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Example One-Dimensional Waveguides

e Any elastic medium displaced along 1D
e Air column of a clarinet or organ pipe

— Air-pressure deviation p < string displacement y
— Longitudinal volume velocity u « transverse string velocity v
e Vibrating strings
— Really need at least three coupled 1D waveguides:
* Horizontally polarized transverse waves
* Vertical polarized transverse waves
% Longitudinal waves
(Typically 1 or 2 WG per string used in practice)

— Bowed strings also require torsional waves
(Typical: one waveguide per string [plane of the bow])

— Piano requires up to three coupled strings per key

* Two-stage decay
* Aftersound

(Typical: 1 or 2 waveguides per string)

Let's first review the finite difference approximation applied to the
ideal string (for comparison purposes):

Finite Difference Approximation (FDA)

~ y(t, $) — y(t — T, I)

.

y(7x> T

and (t.2) = y(tz — X)
/t %y y L _y , L —
y(?x> X

e " = temporal sampling interval

e X = spatial sampling interval

e Exact in limit as sampling intervals — zero
e Half a sample delay at each frequency.

Fix: g(t,x) = [y(t+T,z) —y(t —T,x)]/(2T)

Zero-phase second-order difference:

. yit+T,x)—2ylt,x)+ylt—"T,x
.00 VT = 20) 4t =T,

y(t,x + X) —2y(t,x) + y(t,z — X)

y//(t7x) ~ X2

e All odd-order derivative approximations suffer a half-sample delay
error

e All even order cases can be compensated as above



FDA of 1D Wave Equation

Substituting finite difference approximation (FDA) into the wave
equation Ky" = €1 gives

XQ
y(t+ T, 2) —2y(t,z) +y(t — T, )
T2

K

= Time Update:
2

t+7T =
y( + ,:17) €X2

[y(t,z + X) —2y(t,z) + y(t,x — X)]
+2y(t,x) —y(t — T, x)

Let ¢ 2 \/ K /€ (speed of sound along the string).
In practice, we typically normalize such that

e '=1=t=nT=n

e X =cT'=1=2x2=mX =m, and

‘y(n—l—l,m) =y(n,m+1)+yn,m-—1) —y(n—l,m)‘

e Recursive difference equation in two variables
(time and space)

e Time-update recursion for time n + 1 requires all values of string
displacement (i.e., all m), for the two preceding time steps
(times n and n — 1)

(S

e Recursion typically started by assuming zero past displacement:
y(n,m)=0,n=—1,0,Vm.

e Higher order wave equations yield more terms of the form
y(n — 1, m — k) < frequency-dependent losses and/or dispersion
characteristics are introduced into the FDA:

e Linear differential equations with constant coefficients give rise
to some linear, time-invariant discrete-time system via the FDA

— Linear, time-invariant, “filtered waveguide" case:

aa’“y(t,x): = dy(t,x)
Motk o

k=0 1=0

— More general linear, time-invariant case

a*aly(t, amary(t,x)
Z Z Okl thf/a ZT Z Z ﬁm n tmaxn

k=0 [=0 =0 n=0

— Nonlinear example:

Oy(t,x) _ (y(t.x)\"
o x
— Time-varying example:

ot ox




Trave“ng_wave Solution e General solution to lossless, 1D, second-order wave equation:
y(t,x) =y (t —x/c) +y(t +z/c)

ne-dimensional lossless wave equation: , o . ,
0 : ! wave equati e y;(-) and y,(-) are arbitrary twice-differentiable functions (slope

< 1)

"o -
Ky" = ¢j e Important point: Function of two variables y(t, x) is replaced

by two functions of a single (time) variable = reduced
complexity.

e Published by d'Alembert in 1747

Plug in traveling wave to the right:

y(t,x) = yolt —x/c)

1.

= yJ(tx) = —Ey(t,x)
1.

y”(tl‘) = gy(t,x)

o Since ¢ = \/ K /€, the wave equation is satisfied for any shape
traveling to the right at speed ¢ (but remember slope < 1)

e Similarly, any left-going traveling wave at speed ¢, y;(t + z/c),
statisfies the wave equation



Laplace-Domain Analysis

e ¢! is an eigenfunction under differentiation

e Plug it in:
y(t,l‘) _ est+1/x
e By differentiation theorem
y = sy oy = vy
y = sy oy = vy

e Wave equation becomes

Ko’y = es’y
s K
B —2:—26
v €
5
== v = £-
c

Thus

is a solution for all s.

