Distributed Modeling in Discrete Time

Julius Smith and Nelson Lee

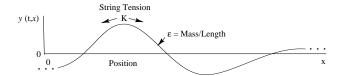
RealSimple Project*
Center for Computer Research in Music and Acoustics (CCRMA)
Department of Music, Stanford University
Stanford, California 94305

June 5, 2008

Outline

- Ideal Vibrating String
- Finite Difference Approximation (FDA)
- Traveling-Wave Solution
- Ideal Plucked String
- Sampling Issues
- Lossless Digital Waveguides
- Sampled Traveling Waves versus Finite Differences
- Lossy 1D Wave Equation
- Dispersive 1D Wave Equation

Ideal Vibrating String



Wave Equation

$$Ky'' = \epsilon \ddot{y}$$

Newton's second law

$$\mathsf{Force} = \mathsf{Mass} \times \mathsf{Acceleration}$$

Assumptions

- Lossless
- Linear
- Flexible (no "Stiffness")
- $\bullet \ \mathsf{Slope} \ y'(t,x) \ll 1$

 $^{^*\}mbox{Work}$ supported by the Wallenberg Global Learning Network

Example One-Dimensional Waveguides

- Any elastic medium displaced along 1D
- Air column of a clarinet or organ pipe
 - Air-pressure deviation $p \leftrightarrow$ string displacement y
 - Longitudinal volume velocity $u \leftrightarrow \text{transverse}$ string velocity v
- Vibrating strings
 - Really need at least *three* coupled 1D waveguides:
 - * Horizontally polarized transverse waves
 - * Vertical polarized transverse waves
 - * Longitudinal waves

(Typically 1 or 2 WG per string used in practice)

- Bowed strings also require torsional waves
 (Typical: one waveguide per string [plane of the bow])
- Piano requires up to three coupled strings per key
 - * Two-stage decay
 - * Aftersound

(Typical: 1 or 2 waveguides per string)

Let's first review the finite difference approximation applied to the ideal string (for comparison purposes):

Finite Difference Approximation (FDA)

 $\dot{y}(t,x) \approx \frac{y(t,x) - y(t-T,x)}{T}$

and

$$y'(t,x) \approx \frac{y(t,x) - y(t,x-X)}{X}$$

- \bullet T = temporal sampling interval
- \bullet X =spatial sampling interval
- Exact in limit as sampling intervals → zero
- Half a sample delay at each frequency. Fix: $\dot{y}(t,x) \approx [y(t+T,x)-y(t-T,x)]/(2T)$

Zero-phase second-order difference:

$$\ddot{y}(t,x) \approx \frac{y(t+T,x) - 2y(t,x) + y(t-T,x)}{T^2}$$

$$y''(t,x) \approx \frac{y(t,x+X) - 2y(t,x) + y(t,x-X)}{X^2}$$

- All odd-order derivative approximations suffer a half-sample delay error
- All even order cases can be compensated as above

FDA of 1D Wave Equation

Substituting finite difference approximation (FDA) into the wave equation $Ky'' = \epsilon \ddot{y}$ gives

$$K\frac{y(t,x+X)-2y(t,x)+y(t,x-X)}{X^2}$$

$$= \epsilon \frac{y(t+T,x)-2y(t,x)+y(t-T,x)}{T^2}$$

 \Rightarrow Time Update:

$$y(t+T,x) = \frac{KT^2}{\epsilon X^2} [y(t, x+X) - 2y(t, x) + y(t, x-X)] + 2y(t, x) - y(t-T, x)$$

Let $c \stackrel{\triangle}{=} \sqrt{K/\epsilon}$ (speed of sound along the string). In practice, we typically normalize such that

- $\bullet \ T=1 \Rightarrow t=nT=n$
- $\bullet~X=cT=1\Rightarrow x=mX=m,$ and $\boxed{y(n+1,m)=y(n,m+1)+y(n,m-1)-y(n-1,m)}$
- Recursive *difference equation* in two variables (time and space)
- Time-update recursion for time n+1 requires all values of string displacement (i.e., all m), for the two preceding time steps (times n and n-1)

- Recursion typically started by assuming zero past displacement: $y(n,m)=0, n=-1,0, \forall m.$
- Higher order wave equations yield more terms of the form $y(n-l,m-k) \Leftrightarrow$ frequency-dependent *losses* and/or *dispersion* characteristics are introduced into the FDA:
- Linear differential equations with constant coefficients give rise to some linear, time-invariant discrete-time system via the FDA
 - Linear, time-invariant, "filtered waveguide" case:

$$\sum_{k=0}^{\infty} \alpha_k \frac{\partial^k y(t,x)}{\partial t^k} = \sum_{l=0}^{\infty} \beta_l \frac{\partial^l y(t,x)}{\partial x^l}$$

