. It excites its String with a white-noise burst which is filtered by a one-pole lowpass filter (the
default pole location should be 0.5). The noise is available from an STK class called Noise

and its burst should have a controllable duration up to at least one period in length (the
default pluck time should be 50 samples). The lowpass filter should have dc gain equal to 1

∗Work supported by the Wallenberg Global Learning Network
1http://ccrma.stanford.edu/˜jos/realsimple/electric guitar/starter code.tar.gz
2http://ccrma.stanford.edu/˜jos/pasp/Equivalent Forms.html

1

http://ccrma.stanford.edu/~{}jos
http://ccrma.stanford.edu/~{}nalee
http://ccrma.stanford.edu/realsimple/
http://ccrma.stanford.edu/
http://www.stanford.edu/group/Music/
http://www.stanford.edu/
http://www.wgln.org/
http://ccrma.stanford.edu/~{}jos/realsimple/electric_guitar/starter_code.tar.gz
http://ccrma.stanford.edu/~{}jos/pasp/Equivalent_Forms.html


(or slightly less) for all “brightness” settings. It should have a noteOn and noteOff methods
to deal with the start and end of a note. See examples from other instruments available in
STK.

2. It should allow for pluck and magnetic pick-up positions to be specified in its corresponding
String instance as a ratio between [0,1] of the string length from the bridge. Let the default
pluck and pick-up positions be 1 and 3 inches from the bridge (respectively).

3. It should allow for a feedback input to be added to the string excitation from external pro-
grams e.g. via setFeedback method.

You may use as an example, SimpString.cpp, given in gtrc directory from the jos-overlay.
Note, however, that your String should do nothing except setting up the string (including pluck
and pick-up positions). It has to be excited through ElecGuitar.

3 Overdrive

(5 pts) Write an STK class Overdrive.cpp which simulates a nonlinear soft-clip amplifier distortion,
as described in “Amplifier Distortion + Amplifier Feedback”.3 The controls should be (at least)
pre-distortion gain, post-distortion gain, and direct-signal gain. Its tick method takes an input
and emits an output. In the main program, the input to the distortion unit should be the sum of
all strings’ outputs.

4 Amp Distortion

(5 pts) Implement the amplifier feedback, as described in “Amplifier Distortion + Amplifier Feed-

back”.4 except that you can feedback the final output of the distortion unit for modularity. The
controls are feedback gain and feedback delay. This can be simply implemented directly in the main
test program mygtr.cpp. In the main program, the input to the amplifier feedback unit should be
the output from the distortion unit. Its output is fed back into each string in ElecGuitar.

5 Testing the Whole Setup

5.1 Completing mygtr.cpp

(10 pts) Complete the test program mygtr.cpp that plays a simple SKINI score file containing a
few notes using ElecGuitar just created. Compile and link using the Makefile given along with
the sample SKINI file test.ski. Turn in your commented program listings as usual.

5.2 Playing a Melody

(20 pts) Using test.ski, produce examples of your electric guitar for the three different playing
modes : guitar, guitar with distortion, and guitar with distortion and amplifier feedback. Con-
catenate these synthesized examples into a SINGLE soundfile and place a copy in your submission
folder, using your last name in the soundfile name. Make sure they all sound acceptable for grading.

3http://ccrma.stanford.edu/˜jos/SimpleStrings/Amplifier Distortion Amplifier.html
4http://ccrma.stanford.edu/˜jos/SimpleStrings/Amplifier Distortion Amplifier.html

2

http://ccrma.stanford.edu/~{}jos/SimpleStrings/Amplifier_Distortion_Amplifier.html
http://ccrma.stanford.edu/~{}jos/SimpleStrings/Amplifier_Distortion_Amplifier.html

	The String
	The Instrument
	Overdrive
	Amp Distortion
	Testing the Whole Setup
	Completing mygtr.cpp
	Playing a Melody