Interpretation: left- and right-going exponentially enveloped

complex sinusoids

General eigensolution:

(t+x/c) ’

y(t,x) =€’ s arbitrary, complex

By superposition,

y(t,ﬂ?) _ ZA+(SIT)€Si(t_I/C) + A—(Sj)esi(t+x/c)

is also a solution for all A*(s;) and A~ (s;).

Alternate derivation of D’Alembert’s solution:

T . . A .
e Specialize general eigensolution to s = jw

e Extend summation to an integral over w
= Inverse Fourier transform gives

y(t, ) =y, (t—%) +yi (H%)

where y,.(+) and y;(-) are arbitrary continuous functions
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Infinitely long string plucked simultaneously at three points
marked ‘p’

String Shape at
time 0
g Wave
[ Components [3)
atimet,

e Initial displacement = sum of two identical triangular pulses
e At time %, traveling waves centers are separated by 2ct, meters

e String is not moving where the traveling waves overlap at same
slope.
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Sampled Traveling Waves in a String

For discrete-time simulation, we must sample the traveling waves

e Sampling interval 2 T seconds
e Sampling rate 2 fsHz=1/T

e Spatial sampling rate 2 x m/s 27
= systolic grid

For a vibrating string with length L and fundamental frequency fj,

C:f()'QL <

i
eriods meters  meters
sec period sec

so that
X =T = (fo2L)/ fs = LIfo/(fs/2)]
Thus, the number of spatial samples along the string is
L/X = (fs/2)/ fo
or

Number of spatial samples = Number of string harmonics
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Examples:

e Spatial sampling interval for (1/2) CD-quality digital model of
Les Paul electric guitar (strings ~ 26 inches long)
— X = Lfy/(fs/2) = L82.4/22050 ~ 2.5 mm for low E string

— X =~ 10 mm for high E string (two octaves higher and the
same length)

— Low E string: (fs/2)/fo = 22050/82.4 = 268 harmonics
(spatial samples)

— High E string: 67 harmonics (spatial samples)

e Number of harmonics = number of oscillators required in
additive synthesis

e Number of harmonics = number of two-pole filters required in
subtractive, modal, or source-filter decomposition synthesis
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Examples (continued):
e Sound propagation in air:
— Speed of sound ¢ & 331 meters per second
— X =331/44100 = 7.5 mm
— Spatial sampling rate = v, = 1/X = 133 samples/m
— Sound speed in air is comparable to that of transverse waves

on a guitar string (faster than some strings, slower than
others)

— Sound travels much faster in most solids than in air

— Longitudinal waves in strings travel faster than transverse
waves
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Sampled Traveling Waves in any Digital
Waveguide

r — T, = mX
t — t, = nTl

y(tm mm) = y7'(tn - xm/c) + yl(tn + CL',,L/C)
= y.(nT —mX/c)+y(nT +mX/c)
= Y [(n=m)T] +y [(n+m)T]
= y'(n—m)+y (n+m)
where we defined

y*(n) 2

yr(nT) y~(n) = u(nT)

e "+ superscript = right-going

e "—" superscript = left-going
ey, [(n—m)T| =y"(n —m) = output of m-sample delay line
with input y™(n)

oy [(n+m)T] 2y (n+m) = input to an m-sample delay line

whose output is y~(n)
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Lossless digital waveguide with observation points at © =0
and z = 3X = 3cT

v v yi(n2) ¥
. z71 z71 z71
y (nT,0) y (nT,3X)
y(n) y(n+1) y(n+2) y(n+3)
. z71 z1 z71 P
(x=0) (x=cT) (x=2cT) (x=3cT)
e Recall:
t—x/c t+x/c
te) =y | ——)+y
ylt,z) =y < T ) Y ( T
I

y(nT,mX) = y'(n—m)+y (n+m)
e Position x,, = mX = mcT is eliminated from the simulation
e Position x,, remains laid out from left to right

