
Computational Acoustic Modeling with Digital Delay

Julius Smith and Nelson Lee

RealSimple Project∗

Center for Computer Research in Music and Acoustics (CCRMA)
Department of Music, Stanford University

Stanford, California 94305

June 5, 2008

Outline

• Delay lines

• Echo simulation

• Comb filters

• Vector Comb Filters (Feedback Delay Networks)

• Tapped Delay Lines and FIR Filters

• Allpass filters

∗Work supported by the Wallenberg Global Learning Network

1

Delay lines

Delay lines are important building blocks for many audio effects and

synthesis algorithms, including

• Digital audio effects

– Phasing

– Flanging

– Chorus

– Leslie

– Reverb

• Physical modeling synthesis

– Acoustic propagation delay (echo, multipath)

– Vibrating strings (guitars, violins, . . .)

– Woodwind bores

– Horns

– Percussion (rods, membranes)

2

http://ccrma.stanford.edu/~{}jos
http://ccrma.stanford.edu/~{}nalee
http://ccrma.stanford.edu/realsimple/
http://ccrma.stanford.edu/
http://www.stanford.edu/group/Music/
http://www.stanford.edu/
http://www.wgln.org/

The M-Sample Delay Line

x(n) y(n)z−M

• y(n) = x(n−M), n = 0, 1, 2, . . .

• Must define x(−1), x(−2), . . . , x(−M) (usually zero)

3

Delay Line as a Digital Filter

x(n) y(n)z−M

Difference Equation

y(n) = x(n−M)

Transfer Function

H(z) = z−M

• M poles at z = 0

• M zeros at z =∞

Frequency Response

H(ejωT) = e−jMωT , ωT ∈ [−π, π)

• “Allpass” since
∣
∣H(ejωT)

∣
∣ = 1

• “Linear Phase” since ∠H(ejωT) = −MωT = αω

4

Delay Line in C

C Code:

static double D[M]; /* initialized to zero */

static long ptr=0; /* read-write offset */

double delayline(double x)

{

double y = D[ptr]; /* read operation */

D[ptr++] = x; /* write operation */

if (ptr >= M) { ptr -= M; } /* wrap ptr */

return y;

}

• Circular buffer in software

• Shared read/write pointer

• Length not easily modified in real time

• Internal state (“instance variables”)

= length M array + read pointer

5

Ideal Traveling-Wave Simulation

x(n) y(n)z−M

Acoustic Plane Waves in Air

• x(n) = excess pressure at time nT , at some fixed point px ∈ R3

through which a plane wave passes

• y(n) = excess pressure at time nT , for a point py which is McT

meters “downstream” from px along the direction of travel for

the plane wave, where

– T denotes the time sampling interval in seconds

– c denotes the speed of sound in meters per second

– In one temporal sampling interval (T seconds), sound travels

one spatial sample (X = cT meters)

Transverse Waves on a String

• x(n) = displacement at time nT , for some point on the string

• y(n) = transverse displacement at a point McT meters away on

the string

6

Lossy Traveling-Wave Simulator

x(n)
gM

y(n)z−M

• Propagation delay = M samples

• Attenuation = gM < 1 is lumped at one point along the ray

• Exponential decay in direction of wave travel

• Distributed attenuation is lumped at one point

• Input/output simulation is exact at the sampling instants

• Only deviation from ideal is that simulation is bandlimited

7

Traveling-Wave Simulation with Frequency-Dependent

Losses

In all acoustic systems of interest, propagation losses vary with

frequency.

x(n) y(n)z−M GM(z)

• Propagation delay = M samples + filter delay

• Attenuation =
∣
∣G(ejωT)

∣
∣M

• Filter is linear and time-invariant (LTI)

• Propagation delay and attenuation can now vary with frequency

• For physical passivity, we require
∣
∣G(ejωT)

∣
∣ ≤ 1

for all ω.

8

Dispersive Traveling-Wave Simulation

In many acoustic systems, such as piano strings, wave propagation is

also dispersive.

x(n) y(n)z−M HM(z)

This is simulated using a filter having nonlinear phase.