More general linear, time-invariant case

$$\sum_{k=0}^{\infty} \sum_{l=0}^{\infty} \alpha_{k,l} \frac{\partial^k \partial^l y(t,x)}{\partial t^k \partial x^l} = \sum_{m=0}^{\infty} \sum_{n=0}^{\infty} \beta_{m,n} \frac{\partial^m \partial^n y(t,x)}{\partial t^m \partial x^n}$$

– Nonlinear example:

$$\frac{\partial y(t,x)}{\partial t} = \left(\frac{\partial y(t,x)}{\partial x}\right)^2$$

— Time-varying example:

$$\frac{\partial y(t,x)}{\partial t} = t^2 \frac{\partial y(t,x)}{\partial x}$$

Traveling-Wave Solution

One-dimensional lossless wave equation:

$$Ky'' = \epsilon \ddot{y}$$

Plug in traveling wave to the right:

$$y(t,x) = y_r(t - x/c)$$

$$\Rightarrow y'(t,x) = -\frac{1}{c}\dot{y}(t,x)$$

$$y''(t,x) = \frac{1}{c^2}\ddot{y}(t,x)$$

- Since $c \stackrel{\triangle}{=} \sqrt{K/\epsilon}$, the wave equation is satisfied for any shape traveling to the right at speed c (but remember slope $\ll 1$)
- Similarly, any *left-going* traveling wave at speed c, $y_l(t+x/c)$, statisfies the wave equation

• General solution to lossless, 1D, second-order wave equation:

$$y(t, x) = y_r(t - x/c) + y_l(t + x/c)$$

- $y_l(\cdot)$ and $y_r(\cdot)$ are arbitrary twice-differentiable functions (slope $\ll 1$)
- Important point: Function of two variables y(t,x) is replaced by two functions of a single (time) variable \Rightarrow reduced complexity.
- Published by d'Alembert in 1747

Laplace-Domain Analysis

- ullet est is an eigenfunction under differentiation
- Plug it in:

$$y(t,x) = e^{st+vx}$$

• By differentiation theorem

$$\dot{y} = sy \qquad y' = vy
\ddot{y} = s^2 y \qquad y'' = v^2 y$$

• Wave equation becomes

$$Kv^{2}y = \epsilon s^{2}y$$

$$\implies \frac{s^{2}}{v^{2}} = \frac{K}{\epsilon} = c^{2}$$

$$\implies v = \pm \frac{s}{c}$$

Thus

$$y(t,x) = e^{s(t \pm x/c)}$$

is a solution for all s.

Interpretation: left- and right-going exponentially enveloped complex sinusoids

General eigensolution:

$$y(t,x) = e^{s(t\pm x/c)}$$
, s arbitrary, complex

By superposition,

$$y(t,x) = \sum_{i} A^{+}(s_i)e^{s_i(t-x/c)} + A^{-}(s_i)e^{s_i(t+x/c)}$$

is also a solution for all $A^+(s_i)$ and $A^-(s_i)$.

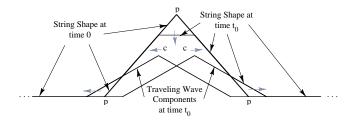
Alternate derivation of D'Alembert's solution:

- ullet Specialize general eigensolution to $s\stackrel{\Delta}{=} j\omega$
- Extend summation to an integral over ω \Rightarrow *Inverse Fourier transform* gives

$$y(t,x) = y_r \left(t - \frac{x}{c}\right) + y_l \left(t + \frac{x}{c}\right)$$

where $y_r(\cdot)$ and $y_l(\cdot)$ are arbitrary continuous functions

Infinitely long string plucked simultaneously at three points marked 'p'



- Initial displacement = sum of two identical triangular pulses
- ullet At time t_0 , traveling waves centers are separated by $2ct_0$ meters
- String is not moving where the traveling waves overlap at same slope.

