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Simple Interpolators suitable for Real
Time Fractional Delay Filtering

Linearly Interpolated Delay Line (1st-Order FIR)

y(n) —

1-n

M samples delay

y(n-M-n)

Allpass Interpolated Delay Line (1st-Order)

y(n) —

M samples delay




Linear Interpolation

Simplest of all, and the most commonly used:

yn—n) =1 =n)-yn)+n-yn-1)
where 1 = desired fractional delay.

One-multiply form:
yln—n) =y(n)+n-ly(n—1) —y(n))

e Works best with lowpass signals
(Natural spectra tend to roll off rapidly)

e Works well with over-sampling



Frequency Responses of Linear Interpolation for Delays
between 0 and 1

Linear Interpolating Filters, Del=[0.001:0.1:1]
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Linear Interpolation as a Convolution

Equivalent to filtering the continuous-time impulse train

N-1

> y(nT)s(t — nT)

n=0
with the continuous-time “triangular pulse” FIR filter

}MU_{1—uux\ﬂgT

0, otherwise

followed by sampling at the desired phase

Replacing h;(t) by hs(t) 2 sinc (%) converts linear interpolation to

ideal bandlimited interpolation (to be discussed later)

Upsample, Shift, Downsample View
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First-Order Allpass Interpolation

. A
zn—A)=y(n) = n-zn)+zn—-1)-n-yn-1)
= n-z(n) —yn—1)]+z(n—1)
n+ z 1
H(z)=——
(2) 1 +mnz—!
e Low frequency delay given by
1 —
An-—1 (exact at DC)
I+mn

e Same complexity as linear interpolation
e Good for delay-line interpolation, not random access
e Best used with fixed fractional delay A

e To avoid pole near z = —1, use offset delay range, e.g.,
A€ [0.1,1.1] < n e [-0.05,0.82]
Intuitively, ramping the coefficients of the allpass gradually “grows”

or “hides” one sample of delay. This tells us how to handle resets
when crossing sample boundaries.



Phase Delays of First-Order Allpass Interpolators for
Various Desired Delays

First-Order Allpass Interpolating Filters, Del=[0.001:0.1:1.2]

1.2 y

Phase Delay - samples
o o o
D [*2) [ee)

o
N
Il

- .2 | | | | | |
0 0 0.5 1 15 2 2.5 3

Frequency (radians/sample)



Ideal Bandlimited Interpolation

|deal interpolation for digital audio is bandlimited interpolation, i.e.,
samples are uniquely interpolated based on the assumption of zero
spectral energy for |f| > fs/2.

|deal bandlimited interpolation is sinc interpolation:

y(t) = (y * hg)( Zy (nT)hs(t —nT)
where
hs(t) = sinc(fst)
_ A sin(7z)
sinc(z) = —

(Proof: sampling theorem)



Applications of Bandlimited Interpolation

Bandlimited Interpolation is used in (e.g.)

e Sampling-rate conversion

e Wavetable/sampling synthesis
e Virtual analog synthesis

e Oversampling D/A converters
e Fractional delay filtering

Fractional delay filtering is a special case of bandlimited
interpolation:

e Fractional delay filters only need sequential access = IIR filters
can be used

e General bandlimited interpolation requires random access = FIR
filters normally used

Fractional Delay Filters are used for (among other things)

e Time-varying delay lines (flanging, chorus, leslie)
e Resonator tuning in digital waveguide models
e Exact tonehole placement in woodwind models

e Beam steering of microphone / speaker arrays
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Example Application of Fractional Delay Filtering and
Bandlimited Interpolation

y(n) y(nm)
M samples delay e
y (nT,0) é— y (nT,&)
y (n) y (n+M)
. M samples delay <~ e
(x=0) (x=9) (x=McT)

Digital Waveguide String Model

e "Pick-up” needs Bandlimited Interpolation

e “Tuning” needs Fractional Delay Filtering
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The Sinc Function (“Cardinal Sine”)

(7t
sinc(?) 2 Sm(: )
m

o /§\B-/£\1{/3/\V1 1\/2/\3\/4/\5\/6/\7\ =
Sinc Function

The sinc function is the impulse response of the ideal lowpass filter
which cuts off at half the sampling rate

| deal Lowpass Filter Frequency Response
l..
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Ideal D/A Conversion

Each sample in the time domain scales and locates one sinc function
in the unique, continuous, bandlimited interpolation of the sampled

signal.

Convolving a sampled signal y(n) with sinc(n — 1) “evaluates” the
signal at an arbitrary continuous time n € R

ym) = 3 y(n)sinc(y —n)
n=0

= SAMPLE{y * SHIFT,())}
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Ideal D/A Example

Reconstruction of a bandlimited rectangular pulse z(t) from its
samples x = [...,0,1,1,1,1,1,0,...]:

Bandlimited Rectangular Pulse Reconstruction

Catch

e Sinc function is infinitely long and noncausal

e Must be available in continuous form
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Optimal Least Squares Bandlimited Interpolation
Formulated as a Fractional Delay Filter

Note that interpolation is a special case of linear filtering. (Proof:
Convolution representation above.)