For lossless, dispersive wave propagation, the filter is “allpass,” i.e.,
∣
∣H(ejωT)

∣
∣ ≡ 1, ∀ω

Note that a delay line is a special case of an allpass filter:
∣
∣ejωMT

∣
∣ ≡ 1, ∀ω

9

Allpass Filters

In general, (finite-order) allpass filters can be written as

H(z) = ejφz−K Ã(z)

A(z)

where

A(z) = 1 + a1z
−1 + a2z

−2 + · · · + aNz−N

Ã(z)
∆
= z−NA(z−1)
∆
= aN + aN−1z

−1 + · · · + a1z
−(N−1) + · · · + z−N

The polynomial Ã(z) can be obtained by reversing the order of the

coefficients in A(z) and conjugating them.

10

Phase Delay and Group Delay

Phase Response:

Θ(ω)
∆
= ∠H(ejωT)

Phase Delay:

P (ω)
∆
= −

Θ(ω)

ω
(Phase Delay)

Group Delay:

D(ω)
∆
= −

d

dω
Θ(ω) (Group Delay)

• For a slowly modulated sinusoidal input signal

x(n) = A(nT) cos(ωnT + φ), the output signal is

y(n) ≈ G(ω)A[nT −D(ω)] · cos{ω[nT − P (ω)] + φ}

where G(ω)
∆
= |H(ejωT)| is the amplitude response.

• Unwrap phase response Θ(ω) to uniquely define it:

– Θ(0)
∆
= 0 or ±π for real filters

– Discontinuities in Θ(ω) cannot exceed ±π radians

– Phase jumps ±π radians are equivalent

– See Matlab function unwrap

11

Acoustic Point Source

x1

x2

r12

• Let x = (x, y, z) denote the Cartesian coordinates of a point in

3D space

• Point source at x = x1 = (x1, y1, z1)

• Listening point at x = x2 = (x2, y2, z2)

• Propagation distance:

r12 = ‖x2 − x1 ‖ =
√

(x2 − x1)2 + (y2 − y1)2 + (z2 − z1)2

Acoustic pressure peak amplitude (or rms level) at x = x2 is given by

p(x2) =
p1

r12

where p1 is the peak amplitude (or rms level) at

r12 = ‖x2 − x1 ‖ = 1.

12

Inverse Square Law for Acoustics

The intensity of a sound is proportional to the square of its sound

pressure p.

Therefore, the average intensity at distance r12 away from a point

source of average-intensity I1 ∝< |p1|
2 > is given by

I(x2) =
I1

r2
12

This is a so-called inverse square law.

Remember that far away from a finite sound source,

• pressure falls off as 1/r

• intensity falls off as 1/r2

where r is the distance from the source.

Point-to-Point Spherical Pressure-Wave Simulation:

x(n) y(n)
1/r

z−M

13

Acoustic Echo

S L

h

d

r r

• Source S, Listener L

• Height of S and L above floor is h

• Distance from S to L is d

• Direct sound travels distance d

• Floor-reflected sound travels distance 2r, where

r2 = h2 +

(
d

2

)2

• Direct sound and reflection sum at listener L

pL(t) ∝
pS

(
t− d

c

)

d
+

pS

(
t− 2r

c

)

2r

• Also called multipath

14

Acoustic Echo Simulator

g
y(n)x(n) z−M

• Delay line length set to path-length difference:

M =
2r − d

cT

where

c = sound speed

T = sampling period

• Gain coefficient g set to relative attenuation:

g =
1/2r

1/d
=

d

2r
=

1
√

1 + (2h/d)2

• M typically rounded to nearest integer

• For non-integer M , delay line must be interpolated

15

STK Program for Digital Echo Simulation

The Synthesis Tool Kit (STK)1 is an object-oriented C++ tool kit

useful for rapid prototyping of real-time computational acoustic

models.

/* Acoustic echo simulator, main C++ program.

Compatible with STK version 4.2.1.

Usage: main inputsoundfile

Writes main.wav as output soundfile

*/

#include "FileWvIn.h" /* STK soundfile input support */

#include "FileWvOut.h" /* STK soundfile output support */

#include "Stk.h" /* STK global variables, etc. */

static const int M = 20000; /* echo delay in samples */

static const StkFloat g = 0.8; /* relative gain factor */

#include "delayline.c" /* defined previously */

int main(int argc, char *argv[])

{

unsigned long i;

FileWvIn input(argv[1]); /* read input soundfile */

FileWvOut output("main"); /* creates main.wav */

unsigned long nframes = input.getSize();

for (i=0;i<nframes+M;i++) {

StkFloat insamp = input.tick();

output.tick(insamp + g * delayline(insamp));

}

}

1http://ccrma.stanford.edu/CCRMA/Software/STK/

16

http://ccrma.stanford.edu/CCRMA/Software/STK/

General Loss Simulation

The substitution

z−1 ← gz−1

in any transfer function contracts all poles by the factor g.

