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Simple Interpolators suitable for Real Linear Interpolation
Time Fractional Delay Filtering

Simplest of all, and the most commonly used:
Linearly Interpolated Delay Line (1st-Order FIR) gn—n)=0—=n)-yn)+n-yn-1)
where 1) = desired fractional delay.

One-multiply form:

m’ gn—n) =yn)+n-[yn—1)—yn)
o oD oM
n e Works best with lowpass signals
(Natural spectra tend to roll off rapidly)

Allpass Interpolated Delay Line (1st-Order) o Works well with over-sampling

y(n)

M samples delay


http://ccrma.stanford.edu/~{}jos
http://ccrma.stanford.edu/~{}nalee
http://ccrma.stanford.edu/realsimple/
http://ccrma.stanford.edu/
http://www.stanford.edu/group/Music/
http://www.stanford.edu/
http://www.wgln.org/

Frequency Responses of Linear Interpolation for Delays Linear Interpolation as a Convolution
between 0 and 1

Equivalent to filtering the continuous-time impulse train

Linear Interpolating Filters, Del=[0.001:0.1:1] N-1

5 : ‘ ‘ ‘ | > y(nT)i(t - nT)
o 0 n=0
° .
o 5 2 with the continuous-time “triangular pulse” FIR filter
ERT : ]
<.15; & hy(t) = )
0, otherwise
20 i i i i i i
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Frequency (radians/sample) followed by sampling at the desired phase
g1 ‘ ‘ ‘ ‘ Replacing 7(t) by hy(t) 2 sinc (%) converts linear interpolation to
§°~8 1 ideal bandlimited interpolation (to be discussed later)
"
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First-Order Allpass Interpolation Phase Delays of First-Order Allpass Interpolators for
Various Desired Delays

Z(n —A) 2 yn) = n-azn)+xn—1)—n-yn-1)
= n-[z(n) —yn -]+ z(n-1)

First-Order Allpass Interpolating Filters, Del=[0.001:0.1:1.2]
L o1 ‘ ‘ ‘ : : :
Z)= ——m8— L 4
14+ nz! 12
e Low frequency delay given by !
11— ]
A~ ! (exact at DC) éo'g
1+n g
. . . . 106
e Same complexity as linear interpolation g
a
e Good for delay-line interpolation, not random access a 04
=
o
e Best used with fixed fractional delay A 0.2 1
e To avoid pole near z = —1, use offset delay range, e.g., 0 J
A€ 0.1,1.1] < ne[-0.050.82]
02 05 1 15 2 25 3

. . - u " F dians/sampl
Intuitively, ramping the coefficients of the allpass gradually “grows requency (radiansisample)

or “hides” one sample of delay. This tells us how to handle resets
when crossing sample boundaries.



Ideal Bandlimited Interpolation

Ideal interpolation for digital audio is bandlimited interpolation, i.e.,
samples are uniquely interpolated based on the assumption of zero
spectral energy for | f| > f,/2.

Ideal bandlimited interpolation is sinc interpolation:

N—1

y(t) = (y+ h)(t) = Y y(nT)hy(t = nT)

n=0

where

hy(t) 2 sinc(ft)

sin(7mz)

72

sinc(z) =
T

(Proof: sampling theorem)

Example Application of Fractional Delay Filtering and
Bandlimited Interpolation

M0 ¥
. M samples delay e
y (nT,0) y (nT.8)
y(n) y (M)
. M samples delay e
x=0) *=9) (x=McT)

Digital Waveguide String Model

e “Pick-up” needs Bandlimited Interpolation

e “Tuning” needs Fractional Delay Filtering
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Applications of Bandlimited Interpolation

Bandlimited Interpolation is used in (e.g.)

e Sampling-rate conversion

e Wavetable/sampling synthesis
e Virtual analog synthesis

e Oversampling D/A converters
e Fractional delay filtering

Fractional delay filtering is a special case of bandlimited
interpolation:

e Fractional delay filters only need sequential access = IIR filters
can be used

e General bandlimited interpolation requires random access = FIR
filters normally used

Fractional Delay Filters are used for (among other things)

e Time-varying delay lines (flanging, chorus, leslie)
e Resonator tuning in digital waveguide models
e Exact tonehole placement in woodwind models

e Beam steering of microphone / speaker arrays
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The Sinc Function (“Cardinal Sine”)

sin(7t
sinc(t) 2 sin(r?)