Consider a filter which delays its input by A samples:

e |deal impulse response = bandlimited delayed impulse = delayed

sinc [t — A
_ A sin|m(t —
ha(t) = t—A) =
A(t) = sinc( ) T
e |deal frequency response = “brick wall” lowpass response,

cutting off at f,/2 and having linear phase e~ /AT

. e IR w| < T fs
Ha(e™) 2 DTFT(hy) = wl<mf
0, w| > 7f,
—  Ha(eMT) = e g <wT <

— sinc(n —A), n=0,+1,42,...

The sinc function is an infinite-impulse-response (lIR) digital filter
with no recursive form = non-realizable

To obtain a finite impulse response (FIR) interpolating filter, let’s
formulate a least-squares filter-design problem:
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Desired Interpolator Frequency Response

Ha (ej“T) — ¢ J“AT A = Desired delay in samples

FIR Filter Frequency Response

L1
Hx (ej“’T) = Z izA(n)e_j“"T
n=0

Error to Minimize

E (eij) _ HA (eij) o ]A{A (eij)

L? Error Norm

A 2 T /T Wl |2
TWANEE = — [ B d
T J—z/T
T /T . R ‘ 2
= — HA (e]”T) — HA (B‘WT>‘ dw
2T —7/T
By Parseval's Theorem
> . 2
T(0) = 3" |natn) = ha(n)]
n=0

Optimal Least-Squares FIR Interpolator
i {sinc(n—A),OSngL—l

0, otherwise
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Truncated-Sinc Interpolation

Truncate sinc(t) at 5th zero-crossing to left and right of time 0 to get

Frequency Response : Rectangul ar W ndow
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Truncated-Sinc Transform

e Vertical axis in dB, horizontal axis in spectral samples
e Optimal in least-squares sense

e Poor stop-band rejection (= 20 dB)

e “Gibbs Phenomenon” gives too much “ripple”

e Ripple can be reduced by tapering the sinc function to zero
instead of simply truncating it.
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Windowed Sinc Interpolation

e Sinc function can be windowed more generally to yield
. { w(n — A)sincla(n —A)], 0<n<L-1

0, otherwise

e Example of window method for FIR lowpass filter design applied
to sinc functions (ideal lowpass filters) sampled at various phases
(corresponding to desired delay between samples)

e For best results, A ~ L /2

e w(n) is any real symmetric window (e.g., Hamming, Blackman,
Kaiser).

e Non-rectangular windows taper truncation which reduces Gibbs
phenomenon, as in FFT analysis

18



Spectrum of Kaiser-windowed Sinc

Frequency Response : Kai ser W ndow
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Kaiser-Windowed Sinc Transform

e Stopband now starts out close to —80 dB

e Kaiser window has a single parameter which trades off stop-band
attenuation versus transition-bandwidth from pass-band to
stop-band
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Lowpass Filter Design

: Pass _ Transition
Gain Band Band
1
- Stop
Band
0 W
0 W, Wg

Frequency 2

Lowpass Filter Design Parameters

e In the transition band, frequency response “rolls off” from 1 at
we = ws/(2ar) to zero (or & 0.5) at w;/2.

e Interpolation can remain “perfect” in pass-band
Online references (FIR interpolator design)

e Music 421 Lecture 2 on Windowsﬁ
e Music 421 Lecture 3 on FIR Digital Filter Design
e Optimal FIR Interpolator Design

"http://ccrma.stanford.edu/jos/Windows/
http://ccrma.stanford.edu/ " jos/WinFlt/
3http://ccrma.stanford.edu/ jos/resample/optfir.pdf
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Oversampling Reduces Filter Length

e Example 1:

— fs = 44.1 kHz (CD quality)
— Audio upper limit = 20 kHz
— Transition band = 2.05 kHz
— FIR filter length £ L,

e Example 2:

— fs = 48 kHz (e.g., DAT)
— Audio upper limit = 20 kHz
— Transition band = 4 kHz
— FIR filter length ~ L1/2
e Required FIR filter length varies inversely with transition

bandwidth

= Required filter length in example 1 is almost double
(= 4/2.1) the required filter length for example 2

e Increasing the sampling rate by less than ten percent reduces the
filter expense by almost fifty percent

21



The Digital Audio Resampling Home Page

e C++ software for windowed-sinc interpolation

e C+-+ software for FIR filter design by window method
e Fixed-point data and filter coefficients

e Can be adapted to time-varying resampling

e Open source, free

e First written in 1983 in SAIL

e URL: http://ccrma.stanford.edu/"jos/resample/

e Most needed upgrade:

— Design and install a set of optimal FIR interpolating filtersﬁ

“http://ccrma.stanford.edu/ jos/resample/optfir.pdf

22
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Lagrange Interpolation

e Lagrange interpolation is just polynomial interpolation
e Nth-order polynomial interpolates /N + 1 points

e First-order case = linear interpolation

Problem Formulation

Given a set of NV + 1 known samples f(zy), k=0,1,2,..., N, find
the unique order N polynomial y(x) which interpolates the samples

Solution (Waring, Lagrange):

y(x) =Y le(x) f ()
k=0

A (x —x0) (2 —xp 1) (T — 2p11) -+ (2 — TN)
(xp — x0) - (xp — 2p1) (X — Tha1) -+ - (2 — TN)

e Numerator gives a zero at all samples but the kth

e Denominator simply normalizes l(x) to 1 at x = x,

A 17]:k
lk(xj)—5kj—{0 Pk

e Generalized bandlimited impulse = generalized sinc function:

e As a result,

Each [;(x) goes through 1 at = xj, and zero at all other
sample points
l.e., l;.(x) is analogous to sinc(z — x})

23



e Lagrange interpolaton is equivalent to windowed sinc
interpolation using a binomial window

e Can be viewed as a linear, spatially varying filter (in analogy with
linear, time-varying filters)

24



Example Lagrange Basis Functions

Lagrange Basis Polynomials, Order = 8,Random X (marked by dotted lines)
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Lagrange Interpolation Optimality

In the uniformly sampled case, Lagrange interpolation can be
viewed as ordinary FIR filtering:

— Lagrange interpolation filters maximally flat in the frequency
domain about dc:
d"E(e’¥)

=0 =0,1,2,...,N
dwm ) m ) YD ) )

w=0

where

N
E(e) S pmwd _ Z h(n)e /«"
n=>0

and A is the desired delay in samples.

— Same optimality criterion as Butterworth filters in classical
analog filter design

— Can also be viewed as “Pade approximation” to a constant
frequency response in the frequency domain

26



Proof of Maximum Flatness at DC

The maximumally flat fractional-delay FIR filter is obtained by
equating to zero all N + 1 leading terms in the Taylor
(Maclaurin) expansion of the frequency-response error at dc:

dk :
0 = —F(e”
dw* (6 >W—O
q N
= 7 e IR Zh(n)e”"]
n=>0 w=0
N
= (—jA)" = (=jn)*h(n)
n=0
N
= > nh(n)=AF k=0,1,...,N
n=0

This is a linear system of equations of the form Vh = A, where
V' is a Vandermonde matrix. The solution can be written as a
ratio of Vandermonde determinants using Cramer’s rule. As
shown by Cauchy (1812), the determinant of a Vandermonde

matrix | ‘Z_l], i,7=1,..., N can be expressed in closed form as

H‘Z 1” = |1 —»)

- (pz—p1)(p3—p1)"'(pN—p1)"'
(p3 — p2)(pa — p2) - - - (DN — p2) - - -
(pN 1 — PN- 2)(pN—pN—2)-
(pN PN— 1)

27



Making this substitution in the solution obtained by Cremer's
rule yields that the impulse response of the order N maximally
flat fractional-delay FIR filter may be written in closed form as

which coincides with the formula for Lagrange interpolation when
the abscissae are equally spaced on the integers from 0 to N — 1.

(Online Reference:E Vesa Valimaki's thesis, Chapter 3, Part 2,
pp. 82-84)

http://www.acoustics.hut.fi/ " vpv/publications/vesan_vaitos/ch3_pt2_lagrange.pdf
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Lagrange Interpolator Frequency Responses: Orders 1,
2, and 3

Lagrange FIR Interpolating Filters, Del=1.4, Orders 1:3
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Explicit Formula for Lagrange Interpolation Coefficients

A—k
hA(n):Hn_k, n=01,2,...,N

k=0
k#n

Lagrange Interpolation Coefficients
Orders 1, 2, and 3

hAOTdGT hA(O) hA(l) hA(Q) hA(?))
N=1 1-A A
A—1)(A— A(A—
N=2| &e2 | AA-2)| A&ZD
N=3|—- (A—1)(A—=2)(A-3) | A(A—2)(A-3) _A(Afl)(AfZS) A(A—-1)(A-2)
T 6 2 2 6

— For N =1, Lagrange interpolation reduces to linear
interpolation h = [1 — A, Al, as before

— For order IV, desired delay should be in a one-sample range
centered about A = N/2
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Matlab Code For Lagrange Fractional Delay

function h = lagrange(N, delay)
HLAGRANGE h=lagrange(N,delay) returns order N FIR

b filter h which implements given delay
/A (in samples). For best results,

/A delay should be near N/2 +/- 1.

n = 0:N;

h = ones(1,N+1);

for k = 0:N

index = find(n “= k);
h(index) = h(index) * (delay-k)./ (n(index)-k);
end

31



Relation of Lagrange Interpolation to
Windowed Sinc Interpolation

e For an infinite number of equally spaced samples, with spacing
Tri1 — T = A, the Lagrange-interpolation basis polynomials
converge to shifts of the sinc function, i.e.,

— kA
lk(x)—sinc(x > k=....—2-1,012,...

