Elementary Digital Waveguide Models for Vibrating Strings

Julius Smith and Nelson Lee

RealSimple Project”
Center for Computer Research in Music and Acoustics (CCRMA)
Department of Music, Stanford University
Stanford, California 94305

June 5, 2008

Outline

e |deal vibrating string

e Sampled traveling waves
e Terminated string

e Plucked and struck string
e Damping and dispersion
e String Loop ldentification

e Nonlinear “overdrive” distortion

*Work supported by the Wallenberg Global Learning Network

1

Ideal Vibrating String

String Tension
y (tX) - K-
£ = Masg/Length
0
.0 Position
Wave Equation
Ky" = €j
A . A
K = string tension = y(t,x)
AL . A
€ = linear mass density Yy = %y(t,x)
A A
y = string displacement y = (%y(t,x)

Newton’s second law

|Force = Mass x Acceleration|

Assumptions

o Lossless
e Linear
e Flexible (no “Stiffness”)

e Slope ¢/(t, ) < 1
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String Wave Equation Derivation

f string__

K K

A
. 1 A
K 5111(91): (91 9;) K sin(6s)

Traveling-Wave Solution

T x+dz
Force diagram for length dx string element

Total upward force on length dx string element:
flx +dx/2) = Ksin(6)) + K sin(6s)

~ K [tan(6y) + tan(6s)]
= K[=y/(x) +y(z + dr)]
~ K([-y(z) +y(z) +y"(z)dz)]
= Ky'(x)dx

Mass of length dx string segment: m = edx.

By Newton's law, f = ma = mjj, we have

Ky (t,z)dz = (edz)ij(t, z)

or

‘Ky"(tv l‘) - 6y<t7 {E)‘

One-dimensional lossless wave equation:

Ky// — ey

Plug in traveling wave to the right:

y(t,x) = yolt —x/c)

1.
= yJ(tx) = —Ey(t,x)

1.
y//(tvx) = gy(t,x)

o Given ¢ 2 /K /€, the wave equation is satisfied for any shape
traveling to the right at speed ¢ (but remember slope < 1)

e Similarly, any left-going traveling wave at speed ¢, y;(t + z/c),
statisfies the wave equation (show)



e General solution to lossless, 1D, second-order wave equation:
y(t,x) =y, (t —x/c) +y(t +z/c)
e y;(-) and y,(-) are arbitrary twice-differentiable functions (slope
< 1)

e Important point: Function of two variables y(t, x) is replaced
by two functions of a single (time) variable = reduced
computational complexity.

e Published by d'Alembert in 1747
(wave equation itself introduced in same paper)

(o3

Infinitely long string plucked simultaneously at three points
marked ‘p’

String Shape at
timet,

String Shape at
time0

g Wave
[ Components [3)
atimet,

e Initial displacement = sum of two identical triangular pulses
e At time %, traveling waves centers are separated by 2ct, meters

e String is not moving where the traveling waves overlap at same
slope.

° AnimatiorE

"http://ccrma.stanford.edu/ jos/rsadmin/TravellingWaveApp.swf
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http://ccrma.stanford.edu/~jos/rsadmin/TravellingWaveApp.swf

Sampled Traveling Waves in a String

For discrete-time simulation, we must sample the traveling waves

e Sampling interval 2 T seconds
e Sampling rate 2 fsHz=1/T

e Spatial sampling interval 2 x m/s 27
= systolic grid

For a vibrating string with length L and fundamental frequency fj,

meters  periods meters>

C:f()'QL <

sec sec period

so that
X =cI'=(fo2L)/fs = L{fo/(fs/2)]

Thus, the number of spatial samples along the string is
L/X = (fs/2)/ fo
or

Number of spatial samples = Number of string harmonics

Examples:

e Spatial sampling interval for (1/2) CD-quality digital model of
Les Paul electric guitar (strings ~ 26 inches)
— X = Lfy/(fs/2) = L82.4/22050 ~ 2.5 mm for low E string

— X ~ 10 mm for high E string (two octaves higher and the
same length)

— Low E string: (fs/2)/fo = 22050/82.4 = 268 harmonics
(spatial samples)
— High E string: 67 harmonics (spatial samples)

e Number of harmonics = number of oscillators required in
additive synthesis

e Number of harmonics = number of two-pole filters required in
subtractive, modal, or source-filter decomposition synthesis

e Digital waveguide model needs only one delay line (length 2L)