o Left- and right-going traveling waves must be summed to
produce a physical output

y(tm xm) = y+(n - m) + yi(n + m)
e Similar to ladder and lattice digital filters
Important point: Discrete time simulation is exact at the sampling
instants, to within the numerical precision of the samples themselves.
To avoid aliasing associated with sampling,
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e Require all initial waveshapes be bandlimited to (—fs/2, fs/2)
e Require all external driving signals be similarly bandlimited

e Avoid nonlinearities or keep them “weak”

e Avoid time variation or keep it slow

e Use plenty of lowpass filtering with rapid high-frequency roll-off
in severely nonlinear and/or time-varying cases

o Prefer “feed-forward” over “feed-back” around nonlinearities
when possible

17

Relation of Sampled D’Alembert
Traveling Waves to the Finite Difference
Approximation

Recall FDA result [based on &(n) ~ z(n) — z(n — 1)]:

Traveling-wave decomposition (exact in lossless case at sampling
instants):

y(n,m) =y (n—m)+y (n+m)
Substituting into FDA gives

yin+1,m) = yn,m+1)+yn,m-—1)—yn—1m)
=y n-m-1)+y (n+m+1)

+y " n—m+1)+y (n+m—1)

—ytn—m—1)—y (n+m-—1)

y (n+m+1)+y (n—m+1)

y'l(n+1) —m]+y [(n+1)+m]

y(n+1,m)

el

o FDA recursion is also exact in the lossless case (!)

e Recall that FDA introduced artificial damping in mass-spring
systems

e The last identity above can be rewritten as

yn+1,m) 2 gy (n+1)—ml+y [(n+1)+m]
= yn—(m-=1]+y [n+(m+1)
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e Displacement at time n + 1 and position m is the superposition The Lossy 1D Wave Equation
of left- and right-going components from positions m — 1 and

m+ 1 at time n

e The physical wave variable can be computed for the next time Sring Tension
step as the sum of incoming traveling wave components from the y () o K
left and right £ = Mas/Length
(.J 0, Position X

e Lossless nature of the computation is clear
The ideal vibrating string.

Sources of loss in a vibrating string:

1. Yielding terminations
2. Drag due to air viscosity

3. Internal bending friction

Simplest case: Add a term proportional to velocity:

K" = eii .
Y €y 1y
new

More generally,

M-1
O"y(t, x)
Ky = eij + :
Yy Yy ; Hm ¢m
m odd

where (1, may be determined indirectly by measuring linear damping
versus frequency
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Solution to Lossy 1D Wave Equation

y(t,z) = e W2ITley (t — x/c) + W2y (t 4 2 /c)
Assumptions:

e Small displacements (v’ < 1)
e Small losses (11 < ew)

A o
e ¢ = /K /e = as before (wave velocity in lossless case)

Components decay exponentially in direction of travel
Sampling with t = nT', x = mX, and X = ¢T gives
Yt wm) =g~y (n—m) + g™y (n+m)

A
where g = e #1/%

21

Lossy Digital Waveguide

y'(n) g 9 s
z1 >t 771 P4 ) N
y (nT,0) y (nT,2cT)
yn)
. 27l fe—<}— 271 Z7l le—<—
9 s g

e Order oo distributed system reduced to finite order

e Loss factor g = e #1/% summarizes distributed loss in one
sample of propagation

e Discrete-time simulation exact at sampling points
e Initial conditions and excitations must be bandlimited

e Bandlimited interpolation reconstructs continuous case
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Loss Consolidation Frequency-Dependent Losses

e Losses in nature tend to increase with frequency

y () g2 g
"1 "1 T > . . .
? z z — Air absorption
Y (70 y (26D — Internal friction
o o - - o ° Simplest.string wave equation giving higher damping at high
g2 9 frequencies
Py(t, x)
"= e - gYLT)
Ky' =ej+my+ +pus—3
—_——
e Loss terms are simply constant gains g < 1 new
. o — Used in Chaigne-Askenfelt piano string PDE
e Linear, time-invariant elements commute ) ) ) )
— Damping asymptotically proportional to w
e Applicable to undriven and unobserved string sections i .
e Waves propagate with frequency-dependent attenuation
e Simulation becomes more accurate at the outputs (fewer (zero-phase filtering)
round-off errors) L . : .
e Loss consolidation remains valid (by commutativity)
e Number of multiplies greatly reduced in practice
i) G(w) G(w) G(w)
z1 >t 771 A Y N S
y (nT,0) y (nT,2cT)
Y
- 2t < 2z A S e
G(w) G(w) G(w)
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The Dispersive One-Dimensional Wave
Equation