Tt

Rt~ x/é\vl v/\s\/\s\/e ~
Sinc Function

The sinc function is the impulse response of the ideal lowpass filter
which cuts off at half the sampling rate

I deal Lowpass Filter Frequency Response
1

-0.4 -0.2 0 0.2 0.4
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Ideal D/A Conversion Ideal D/A Example

Each sample in the time domain scales and locates one sinc function Reconstruction of a bandlimited rectangular pulse x(t) from its
in the unique, continuous, bandlimited interpolation of the sampled samples x =[...,0,1,1,1,1,1,0,...]:
signal.

Convolving a sampled signal y(n) with sinc(n — 1) “evaluates” the
signal at an arbitrary continuous time 7 € R

=

-1
y(n) = > ylnjsinc(n —n)

n

Il
o

= SAMPLE{y * SHIFT,(d)}

Bandlimited Rectangular Pulse Reconstruction

Catch

e Sinc function is infinitely long and noncausal

e Must be available in continuous form
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Optimal Least Squares Bandlimited Interpolation Desired Interpolator Frequency Response

Formulated as a Fractional Delay Filter i AT . .
y Ha (e’”r) = ¢ AT A = Desired delay in samples

Note that interpolation is a special case of linear filtering. (Proof: FIR Filter Frequency Response

Convolution representation above.) -1
? JwTy _ 7 —jwnT
Consider a filter which delays its input by A samples: Ha (e ) - Z ha(n)e

n=0
o |deal impulse response = bandlimited delayed impulse = delayed Error to Minimize
sinc
i — jwT’ jwT ] jwT
ha(t) = sinc(t — A) 4 sinfr(t — 4)] E (") = Ha (") = Ha (¢7)
w(t —A)
2
e Ideal frequency response = “brick wall” lowpass response, L* Error Norm
cutting off at f,/2 and having linear phase ¢ AT y
/ I 2NER = o [ |5 a
oy A e JWA ‘w‘ <7Tf§
HA<€']W) = DTFT(]LA) = T T 2
N = ‘HA 1) = Hy (1) d
jwT —jwAT 27[' —/T
—  Ha(e™") = e% ) —r<uwl<nw
— sinc(n —A), n=0+1,+2,... By Parseval's Theorem
[o¢]

The sinc function is an infinite-impulse-response (IIR) digital filter J(h) - Z ‘hA(n> B iLA(n))Q

with no recursive form = non-realizable 3

To obtain a finite impulse response (FIR) interpolating filter, let's Optimal Least-Squares FIR Interpolator
formulate a least-squares filter-design problem:

. sinc(n —A), 0<n<L-1
ha(n) = .
0, otherwise



Truncated-Sinc Interpolation

Truncate sinc(t) at 5th zero-crossing to left and right of time 0 to get

Frequency Response : Rectangul ar W ndow
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Truncated-Sinc Transform

e Vertical axis in dB, horizontal axis in spectral samples
e Optimal in least-squares sense

e Poor stop-band rejection (= 20 dB)

e “Gibbs Phenomenon” gives too much “ripple”

e Ripple can be reduced by tapering the sinc function to zero
instead of simply truncating it.

17

Spectrum of Kaiser-windowed Sinc

Frequency Response : Kai ser W ndow
-400 -200 200 400
_20
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Kaiser-Windowed Sinc Transform

e Stopband now starts out close to —80 dB

e Kaiser window has a single parameter which trades off stop-band
attenuation versus transition-bandwidth from pass-band to
stop-band
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Windowed Sinc Interpolation

e Sinc function can be windowed more generally to yield
. w(n — Asincla(n —A)], 0<n<L-1
ha(n) =

otherwise

e Example of window method for FIR lowpass filter design applied
to sinc functions (ideal lowpass filters) sampled at various phases
(corresponding to desired delay between samples)

e For best results, A ~ /2

e w(n) is any real symmetric window (e.g., Hamming, Blackman,
Kaiser).