Example (delay line):

H(z) = z−M → gMz−M

Thus, the contraction factor g can be interpreted as the per-sample

propagation loss factor.

Frequency-Dependent Losses:

z−1 ← G(z)z−1,
∣
∣G(ejωT)

∣
∣ ≤ 1

G(z) can be considered the filtering per sample in the propagation

medium. A lossy delay line is thus described by

Y (z) = GM(z)z−MX(z)

in the frequency domain, and

y(n) = g ∗ g ∗ . . . ∗ g∗
︸ ︷︷ ︸

M times

x(n−M)

in the time domain.

17

Air Absorption

From Moorer 1979:

I(r) = I0e
−r/τr

where

I0 = intensity at the source

I(r) = intensity r meters from the plane-source

τr = intensity decay time constant (meters)

(depends on frequency, temperature, humidity

and pressure)

Relative Frequency in Hz

Humidity 1000 2000 3000 4000

40 5.6 16 30 105

50 5.6 12 26 90

60 5.6 12 24 73

70 5.6 12 22 63

Attenuation in dB per kilometer at 20◦C and standard

atmospheric pressure.

18

Acoustic Intensity

Acoustic Intensity may be defined by

I
∆
= pv

(
Energy Flux

Area · Time
=

Power Flux

Area

)

where

p = acoustic pressure
(

Force

Area

)

v = acoustic particle velocity
(

Length

Time

)

For a plane traveling wave, we have

p = Rv

where

R
∆
= ρc

is called the wave impedance of air, and

c = sound speed

ρ = mass density of air
(

Mass

Volume

)

v
∆
= |v|

Therefore, in a plane wave,

I = pv = Rv2 =
p2

R

19

Acoustic Energy Density

The two forms of energy in a wave are kinetic and potential :

wv =
1

2
ρv2 =

1

2c
Rv2

(
Energy

Volume

)

wp =
1

2

p2

ρc2
=

1

2c

p2

R

(
Energy

Volume

)

These are called the acoustic kinetic and potential energy densities,

respectively.

In a plane wave, where p = Rv and I = pv, we have

wv =
1

2c
Rv2 =

1

2
·
I

c

wp =
1

2c

p2

R
=

1

2
·
I

c

Thus, half of the acoustic intensity I in a plane wave is kinetic, and

the other half is potential:2

I

c
= w = wv + wp = 2wv = 2wp

Note that acoustic intensity I has units of energy per unit area per

unit time while the acoustic energy density w = I/c has units of

energy per unit volume.

2This was first pointed out by Rayleigh.

20

Digital Waveguide

z−N

z−N

R

• A (lossless) digital waveguide is a bidirectional delay line at some

wave impedance R

• Each delay line contains a sampled acoustic traveling wave

– right-going wave on top

– left-going wave on bottom

• Losses and dispersion handled with add-on digital filters

21

Physical Outputs of a Digital Waveguide

z−N

z−N

Physical Signal

• Any 1D acoustic field is given by the sum of these delay lines

– vibrating strings

– woodwind bores

– pipes

– horns

• Physical output signals (force, pressure, velocity, ...) are obtained

by summing the left- and right-going traveling-wave components

• Delay lines need taps for forming physical outputs

22

Tapped Delay Lines (TDL)

• A tapped delay line (TDL) is a delay line with at least one “tap”.

• A tap brings out and scales a signal inside the delay line.

• A tap may be interpolating or non-interpolating.

bM1

x(n)

x(n−M1)

y(n)

Tap Output

x(n−M2)

z−(M2−M1)z−M1

• TDLs efficiently simulate multiple echoes from the same source.

• Extensively used in artificial reverberation.