Sampled Traveling Waves in a String

For discrete-time simulation, we must sample the traveling waves

- Sampling interval $\stackrel{\Delta}{=} T$ seconds
- ullet Sampling rate $\stackrel{\Delta}{=} f_s$ Hz = 1/T
- Spatial sampling rate $\stackrel{\triangle}{=} X$ m/s $\stackrel{\triangle}{=} cT$ \Rightarrow systolic grid

For a vibrating string with length L and fundamental frequency f_0 ,

$$c = f_0 \cdot 2L$$
 $\left(\frac{\mathsf{periods}}{\mathsf{sec}} \cdot \frac{\mathsf{meters}}{\mathsf{period}} = \frac{\mathsf{meters}}{\mathsf{sec}}\right)$

so that

$$X = cT = (f_0 2L)/f_s = L[f_0/(f_s/2)]$$

Thus, the number of spatial samples along the string is

$$L/X = (f_s/2)/f_0$$

or

 ${\sf Number\ of\ spatial\ samples} = {\sf Number\ of\ string\ harmonics}$

Examples:

- Spatial sampling interval for (1/2) CD-quality digital model of Les Paul electric guitar (strings \approx 26 inches long)
 - $X = Lf_0/(f_s/2) = L82.4/22050 \approx 2.5$ mm for low E string
 - $-\,X\approx 10$ mm for high E string (two octaves higher and the same length)
 - Low E string: $(f_s/2)/f_0=22050/82.4=268$ harmonics (spatial samples)
 - High E string: 67 harmonics (spatial samples)
- Number of harmonics = number of oscillators required in additive synthesis
- Number of harmonics = number of two-pole filters required in subtractive, modal, or source-filter decomposition synthesis

Examples (continued):

- Sound propagation in air:
 - Speed of sound $c \approx 331$ meters per second
 - -X = 331/44100 = 7.5 mm
 - Spatial sampling rate = $\nu_s = 1/X = 133$ samples/m
 - Sound speed in air is comparable to that of transverse waves on a guitar string (faster than some strings, slower than others)
 - Sound travels much faster in most solids than in air
 - Longitudinal waves in strings travel faster than transverse waves

Sampled Traveling Waves in any Digital Waveguide

$$\begin{array}{cccc} x & \rightarrow & x_m & = & mX \\ t & \rightarrow & t_n & = & nT \end{array}$$

 \Rightarrow

$$y(t_n, x_m) = y_r(t_n - x_m/c) + y_l(t_n + x_m/c)$$

$$= y_r(nT - mX/c) + y_l(nT + mX/c)$$

$$= y_r[(n - m)T] + y_l[(n + m)T]$$

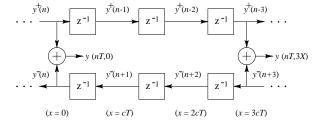
$$= y^+(n - m) + y^-(n + m)$$

where we defined

$$y^+(n) \stackrel{\Delta}{=} y_r(nT)$$
 $y^-(n) \stackrel{\Delta}{=} y_l(nT)$

- "+" superscript \implies right-going
- "−" superscript ⇒ left-going
- $y_r[(n-m)T] = y^+(n-m) = \text{output of } m\text{-sample delay line}$ with input $y^+(n)$
- $y_l\left[(n+m)T\right] \stackrel{\triangle}{=} y^-(n+m) = \mathit{input}$ to an m-sample delay line whose output is $y^-(n)$

Lossless digital waveguide with observation points at x=0 and x=3X=3cT



Recall:

$$y(t,x) = y^{+} \left(\frac{t - x/c}{T}\right) + y^{-} \left(\frac{t + x/c}{T}\right)$$

$$\downarrow$$

$$(nT, mX) = y^{+}(n - m) + y^{-}(n + m)$$

- Position $x_m = mX = mcT$ is eliminated from the simulation
- ullet Position x_m remains laid out from left to right
- Left- and right-going traveling waves must be *summed* to produce a *physical* output

$$y(t_n, x_m) = y^+(n-m) + y^-(n+m)$$

• Similar to ladder and lattice digital filters

Important point: Discrete time simulation is *exact* at the sampling instants, to within the numerical precision of the samples themselves.

To avoid aliasing associated with sampling,

- ullet Require all initial waveshapes be bandlimited to $(-f_s/2,f_s/2)$
- Require all external driving signals be similarly bandlimited
- Avoid nonlinearities or keep them "weak"
- Avoid time variation or keep it slow
- Use plenty of lowpass filtering with rapid high-frequency roll-off in severely nonlinear and/or time-varying cases
- Prefer "feed-forward" over "feed-back" around nonlinearities when possible

Relation of Sampled D'Alembert Traveling Waves to the Finite Difference Approximation