e Non-rectangular windows taper truncation which reduces Gibbs
phenomenon, as in FFT analysis

18

Lowpass Filter Design

. Pass \ Transition
Gan Band | Band
1
Stop
Band
0 w
0 W, Ws

Frequency 2

Lowpass Filter Design Parameters

e In the transition band, frequency response “rolls off” from 1 at
we = ws/(2a) to zero (or ~ 0.5) at w;/2.

e Interpolation can remain “perfect” in pass-band
Online references (FIR interpolator design)

e Music 421 Lecture 2 on WindowsI
e Music 421 Lecture 3 on FIR Digital Filter Desigrﬁ
e Optimal FIR Interpolator Desig

"http://cerma.stanford.edu/~jos/ Windows/
“http:/ /cerma.stanford.edu/jos/WinFlt/
“http://cerma.stanford.edu/ jos/resample/optfir.pdf
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http://ccrma.stanford.edu/~{}jos/Windows/
http://ccrma.stanford.edu/~{}jos/WinFlt/
http://ccrma.stanford.edu/~jos/resample/optfir.pdf

Oversampling Reduces Filter Length The Digital Audio Resampling Home Page

e Example 1: e C++ software for windowed-sinc interpolation
— fs = 44.1 kHz (CD quality) o C++ software for FIR filter design by window method
— Audio upper limit = 20 kHz
— Transition band = 2.05 kHz
— FIR filter length = L,

e Fixed-point data and filter coefficients
e Can be adapted to time-varying resampling
e Open source, free

e First written in 1983 in SAIL

e Example 2:

— fs = 48 kHz (e.g., DAT)
— Audio upper limit = 20 kHz
— Transition band = 4 kHz ® Most needed upgrade:

e URL: http://ccrma.stanford.edu/~jos/resample/

— FIR filter length ~ L, /2 — Design and install a set of optimal FIR interpolating filtersﬁ

e Required FIR filter length varies inversely with transition
bandwidth
= Required filter length in example 1 is almost double
(~ 4/2.1) the required filter length for example 2

e Increasing the sampling rate by less than ten percent reduces the
filter expense by almost fifty percent

“http://cerma.stanford.edu/ jos/resample/opthr.pdf
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Lagrange Interpolation e Lagrange interpolaton is equivalent to windowed sinc
interpolation using a binomial window

o Lagrange interpolation is just polynomial interpolation e Can be viewed as a linear, spatially varying filter (in analogy with
e Nth-order polynomial interpolates N + 1 points linear, time-varying filters)

e First-order case = linear interpolation

Problem Formulation

Given a set of N + 1 known samples f(xy), k=0,1,2,..., N, find
the unique order N polynomial y(x) which interpolates the samples

Solution (Waring, Lagrange):

y(o) = 3 o) )
k=0
where
Lu(z) 2

(x—x0) - (x—xp1) (@ — Tpy1) -~ (@ — W)
(xp —x0) -+ (2 — Tp—1) (@ — Tpp1) - - - (21 — 2)

o Numerator gives a zero at all samples but the kth

e Denominator simply normalizes I;;(x) to 1 at @ = x;

1, 7=k
s A s J
l(xj) = 0 = :
0, j#k
e Generalized bandlimited impulse = generalized sinc function:
Each [(z) goes through 1 at = = x;, and zero at all other
sample points

e As a result,

l.e., Ix() is analogous to sinc(z — xy)
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http://ccrma.stanford.edu/~{}jos/resample/
http://ccrma.stanford.edu/~jos/resample/optfir.pdf

Example Lagrange Basis Functions

Lagrange Basis Polynomials, Order = 8, Random X (marked by dotted lines)
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Proof of Maximum Flatness at DC

The maximumally flat fractional-delay FIR filter is obtained by

equating to zero all NV + 1 leading terms in the Taylor

(Maclaurin) expansion of the frequency-response error at dc:
d"