Effects of Stiffness

Stiffness introduces a restoring force proportional to the fourth

spatial derivative:
"

ej = Ky —k
Y ) Y
new
where
_ Qna?
e 1 = <7 (moment constant)
e ¢ = string radius

e () = Young's modulus (stress/strain)
(spring constant for solids)

e Stiffness is a linear phenomenon

— Imagine a “bundle” or “cable” of ideal string fibers

— Stiffness is due to the longitudinal springiness
Limiting cases

e Reverts to ideal flexible string at very low frequencies
(Ky// >> K;y////)

e Becomes ideal bar at very high frequencies
(Ky/l << /iy””)
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e Phase velocity increases with frequency

2
A Kw
clw) =c (1 + >
2Kk

where ¢y = /K /e = zero-stiffness phase velocity
o Note ideal-string (LF) and ideal-bar (HF) limits

e Traveling-wave components see a frequency-dependent sound
speed

e High-frequency components “run out ahead” of low-frequency
components (“HF precursors™)

e Traveling waves “disperse” as they travel
(“dispersive transmission line" )

e String overtones are “stretched” and “inharmonic”

e Higher overtones are progressively sharper
(Period(w) = 2 x Length / ¢(w))

e Piano strings are audibly stiff

Reference: L. Cremer: Physics of the Violin
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Digital Simulation of Stiff Strings General Allpass Filters

e Allpass filters implement a frequency-dependent delay e General, order L, allpass filter:
e For stiff strings, we must generalize X = ¢T to Hy(z) A Z_LA(z_l)
(z) 2 a4z )
A(z)
X=cwT = Tw)=X/clw) =cTy/clw
( ) ( ) / ( ) ! U/ ( ) ap+ap_127 4+ alz*(L*U + 2L
where Ty = T'(0) = zero-stiffness sampling interval T 14 azl4agz24---+az L
e Thus, replace unit delay z~" by e General order L, monic, minimum-phase polynomial:
27l s pra/dw) £ H,(z) (frequency-dependent delay) A(z) S ldaz agr 4 tagzt
e Each delay element becomes an allpass filter where A(z;) =0 = |2;| < 1 (roots inside unit circle)
e In general, H,(2) is irrational e Numerator polynomial = reverse of denominator
e We approximate H,(z) in practice using some finite-order o First-order case: .
fractional delay digital filter H,(z) amz 41
1+ (112_1
oy o foo ) e Each pole p; gain-compensated by a zero at z; = 1/p;
' H{o H{? H{) e There are papers in the literature describing methods for
S - designing allpass filters with a prescribed group delay (see reader

- i . i for refs)

v y(n+1) y(n+2) y{n+3)

' Hé2 Hg? H{? o e For piano strings L is on the order of 10

x=0) (x=c()T) (x=2c()T) (x=3c(w)T)
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Consolidation of Dispersion Related Links

Allpass filters are linear and time invariant

. 1 .. . .
which means they commute with other linear and time invariant ® Online draft of the boolJ ‘ containing this material

elements e Derivation of the wave equation for vibrating stringsﬁ
y'm S Ve
z1 > ZH2)
y (nT,0) y (nT,3c(w)T)
yi ; y(r+3)
-1
. ZHéZ) z [
(x=0) (x=3c(w)T)

e At least one sample of pure delay must normally be “pulled out”
of ideal desired allpass along each rail

o |deal allpass design minimizes phase-delay error P.(w)

e Minimizing || P.(w) — ¢p/c(w) ||, approximately minimizes
tuning error for modes of freely vibrating string (main audible
effect)

e Minimizing group delay error optimizes decay times

"http://cecrma.stanford.edu/ " jos /waveguide/|
2http://ccrma.stanford.edu/~jos/waveguide/String_Wave_Equation.html
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