23

Example Tapped Delay Line

bM1
bM2

bM3

y(n)

x(n)

b0

x(n−M1) x(n−M2) x(n−M3)

z−(M2−M1) z−(M3−M2)z−M1

• Two internal taps

• Total delay is M3 samples

• Taps at M1 and M2 samples

Difference equation:

y(n) = b0x(n) + bM1x(n−M1) + bM2x(n−M2) + bM3x(n−M3)

Transfer function:

H(z) = b0 + bM1z
−M1 + bM2z

−M2 + bM3z
−M3

24

General Causal FIR Filters

The most general case of a TDL having a tap after every delay

element is the general causal finite impulse response (FIR) filter,

b0 b2b1 b3

x(n)

. . .

y(n). . .

. . .

bM

x(n− 1) x(n−M)x(n− 2) x(n− 3)

z−1 z−1 z−1 z−1

• Causal

(y(n) may not depend on “future” input samples x(n + 1),

x(n + 2), etc.)

• Also called a transversal filter .

Difference Equation:

y(n) = b0x(n) + b1x(n− 1) + b2x(n− 2) + b3x(n− 3) + · · ·+ bMx(n−M)

Transfer Function:

H(z) = b0 + b1z
−1 + b2z

−2 + b3z
−3 + · · ·+ bMz−M =

M∑

m=0

bmz−m ∆
= B(z)

25

Transposed Tapped Delay Line (TTDL)

bM1
bM2

bM3

x(n)

b0

x(n−M1)

y(n)

x(n−M2) x(n−M3)

z−M1 z−(M3−M2)z−(M2−M1)

Tapped Delay Line (TDL).

bM2
bM0

bM3

x(n)

bM1

y(n)z−(M2−M1) z−M1z−(M3−M2)

Transposed Tapped Delay Line (TTDL).

A flow-graph is transposed (or “reversed”) by reversing all signal

paths.

• Branchpoints become sums

• Sums become branchpoints

• Input/output exchanged

• Transfer function identical for SISO systems

• Derives from Mason’s gain formula

• Transposition converts direct-form I, II digital filters to two more

direct forms

26

Comb Filters

Feedforward Comb Filter

b0

y(n)x(n)
bM

z−M

b0 = Feedforward coefficient

bM = Delay output coefficient

M = Delay-line length in samples

Difference Equation

y(n) = b0x(n) + bMx(n−M)

Transfer Function

H(z) = b0 + bMz−M

Frequency Response

H(ejωT) = b0 + bMe−jMωT

27

Gain Range for Feedforward Comb Filter

b0

y(n)x(n)
bM

z−M

For a sinewave input, with b0, bM > 0:

• Gain is maximum (b0 + bM) when a whole number of periods fits

in M samples:

ωkT = k
2π

M
, k = 0, 1, 2, . . .

Note: These are the DFTM basis frequencies

• Gain is minimum (|b0 − bM |) when an odd number of

half-periods fits in M samples:

ωkT = (2k + 1)
π

M
, k = 0, 1, 2, . . .

28

Feed-Forward Comb-Filter Amplitude Response

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.5

1

1.5

2

Normalized Frequency (cycles per sample))

M
ag

ni
tu

de
 (

Li
ne

ar
)

 a)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−20

−15

−10

−5

0

5

10

Normalized Frequency (cycles per sample))

M
ag

ni
tu

de
 (

dB
)

 b)

g=0.1
g=0.5
g=0.9

• Linear (top) and decibel (bottom) amplitude scales

• H(z) = 1 + gz−M

– M = 5

– g = 0.1, 0.5, 0.9

• G(ω)
∆
=

∣
∣H(ejωT)

∣
∣ =

∣
∣1 + ge−jMωT

∣
∣→ 2 cos(MωT/2) when

g = 1

• In flangers, these nulls slowly move with time

29

Feedback Comb Filter

x(n)

y(n)

−aM

b0

z−M

−aM = Feedback coefficient (need |aM | < 1 for stability)

M = Delay-line length in samples

Direct-Form-II Difference Equation (see above figure)

v(n) = x(n)− aMy(n−M)

y(n) = b0v(n)

Direct-Form-I Difference Equation (commute gain b0 to input)

y(n) = b0x(n)− aMy(n−M)

Transfer Function

H(z) =
b0

1 + aMz−M

Frequency Response

H(ejωT) =
b0

1 + aMe−jMωT

30

Simplified Feedback Comb Filter

Consider the special case b0 = 1, −aM = g ⇒

y(n) = x(n) + g y(n−M)

H(z) =
1

1− g z−M

• Impulse response is a series of echoes, exponentially decaying

and uniformly spaced in time

• Models a plane wave between parallel walls

• Models a displacement wave on a guitar string

• g = round-trip attenuation

– two wall-to-wall traversals

– two wall reflections

31

Simplified Feedback Comb Filter, Cont’d

For a sinewave input and 0 < g < 1:

• Gain is maximum [1/(1− g)] when a whole number of periods

fits in M samples:

ωkT = k
2π

M
, k = 0, 1, 2, . . .