— —_F(ev
0 dwkE(e )

d"

dwk

w=0

N
e—ij 7 Z h(TZ,)GJWI:|
w=0

n=0

N

= (=D = (=jn)*h(n)

n=0

N
= > nfhn)=AF k=01, N

n=0

This is a linear system of equations of the form Vh = A, where
V' is a Vandermonde matrix. The solution can be written as a
ratio of Vandermonde determinants using Cramer’s rule. As
shown by Cauchy (1812), the determinant of a Vandermonde
matrix [p{*l}, i, =1,..., N can be expressed in closed form as

1] - T -
= (2= p)ps—p1) -~ (p —pa) -
( )(M*Pz) '(PN*Z):))"'
(1)\ 1= py-2)(py —pN-2)
(py = py-1)
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Lagrange Interpolation Optimality

In the uniformly sampled case, Lagrange interpolation can be
viewed as ordinary FIR filtering:

— Lagrange interpolation filters maximally flat in the frequency
domain about dc:
de(ejw')

dw™

where v
E(e’*) 2 eiwh _ Z h(n)e /"
n=0
and A is the desired delay in samples.
— Same optimality criterion as Butterworth filters in classical
analog filter design
— Can also be viewed as “Pade approximation” to a constant
frequency response in the frequency domain

26

Making this substitution in the solution obtained by Cremer's
rule yields that the impulse response of the order N maximally
flat fractional-delay FIR filter may be written in closed form as

which coincides with the formula for Lagrange interpolation when
the abscissae are equally spaced on the integers from 0 to N — 1.
(Online Reference:® Vesa Vilimiki's thesis, Chapter 3, Part 2,
pp. 82-84)

“http://www.acoustics.hut.fi/ “vpv/publications/vesan_vaitos/ch3_pt2_lagrange.pdf
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http://www.acoustics.hut.fi/~{}vpv/publications/vesan_vaitos/ch3_pt2_lagrange.pdf

Lagrange Interpolator Frequency Responses: Orders 1,
2, and 3

Lagrange FIR Interpolating Filters, Del=1.4, Orders 1:3

— == T T
2L
o -4r- LIS
o
L ol
3
2 st >
E —— Order1
08 - -~ Order2
-12{ — = - Order3
_14 I 1 I I
0 0.5 1 15 2 25 3
Frequency (radians/sample)
15
» 1
2
g 05 i
I
&
| 0
z
2 -0.5 \
~ ——  Orderl
g8 | --- Order2 \
O 15| == Order 3 N
2 I 1 I I I I
0 0.5 1 15 2 25 3
Frequency (radians/sample)
A=14
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Matlab Code For Lagrange Fractional Delay

function h = lagrange(N, delay)
%LAGRANGE h=lagrange(N,delay) returns order N FIR

% filter h which implements given delay
% (in samples). For best results,

% delay should be near N/2 +/- 1.

n = 0:N;

h = ones(1,N+1);

for k = 0:N

index = find(n "= k);
h(index) = h(index) * (delay-k)./ (n(index)-k);
end
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Explicit Formula for Lagrange Interpolation Coefficients

Lagrange Interpolation Coefficients
Orders 1, 2, and 3

haOrder ha(0) ha(1) ha(2) ha(3)

N=1 1-A A
A-1)(A-2) c A(A-1
( X —A(A=2) ( > )
_(A-D(A-2)(A-3) | A(A-2)(A-3) | _A(A-1)(A-3) | A(A-1)(A-2)
[ 2 2 6

— For N =1, Lagrange interpolation reduces to linear
interpolation h = [l — A, A, as before

— For order N, desired delay should be in a one-sample range
centered about A = N/2
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Relation of Lagrange Interpolation to
Windowed Sinc Interpolation

e For an infinite number of equally spaced samples, with spacing

ZTre1 — Tr = A, the Lagrange-interpolation basis polynomials
converge to shifts of the sinc function, i.e.,

lj(x) = sinc (%), k=...,—-2,—-1,0,1,2,...

Proof: As order — o0, the binomial window — Gaussian
window — constant (unity).