Examples (continued):
e Sound propagation in air:
— Speed of sound ¢ & 331 meters per second
— X =331/44100 = 7.5 mm
— Spatial sampling rate = v, = 1/X = 133 samples/m
— Sound speed in air is comparable to that of transverse waves

on a guitar string (faster than some strings, slower than
others)

— Sound travels much faster in most solids than in air

— Longitudinal waves in strings travel faster than transverse
waves

* typically an order of magnitude faster

Sampled Traveling Waves in any Digital
Waveguide

r — T, = mX
t — t, = nTl

Yt xm) = yr(tn — zm/c) + ultn + 2 /c)
= y.(nT —mX/c)+ y(nT + mX/c)
= yr[(n —m)T] +y [(n+m)T]
y'(n—m)+y (n+m)

where we defined

y*(n) £ y,(nT) y~(n) £ y(nT)

e "+ superscript = right-going

woon

e "—" superscript => left-going

ey, [(n —m)T| =y"(n —m) = output of m-sample delay line
with input y"(n)

ey [(n+m)T] 2y~ (n+m) = input to an m-sample delay line

whose output is y~(n)
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Lossless digital waveguide with observation points at z =0
and z = 3X = 3cT

v v yi(n2) y(na)
. z71 z71 z71
y (nT,0) y (nT,3X)
y(n) y(n+1) y(n+2) y(n+3)
. z71 z1 z71 P
(x=0) (x=cT) (x=2cT) (x=3cT)
e Recall:
t—x/c t+x/c
ta) =y () vy
ylt,z) =y < T ) Y ( T
i

y(nT,mX) = y"(n—m)+y (n+m)
e Position x,, = mX = mcT is eliminated from the simulation
e Position x,, remains laid out from left to right

o Left- and right-going traveling waves must be summed to
produce a physical output

y(tm xm) = y+(n - m) + yi(n + m)
e Similar to ladder and lattice digital filters
Important point: Discrete time simulation is exact at the sampling
instants, to within the numerical precision of the samples themselves.
To avoid aliasing associated with sampling:
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e Require all initial waveshapes be bandlimited to (—fs/2, fs/2)
e Require all external driving signals be similarly bandlimited

e Avoid nonlinearities or keep them “weak”

e Avoid time variation or keep it slow

e Use plenty of lowpass filtering with rapid high-frequency roll-off
in severely nonlinear and/or time-varying cases

o Prefer “feed-forward” over “feed-back” around nonlinearities

and/or modulations when possible

Interactive Java simulation of a vibrating string:
http://www.colorado.edu/physics/phet/simulations/stringwave/-

stringWave.swf
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http://www.colorado.edu/physics/phet/simulations/stringwave/stringWave.swf

Other Wave Variables

Velocity Waves:

(w4
+
S
e |l

y*(n)
y~(n)

Wave Impedance (we’ll derive later):

K
R=vVvKe=—=c¢c

C
Force Waves:
ftn) = Rv*(n)
f(n) = —=Rv(n)
Ohm’s Law for Traveling Waves:
ffn) = Rv'(n)
f~(n) = — Rv (n)

13

Rigidly Terminated ldeal String

y+(n) N/2 samples delay y+(n—N/2)
“Bridge’ -1 y (nT.2) -1 “Nut”
Rigid Termination Rigid Termination
y(n) N/2 samples delay y (n+N/2)
(x=0) (x=L= NX/2= NcT/2)

e Reflection inverts for displacement, velocity, or acceleration
waves (proof below)

o Reflection non-inverting for slope or force waves

Boundary conditions:

y(t,00=0  y(t,L)=0 (L = string length)

Expand into Traveling-Wave Components:

y(t,0) = ye(®) +m(t) =y (/T) +y (t/T)

y(t, L) = y(t = L/e)+ult+ L/c)
Solving for outgoing waves gives
y'(n) = -y (n)
y (n+N/2) = —y"(n—N/2)

N2 2L /X = round-trip propagation time in samples

14



Moving Termination: ldeal String

Fyiex)

Positionatrest: y=0

X—>

C—

x=0 X=Ct, XL

Uniformly moving rigid termination for an ideal string
(tension K, mass density €) at time 0 < t, < L/c.

Driving-Point Impedance:

Vot v v
y/(t,O) _ _ﬂ:_iz_ 0
cto c K/e

= fo = —Ksin(0) = —Ky'(t,0) = VKev 2 Ruy
o If the left endpoint moves with constant velocity vy
then the external applied force is fy = Ry
e R2 VKe2 wave impedance (for transverse waves)
e Equivalent circuit is a resistor (dashpot) R > 0

e We have the simple relation fy = Ruvy only in the absence of
return waves, i.e., until time ¢ty = 2L/c.