Recall FDA result [based on $\dot{x}(n) \approx x(n) - x(n-1)$]:

$$y(n+1,m) = y(n,m+1) + y(n,m-1) - y(n-1,m)$$

Traveling-wave decomposition (exact in lossless case at sampling instants):

$$y(n,m) = y^{+}(n-m) + y^{-}(n+m)$$

Substituting into FDA gives

$$y(n+1,m) = y(n,m+1) + y(n,m-1) - y(n-1,m)$$

$$= y^{+}(n-m-1) + y^{-}(n+m+1)$$

$$+y^{+}(n-m+1) + y^{-}(n+m-1)$$

$$-y^{+}(n-m-1) - y^{-}(n+m-1)$$

$$= y^{-}(n+m+1) + y^{+}(n-m+1)$$

$$= y^{+}[(n+1) - m] + y^{-}[(n+1) + m]$$

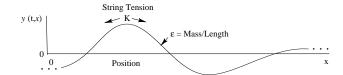
$$\stackrel{\triangle}{=} y(n+1,m)$$

- FDA recursion is also *exact* in the lossless case (!)
- Recall that FDA introduced artificial damping in mass-spring systems
- The last identity above can be rewritten as

$$y(n+1,m) \stackrel{\Delta}{=} y^{+}[(n+1)-m] + y^{-}[(n+1)+m]$$
$$= y^{+}[n-(m-1)] + y^{-}[n+(m+1)]$$

- ullet Displacement at time n+1 and position m is the superposition of left- and right-going components from positions m-1 and m+1 at time n
- The physical wave variable can be computed for the next time step as the sum of incoming traveling wave components from the left and right
- Lossless nature of the computation is clear

The Lossy 1D Wave Equation



The ideal vibrating string.

Sources of loss in a vibrating string:

- 1. Yielding terminations
- 2. Drag due to air viscosity
- 3. Internal bending friction

Simplest case: Add a term proportional to velocity:

$$Ky'' = \epsilon \ddot{y} \underbrace{+\mu \dot{y}}_{\text{new}}$$

More generally,

$$Ky'' = \epsilon \ddot{y} + \sum_{\substack{m=0\\ m \text{ odd}}}^{M-1} \mu_m \frac{\partial^m y(t,x)}{\partial t^m}$$

where μ_m may be determined $\mathit{indirectly}$ by $\mathit{measuring}$ linear damping versus frequency

Solution to Lossy 1D Wave Equation

$$y(t,x) = e^{-(\mu/2\epsilon)x/c}y_r(t - x/c) + e^{(\mu/2\epsilon)x/c}y_l(t + x/c)$$

Assumptions:

- Small displacements ($y' \ll 1$)
- Small losses ($\mu \ll \epsilon \omega$)
- ullet $c\stackrel{\Delta}{=} \sqrt{K/\epsilon}=$ as before (wave velocity in lossless case)

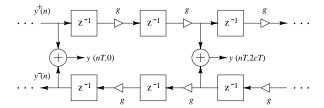
Components $decay\ exponentially$ in direction of travel

Sampling with t=nT, x=mX, and X=cT gives

$$y(t_n, x_m) = g^{-m}y^+(n-m) + g^my^-(n+m)$$

where $g \stackrel{\Delta}{=} e^{-\mu T/2\epsilon}$

Lossy Digital Waveguide



- ullet Order ∞ distributed system reduced to finite order
- \bullet Loss factor $g=e^{-\mu T/2\epsilon}$ summarizes distributed loss in one sample of propagation
- Discrete-time simulation exact at sampling points
- Initial conditions and excitations must be bandlimited
- Bandlimited interpolation reconstructs continuous case

Loss Consolidation



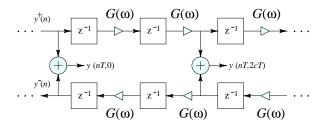
- ullet Loss terms are simply constant gains $g \leq 1$
- Linear, time-invariant elements commute
- Applicable to undriven and unobserved string sections
- Simulation becomes *more accurate* at the outputs (fewer round-off errors)
- Number of multiplies greatly reduced in practice

Frequency-Dependent Losses

- Losses in nature tend to *increase* with frequency
 - Air absorption
 - Internal friction
- Simplest string wave equation giving higher damping at high frequencies

$$Ky'' = \epsilon \ddot{y} + \mu_1 \dot{y} + \underbrace{+\mu_3 \frac{\partial^3 y(t,x)}{\partial t^3}}_{\text{new}}$$

- Used in Chaigne-Askenfelt piano string PDE
- Damping asymptotically proportional to ω^2
- Waves propagate with frequency-dependent attenuation (zero-phase filtering)
- Loss consolidation remains valid (by commutativity)