Alternate Proof: Every analytic function is determined by its
zeros and its value at one nonzero point. Since sin(rx) is zero
on all the integers except 0, and since sinc(0) = 1, it therefore
coincides with the Lagrangian basis polynomial for N = oo and
k=0.
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Variable FIR Interpolating Filter Farrow Structure for Variable Delay FIR Filters

Basic idea: Each FIR filter coefficient h,, becomes a polynomial in When the polynomial in A is evaluated using Horner’s rule,

the delay parameter A: Xo-a(2) = X + A[C1X + A[CoX ++A[C3X +---]]],

P
ha(n) EN Z cu(m)A™ n=0,1,2,....N the filter structure becomes

m=0

& Ha(z) 2 2%@)["

n=0

N [P
— Z |:Z Cp(m)A™| 27"
n=0 Lm=0
P [N
= Z Z Cp(m)z™" | A™
o Lo As delay A varies, “basis filters” Cj(z) remain fixed
R P = very convenient for changing A over time
a Z C,,L(Z)Am
m=0 Farrow Structure Design Procedure
e More generally: Ha(z) =", a(A)Cy(2)

where «(A) is provided by a table lookup Solve the N equations

e Basic idea applies to any one-parameter filter variation N
=Y "Cr2)Af, i=1,2,...,Na
k=0

for the N + 1 FIR transfer functions Cj(z), each order N¢ in general

e Also applies to time-varying filters (A «— t)

References: Laakso et al., Farrow
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Thiran AIIpass Interpolators Frequency Responses of Thiran Allpass Interpolators for
Fractional Delay

Given a desired delay A = N + 0 samples, an order NV allpass filter

H< ) Zi‘VA (271) ay + aN,lzfl + -4 alz*(‘vfl) -+ Zi“\v Thiran Interpolating Filters, Del=Order+0.3, Order=[1,2,3,5,10,20]

zZ) = = — - 0.5 T T T T
A(2) T4+aiz7 b+ F+ay_1z=WV-D 4 qyz=N

can be designed having maximally flat group delay equal to A at DC

using the formula

N
[ N A—N+n
o _lk 7,162071.2..“7]\"Y
ax = ( >(k)":OA7N+k+n 2

%'—0.5 —
where 5
N\ N! 5
k)~ KN = k) g |
denotes the kth binomial coefficient g7 \ i

e ay = 1 without further scaling \

e For sufficiently large A, stability is guaranteed -
rule of thumb: A = order

|

|
awN e

-

. - 20
e Mean group delay is always N samples -2 o= ‘ " . 2 . s
(for any stable Nth-order allpass filter): Frequency (radians/sample)

1 1
D(w)dw 4

i

/ /() = - [B(2m) ~ O(0)] = N
0

g.o 727&

e Only known closed-form case for allpass interpolators of arbitrary
order

e Effective for delay-line interpolation needed for tuning since pitch
perception is most acute at low frequencies.
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Large Delay Changes

L-Infinity (Chebyshev) Fractional Delay Filters

When implementing large delay-length changes (by many samples), a
useful implementation is to cross-fade from the initial delay line

configuration to the new configuration.

e Computation doubled during cross-fade

e Cross-fade should be long enough to sound smooth

e Not a true “morph” from one delay length to another, since we
do not pass through the intermediate delay lengths.

e A single delay line can be shared such that the cross-fade occurs
from one read-pointer (plus associated filtering) to another.

1.5

-

Amplitude

N
N

group delay - samples
~
N
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Chebyshev FD-FIR Design Example

e Use Linear Programming (LP) for real-valued L..-norm
minimization
e Remez exchange algorithm (remez, cremez)

e In the complex case, we have a problem known as a
Quadratically Constrained Quadratic Program

e Approximated by sets of linear consraints
(e.g., a polygon can be used to approximate a circle)

e Can solve with code developed by Prof. Boyd's group
e See Mohonk-97 papeﬂ for details.

9http://cerma.stanford.edu/ jos/resample/optfir.pdf
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http://ccrma.stanford.edu/~jos/resample/optfir.pdf

Comparison of Lagrange and Optimal
Chebyshev Fractional-Delay Filter

Frequency Responses

Interpolation Summary

Amplitude

N
o

group delay — samples

~N
N

N
[N}

Comparison between min-maxs and Lagrange - L=16

Order
1 N Large N 00
FIR| Linear |Lagrange|Windowed Sinc |Sinc
IIR | Allpass; | Thiran Sinc
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