15

String Driven by Moving Termination

Displacement y

Position x

e Successive snapshots of the ideal string with a uniformly moving
rigid termination

e Each plot is offset slightly higher for clarity
e GIF89A animation at

http://ccrma.stanford.edu/~jos/swgt/movet.html
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http://ccrma.stanford.edu/~{}jos/swgt/movet.html

Waveguide “Equivalent Circuits” for the Uniformly Moving
Rigid String Termination

o [T
a) 1 1
[T
(x=0) (x=L)
fo=Rvo—(D = [ [TTTTTTTTTTTLTT]
b)
RNNNANEEREREENY
(x=0) (x=L)
a) Velocity waves  b) Force waves

e String moves with speed vy or 0 only
e String is always one or two straight segments

e "Helmholtz corner” (slope discontinuity) shuttles back and forth
at speed ¢

e String slope increases without bound
e Applied force at termination steps up to infinity

— Physical string force is labeled f(n)

— fo = Rwvy = incremental force per period
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Doubly Terminated ldeal Plucked String

y(t0,x)

String Shape at
timet0
Traveling Wave
Components

Position x —=—
x=L

A doubly terminated string, “plucked” at 1/4 its length.

e Shown short time after pluck event.
e Traveling-wave components and physical string-shape shown.

e Note traveling-wave components sum to zero at terminations.
(Use image method.)

18



Digital Waveguide Plucked-String Model Using Initial
Conditions

_
o) y(n-N2)
A
“Bridge” -1 (X; Pluck Position) -1 “Nut”
y(n) _ y(n+N/2)
(x=0) (x=L)

Initial conditions for the ideal plucked string.

e Amplitude of each traveling-wave = 1/2 initial string
displacement.

e Sum of the upper and lower delay lines = initial string
displacement.
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Acceleration-Wave Simulation

G
an) — & (nN2)
“Bridge’ /\-1 AV “Nut
G
a(n) = ‘ ~<— a(n+N/2)
(x=0) x=L)

Initial conditions for the ideal plucked string: acceleration or
curvature waves.

Recall:

P
CQ

Acceleration waves are proportional to “curvature” waves.

20



Ideal Struck-String Velocity-Wave Simulation

c
v+(n) J > \7— (n-N/2)
. A N
“Bridge” -1 (x ; Hammer Position) -1 “Nut”
c
v (n) J V(n+N/2)
x=0) (x=L)

Initial conditions for the ideal struck string in a velocity wave
simulation.

Hammer strike = momentum transfer = velocity step:

mpop(0—=) = (my, + my)vs(0+)
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External String Excitation at a Point

Example
Output
——

i

“Agraffe”’ “Bridge”
Rigid Hammer Strike f(t) Filter Yielding
Termination Termination
fn) Delay N /
(x=0) (x = striking position) (x=L)
“Waveguide Canonical Form”
Equivalent System: Delay Consolidation
> — String Output
Hammer _|
Strike f(t)

Filter

Finally, we “pull out” the comb-filter component:

22



Delay Consolidated System (Repeated):

> — String Output

Hammer _ |
Strike f(t)

Filter

Equivalent System: FFCF Factored Out:

gt
Hammer
Strikef(t) 9 9 g el >
! Del 2M

e Extra memory needed.

e Output “tap” can be moved to delay-line output.
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— Out (from Del N)

Algebraic Derivation

Output
Fo(2)
i —
“Agraffe”’ ) “Bridge”
Rigid Fi@@ HI(ZE Yielding
Termination Termination
o [ osan |

By inspection:

Fy(z) = =V {Fi(z) + 22V [F(2) + = VHi(2)F(2)]}

AF(z)  y 14z
TEG)  C 1- N
—-N

oM z
= (1+2 w) | — —(M+2N)

— Out (from Del N)

at)
Hammer e e
sikef(®) ] g Dy EE >

24



Damped Plucked String

Output (non-physical)
I y+(n_N/2) gN/2

y+(n) ‘ﬂ N/2 samples delay, N/2 loss factors g

“Bridge” /\-1 -1 “Nut”
Rigid Termination Rigid Termination
y(n) 4—‘ N/2 samples delay, N/2 loss factors g y(n+N/2) g'N/2
(x=0) (x=L)

Rigidly terminated string with distributed resistive losses.
e N loss factors g are embedded between the delay-line elements.