The Dispersive One-Dimensional Wave Equation

Stiffness introduces a restoring force proportional to the fourth spatial derivative:

$$\epsilon \ddot{y} = K y'' \underbrace{-\kappa y''''}_{\text{new}}$$

where

- $\kappa = \frac{Q\pi a^4}{4}$ (moment constant)
- \bullet a =string radius
- Q = Young's modulus (stress/strain) (spring constant for solids)
- Stiffness is a *linear* phenomenon
 - Imagine a "bundle" or "cable" of ideal string fibers
 - Stiffness is due to the *longitudinal* springiness

Limiting cases

- Reverts to ideal flexible string at very low frequencies $(Ky'' \gg \kappa y'''')$
- Becomes ideal bar at very high frequencies $(Ky'' \ll \kappa y'''')$

Effects of Stiffness

• Phase velocity increases with frequency

$$c(\omega) \stackrel{\Delta}{=} c_0 \left(1 + \frac{\kappa \omega^2}{2Kc_0^2} \right)$$

where $c_0 = \sqrt{K/\epsilon} = \text{zero-stiffness phase velocity}$

- Note ideal-string (LF) and ideal-bar (HF) limits
- Traveling-wave components see a frequency-dependent sound speed
- High-frequency components "run out ahead" of low-frequency components ("HF precursors")
- Traveling waves "disperse" as they travel ("dispersive transmission line")
- String overtones are "stretched" and "inharmonic"
- Higher overtones are progressively sharper ($\mathsf{Period}(\omega) = 2 \times \mathsf{Length} \ / \ c(\omega)$)
- Piano strings are audibly stiff

Reference: L. Cremer: Physics of the Violin

Digital Simulation of Stiff Strings

- Allpass filters implement a frequency-dependent delay
- ullet For stiff strings, we must generalize X=cT to

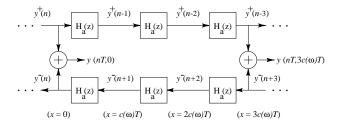
$$X = c(\omega)T \Rightarrow T(\omega) = X/c(\omega) = c_0T_0/c(\omega)$$

where $T_0 = T(0) = \text{zero-stiffness sampling interval}$

 \bullet Thus, replace unit delay z^{-1} by

$$z^{-1} \rightarrow z^{-c_0/c(\omega)} \stackrel{\Delta}{=} H_a(z)$$
 (frequency-dependent delay)

- Each delay element becomes an allpass filter
- In general, $H_a(z)$ is irrational
- We approximate $H_a(z)$ in practice using some finite-order fractional delay digital filter



General Allpass Filters

• General, order L, allpass filter:

$$H_a(z) \stackrel{\Delta}{=} z^{-L} \frac{A(z^{-1})}{A(z)}$$

$$= \frac{a_L + a_{L-1}z^{-1} + \dots + a_1z^{-(L-1)} + z^{-L}}{1 + a_1z^{-1} + a_2z^{-2} + \dots + a_Lz^{-L}}$$

• General order L, monic, minimum-phase polynomial:

$$A(z) \stackrel{\Delta}{=} 1 + a_1 z^{-1} + a_2 z^{-2} + \dots + a_L z^{-L}$$

where $A(z_i) = 0 \Rightarrow |z_i| < 1$ (roots inside unit circle)

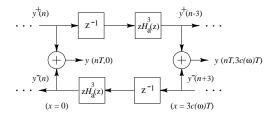
- Numerator polynomial = reverse of denominator
- First-order case:

$$H_a(z) \stackrel{\Delta}{=} \frac{a_1 z^{-1} + 1}{1 + a_1 z^{-1}}$$

- ullet Each pole p_i gain-compensated by a zero at $z_i=1/p_i$
- There are papers in the literature describing methods for designing allpass filters with a prescribed group delay (see reader for refs)
- ullet For piano strings L is on the order of 10

Consolidation of Dispersion

Allpass filters are *linear and time invariant* which means they *commute* with other linear and time invariant elements



- At least one sample of pure delay must normally be "pulled out" of ideal desired allpass along each rail
- ullet Ideal allpass design minimizes phase-delay error $P_c(\omega)$
- Minimizing $\|P_c(\omega) c_0/c(\omega)\|_{\infty}$ approximately minimizes tuning error for modes of freely vibrating string (main audible effect)
- Minimizing group delay error optimizes decay times

Related Links

- Online draft of the book 1 containing this material
- Derivation of the wave equation for vibrating strings²

¹http://ccrma.stanford.edu/~jos/waveguide/

²http://ccrma.stanford.edu/~jos/waveguide/String_Wave_Equation.html