A

Proof: As order — o0, the binomial window — Gaussian
window — constant (unity).

Alternate Proof: Every analytic function is determined by its
zeros and its value at one nonzero point. Since sin(mz) is zero
on all the integers except 0, and since sinc(0) = 1, it therefore
coincides with the Lagrangian basis polynomial for N = oo and

k=0.
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Variable FIR Interpolating Filter

Basic idea: Each FIR filter coefficient h,, becomes a polynomial in

the delay parameter A:

e More generally: Ha(z) =)
where «(A) is provided by a table lookup

11>

|| >

(=
s
&
>

e

P
ch(m)Am, n=012,....N
m=0

Z ha(n)z™"
n=0

>

I
e}
i
[a=)

i
o
3
|
o

3
I

m

]~
E
3

N

Am

a(A)C(2)

e Basic idea applies to any one-parameter filter variation

e Also applies to time-varying filters (A « t)
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Farrow Structure for Variable Delay FIR Filters

When the polynomial in A is evaluated using Horner’s rule,
Xoa(z) = X + A[C1X + A[CoX ++A[C5X + -],

the filter structure becomes

X(n—=A4A)

As delay A varies, "basis filters” Cj(z) remain fixed
=> very convenient for changing A over time

Farrow Structure Design Procedure

Solve the N equations
N
Z_Ai:ZC’k(z)Af, iIl,Q,...,NA
k=0

for the N + 1 FIR transfer functions C(z), each order N¢ in general

References: Laakso et al., Farrow
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Thiran Allpass Interpolators

Given a desired delay A = N + § samples, an order N allpass filter

A (Z_l) _an+ any_12 o agrm WD 4 N
A(2) S ldaz et an_gz= VD 4 gz

H(z) =

can be designed having maximally flat group delay equal to A at DC
using the formula

N
N A—N
) " k=012 ... .N

— (—1)F
% = { )(k UATNTvE+n

where
N B N
k) k(N —Ek)

denotes the kth binomial coefficient

e ay = 1 without further scaling

e For sufficiently large A, stability is guaranteed
rule of thumb: A = order

e Mean group delay is always N samples
(for any stable Nth-order allpass filter):

1 2 1 27 1
— [ Dw)dw?2 —— [ ©(w)dw=——[6(21) —0(0)] =N
21 J 21 J 2m
e Only known closed-form case for allpass interpolators of arbitrary
order

e Effective for delay-line interpolation needed for tuning since pitch
perception is most acute at low frequencies.
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Frequency Responses of Thiran Allpass Interpolators for
Fractional Delay

Thiran Interpolating Filters, Del=Order+0.3, Order=[1,2,3,5,10,20]

Group Delay — samples
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Large Delay Changes

When implementing large delay-length changes (by many samples), a
useful implementation is to cross-fade from the initial delay line
configuration to the new configuration.

e Computation doubled during cross-fade
e Cross-fade should be long enough to sound smooth

e Not a true “morph” from one delay length to another, since we
do not pass through the intermediate delay lengths.

e A single delay line can be shared such that the cross-fade occurs
from one read-pointer (plus associated filtering) to another.
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L-Infinity (Chebyshev) Fractional Delay Filters

e Use Linear Programming (LP) for real-valued L.,-norm
minimization
e Remez exchange algorithm (remez, cremez)

e In the complex case, we have a problem known as a
Quadratically Constrained Quadratic Program

e Approximated by sets of linear consraints
(e.g., a polygon can be used to approximate a circle)

e Can solve with code developed by Prof. Boyd's group
e See Mohonk-97 paper@ for details.

Shttp://ccrma.stanford.edu/ jos/resample/optfir.pdf
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Chebyshev FD-FIR Design Example

Fractional delay min—max filters
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Modulus of the Error — (infinity norm)
0.014 T T T

0.012

0.01

0.008

0.006

0.004

0.002
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Comparison of Lagrange and Optimal
Chebyshev Fractional-Delay Filter
Frequency Responses

Comparison between min—maxs and Lagrange — L=16

Amplitude
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Interpolation Summary

Order
1 N Large NV 00
FIR| Linear |Lagrange|Windowed Sinc | Sinc
lIR | Allpass; | Thiran Sinc
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