Equivalent System: Gain Elements Commuted

+ +
Output Y () N samples delay y (n-N)

All N loss factors g have been “pushed” through delay elements and
combined at a single point.
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Computational Savings

e f, =050kHz, fi = 100H z = delay = 500
e Multiplies reduced by two orders of magnitude
e Input-output transfer function unchanged

e Round-off errors reduced

26



Frequency-Dependent Damping Next Simplest Case: Length 3 FIR Loop Filter

e Loss factors g should really be digital filters ‘Hl(z) =by+ bzt + bgz%‘

e Gains in nature typically decrease with frequency o Linear phase = by = by (= delay = 1 sample)

e Loop gain may not exceed 1 (for stability) o Unity dc gain = by + by + by = 2bg + by = 1 =

e Gain filters commute with delay elements (LTI) Hi(eT) = =T [(1 — 2by) + 2By cos(wT)]
! = — 209 0

e Typically only one gain filter used per loop
e Remaining degree of freedom = damping control

Simplest Frequency-Dependent Loop Filter

‘H[(Z) = bo + blz_l‘

e Linear phase = by = b; (= delay = 1/2 sample)
e Zero damping at dc = by +b; = 1

=by=b = 1/2

=

‘Hl(ej“T) =cos(WT/2), |w|<7fs
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Length 3 FIR Loop Filter with Variable DC Gain Karplus-Strong Algorithm

Have two degrees of freedom for brightness & sustain:

9o = e GIPLS Output y+(n) jﬂ N samples delay }—V y+(n-N)
bo = go(1 —B)/4=0 U2

by = go(1+ B)/2 '
where vz 771 J

P = period in seconds (total loop delay)

S = desired sustain time in seconds
B = brightness parameter in the interval [0, 1] e To play a note, the delay line is initialized with random numbers
Sustain time S is defined here as the time to decay 60 dB (or 6.91 (“white noise”)

time-constants) when brightness B is maximum (B = 1). At
minimum brightness (B = 0), we have

1 + cos(wT)
———

|Hy(e")| =g 5

= gy cos*(wT)
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Interpretations of the Karplus-Strong Algorithm

The Karplus-Strong structure can be interpreted as a
e pitch prediction filter from the Codebook-Excited Linear
Prediction (CELP) standard (periodic LPC synthesis)

e feedback comb filter with lowpassed feedback
used earlier by James A. Moorer for recursively modeling
wall-to-wall echoes (“About This Reverberation Business" )

e simplified digital waveguide model

31

KS Physical Interpretation

e Rigidly terminated ideal string with the simplest damping filter

e Damping consolidated at one point and replaced by a one-zero
filter approximation

e String shape = sum of upper and lower delay lines

e String velocity = spatial integral of the difference of upper and
lower delay lines:

a1

s =y = E(vl—vr)

~ ylha) = i/o {w <t+i>—vr (t—i)]dé

e Karplus-Strong string is both “plucked” and “struck” by random
amounts along entire length of string!

32



KS Sound Examples

e “Vintage” 8-bit sound examples:

e Original Plucked String: (AIFF) (MP3)
e Drum: (AIFF) (MP3)
e Stretched Drum: (AIFF) (MP3)

e STK Plucked String: (WAV

e Plucked String 1: (
e Plucked String 2: (
e Plucked String 3: (WAV
e Plucked String 4: (

33

Extended Karplus-Strong (EKS)

Algorithm
Hy(2)|={Hps(2) 2N H(z)
Hy(z) Hy(z) Ha(z)
N pitch period (2x string length) in samples

l—p
1—pz-t

1—27°

= pick-direction lowpass filter

N = pick-position comb filter, 3 € (0,1)

string-damping filter (one/two poles/zeros typical)

string-stiffness allpass filter (several poles and zeros)

_ p(N) =2t
1—p(N)z"!

1-Rp

1-— RLZ_l

= first-order string-tuning allpass filter

= dynamic-level lowpass filter

34


http://ccrma.stanford.edu/~jos/aiff/pluck.aiff
http://ccrma.stanford.edu/~jos/mp3/pluck.mp3
http://ccrma.stanford.edu/~jos/aiff/ksdrum.aiff
http://ccrma.stanford.edu/~jos/mp3/ksdrum.mp3
http://ccrma.stanford.edu/~jos/aiff/ksdrumst.aiff
http://ccrma.stanford.edu/~jos/mp3/ksdrumst.mp3
http://ccrma.stanford.edu/~jos/wav/plucked.wav
http://ccrma.stanford.edu/~jos/mp3/plucked.mp3
http://ccrma.stanford.edu/~jos/wav/karplus2.wav
http://ccrma.stanford.edu/~jos/mp3/karplus2.mp3
http://ccrma.stanford.edu/~jos/wav/karplus1.wav
http://ccrma.stanford.edu/~jos/mp3/karplus1.mp3
http://ccrma.stanford.edu/~jos/wav/ks44k.wav
http://ccrma.stanford.edu/~jos/mp3/ks44k.mp3
http://ccrma.stanford.edu/~jos/wav/karplus1.wav
http://ccrma.stanford.edu/~jos/mp3/karplus1.mp3

EKS Sound Example

Bach A-Minor Concerto—Orchestra Part: (WAV) (MP3)

e Executes in real time on one Motorola DSP56001
(20 MHz clock, 128K SRAM)

e Developed for the NeXT Computer introduction at Davies
Symphony Hall, San Francisco, 1989

e Solo violin part was played live by Dan Kobialka of the San
Francisco Symphony
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Loop Filter Identification

For loop-filter design, we wish to minimize the error in

e partial decay time (set by amplitude response)

e partial overtone tuning (set by phase response)

Simple and effective method:

e Estimate pitch (elaborated next page)

e Set Hamming FFT-window length to four periods

e Compute the short-time Fourier transform (STFT)

e Detect peaks in each spectral frame

e Connect peaks through time (amplitude envelopes)

e Amplitude envelopes must decay exponentially

e On a dB scale, exponential decay is a straight line

e Slope of straight line determines decay time-constant
e Can use Ist-order polyfit in Matlab or Octave

e For beating decay, connect amplitude envelope peaks
e Decay rates determine ideal amplitude response

e Partial tuning determines ideal phase response
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http://ccrma.stanford.edu/~jos/wav/bachfugue.wav
http://ccrma.stanford.edu/~jos/mp3/bachfugue.mp3

Plucked/Struck String Pitch Estimation Nonlinear “Overdrive”

) ) . A popular type of distortion, used in electric guitars, is clipping of
e Take FFT of middle third of plucked string tone .
the guitar waveform.

e Detect spectral peaks

e Form histogram of peak spacing Af; Hard Clipper

: . ;A .
e Pitch estimate fy = most common spacing A f;

-1, z< -1
e Refine f, with gradient search using harmonic comb: fla)={ z, —1<z<1
. 1, z2>1

fo

K
argmax » log ’X k; fg ’ )
fo 72:1: (kifo) where x denotes the current input sample z:(n), and f(x) denotes

the output of the nonlinearity.

K
= argmax H ‘X(/ﬁfo) ‘

fo i
where

K = number of peaks, and

o
I

estimated harmonic number of ith peak

(valid method for non-stiff strings)

Must skip over any missing harmonics,

i.e., omit k; whenever | X (k;fy)| =~ 0.

References: For pointers to research literature, see

http://ccrma.stanford.edu/~ jos/jnmr/Model Parameter Estimation.html
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http://ccrma.stanford.edu/~{}jos/jnmr/Model_Parameter_Estimation.html

f(x(n)

Soft Clipper Amplifier Distortion + Amplifier Feedback

Pre-distortion output level
NG

String 1 >
_%’ €T S —1 \ Nonlinear Distortion
3 :
fle)=9 z—-%, -1<z<1 . ‘ ——
2 /' Pre-distortion gain
3

Output Signal

Distortion output level

s T > 1 String N Amplifier
Feedback
Gain
x=-1:0.01:1; plot([-(2/3)*ones(1,100), x—x.3/3, (2/3)*ones(1,100)])
0.8 : | Amplifier Feedback Delay
Simulation of a basic distorted electric guitar with amplifier

feedback.

e Distortion should be preceded and followed by EQ
Simple example: integrator pre, differentiator post

e Distortion output signal often further filtered by an amplifier
cabinet filter, representing speaker cabinet, driver responses, etc.
e In Class A tube amplifiers, there should be duty-cycle modulation
as a function of signal level?
— 50% at low levels (no duty-cycle modulation)

— 55-65% duty cycle observed at high levels
= even harmonics come in

-0.8
2 e - 08 0 05 ! o 2 — Example: Distortion input can offset by a constant

(e.g., input RMS level times some scaling)

2See http://www.trueaudio.com/at_eetjlm.htm for further discussion.
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