These are again the DFTM basis frequencies

• Gain is minimum [1/(1 + g)] when an odd number of

half-periods fits in M samples:

ωkT = (2k + 1)
π

M
, k = 0, 1, 2, . . .

32

Feed-Back Comb-Filter Amplitude Response

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

2

4

6

8

10

12

Normalized Frequency (cycles per sample))

M
ag

ni
tu

de
 (

Li
ne

ar
)

 a)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−10

−5

0

5

10

15

20

Normalized Frequency (cycles per sample))

M
ag

ni
tu

de
 (

dB
)

 b)

g=0.1
g=0.5
g=0.9

• Linear (top) and decibel (bottom) amplitude scales

• H(z) = 1
1−gz−M

• M = 5, g = 0.1, 0.5, 0.9

• G(ω)
∆
=

∣
∣H(ejωT)

∣
∣ =

∣
∣
∣

1
1−ge−jMωT

∣
∣
∣ →

g = 1

1

2 sin(M
2 ωT)

33

Inverted-Feed-Back Comb-Filter Amplitude Response

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

2

4

6

8

10

12

Normalized Frequency (cycles per sample))

M
ag

ni
tu

de
 (

Li
ne

ar
)

 a)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−10

−5

0

5

10

15

20

Normalized Frequency (cycles per sample))

M
ag

ni
tu

de
 (

dB
)

 b)

g=−0.1
g=−0.5
g=−0.9

• Linear (top) and decibel (bottom) amplitude scales

• H(z) = 1
1−gz−M

• M = 5, g = −0.1,−0.5,−0.9

• G(ω)
∆
=

∣
∣H(ejωT)

∣
∣ =

∣
∣
∣

1
1−ge−jMωT

∣
∣
∣ →

g = −1

1

2 cos(M
2 ωT)

34

Equivalence of Comb Filters to

Tapped Delay Lines

We can easily show that a parallel combination of feedforward comb

filters is equivalent to a tapped delay line:

H(z) =
(
1 + g1z

−M1
)

+
(
1 + g2z

−M2
)

+
(
1 + g3z

−M3
)

= 3 + g1z
−M1 + g2z

−M2 + g3z
−M3

⇒ b0 = 3, bM1 = g1, bM2 = g2, bM3 = g3

We can also show that a series combination of feedforward comb

filters produces a sparse tapped delay line:

H(z) =
(
1 + g1z

−M1
) (

1 + g2z
−M2

)

= 1 + g1z
−M1 + g2z

−M2 + g1g2z
−(M1+M2)

⇒ b0 = 1, bM1 = g1, bM2 = g2, bM3 = g1g2

M3 = M1 + M2

35

Allpass Filters

y(n)x(n)

−aM

b0

z−M

• Used extensively in artificial reverberation

• Can be “vectorized” like comb filters (Gerzon ’76)

• Transfer function:

H(z) =
b0 + z−M

1 + aMz−M

• To obtain an allpass filter, set b0 = aM

Proof:

∣
∣H(ejωT)

∣
∣ =

∣
∣
∣
∣

a + e−jMωT

1 + ae−jMωT

∣
∣
∣
∣

=

∣
∣
∣
∣

a + e−jMωT

ejMωT + a

∣
∣
∣
∣

=

∣
∣
∣
∣
∣

a + ejMωT

a + ejMωT

∣
∣
∣
∣
∣

= 1

36

First-Order Allpass Filter

Transfer function:

H1(z) = S1(z)
∆
=

k1 + z−1

1 + k1z−1

−k1

k1

y(n)x(n)

(a)

(b)

k1

−k1

x(n)

y(n)

z−1

z−1

(a) Direct form II filter structure

(b) Two-multiply lattice-filter structure

Nested allpass filter design:

• Any delay-element or delay-line inside a stable allpass-filter can

be replaced with any stable allpass-filter

37

• More generally, any stable allpass can be replaced by any another

stable allpass

38

Nested Allpass Filters

Transfer function:

H2(z) = S1

(
(z−1S2(z))−1

) ∆
=

k1 + z−1S2(z)

1 + k1z−1S2(z)

k1

−k1

x(n)

y(n)

−k2

k2

S2(z)

−k1

S2(z)

−k2

k1

k2

x(n) y(n)

(a)

(b)

ya(n) Ha(z) =
b0 + b1z

−1 + b2z
−2

1 + a1z−1 + a2z−2

H0(z) =
a2 + a1z

−1 + z−2

1 + a1z−1 + a2z−2

H2(z) =
1

1 + a1z−1 + a2z−2

z−1

z−1 z−1

z−1

ν2

ν1

ν0

39

(a) Nested direct-form-II structures

(b) Two-multiply lattice-filter structure (equivalent)

40

Feedback Delay Network (FDN)

q12 q13

q22 q23

q32 q33

q11

q21

q31

u1(n)

u2(n)

u3(n)

y1(n)

y2(n)

y3(n)

x1(n)

x2(n)

x3(n)

g1

g2

g3

z−M1

z−M2

z−M3

Order 3 MIMO FDN

• “Vectorized Feedback Comb Filter”

• Introduced by Gerzon (“orthogonal matrix feedback”) for

reverberation applications

• Refined by Stautner, Puckette, and Jot

• Closely related to state-space representations of LTI systems =

“vectorized one-pole filter”

41

FDN Time Update






x1(n)

x2(n)

x3(n)




 =






g1 0 0

0 g2 0

0 0 g3











q11 q12 q13

q21 q22 q23

q31 q32 q33











x1(n−M1)

x2(n−M2)

x3(n−M3)




 +






u1(n)

u2(n)

u3(n)




 ,

Outputs given by





y1(n)

y2(n)

y3(n)




 =






x1(n−M1)

x2(n−M2)

x3(n−M3)






In frequency-domain vector notation,

X(z) = ΓQD(z)X(z) + U(z)

Y(z) = D(z)X(z)

where

D(z)
∆
=






z−M1 0 0

0 z−M2 0

0 0 z−M3






42

Relation of FDNs to State-Space Models

When the delay lines are only 1 sample long, a standard state-space

model results:

x(n + 1) = Ax(n) + u(n)

y(n) = x(n)

• The matrix A = ΓQ is the state transition matrix

• The vector x(n) = [x1(n), x2(n), x3(n)]T contains the state

variables

• The state vector x(n) completely determines the state of the

system at time n.

• The length of the state vector x(n) is the order of the linear

system.

When the delay-lines are not unit length, the state-space description

of an FDN expands in a simple way.

Matlab includes many tools for state-space analysis and simulation,

especially in the Control Systems Tool Box.

43

A Single-Input, Single-Output (SISO) FDN

Define

u(n) = Bu(n)

where B is N × 1. Similarly, define

y(n) = c1x1(n−M1) + c2x2(n−M2) + c3x3(n−M3)

q12 q13

q22 q23

q32 q33

q11

q21

q31

x1(n)

x2(n)

x3(n)

y(n)u(n)

b1

b3

b2

c1

c2

c3

g2(n)

g3(n)

g1(n)

z−M1

z−M2

z−M3

Order 3 SISO Feedback Delay Network

By state-space analysis, the transfer function is

H(z) = CTD(z) [I−AD(z)]−1
B

where

D(z)
∆
=






z−M1 0 0

0 z−M2 0

0 0 z−M3






44

When M1 = M2 = M3 = 1, this system can realize any transfer

function of the form

H(z) =
β1z

−1 + β2z
−2 + β3z

−3

1 + a1z−1 + a2z−2 + a3z−3
.

Applications of FDNs

• In FDN reverberation applications, A = ΓQ, where Q is an

orthogonal matrix, and Γ is a diagonal matrix of lowpass filters,

each having gain bounded by 1.

• In certain applications, the subset of orthogonal matrices known

as circulant matrices have advantages.3

3http://ccrma.stanford.edu/˜jos/cfdn/

45

Stability of FDNs

Stability is assured when some norm of the state vector x(n) does

not increase over time for a zero input signal.

Sufficient condition for stability:

‖x(n + 1) ‖ < ‖x(n) ‖ ,

for all n ≥ 0, where

x(n + 1) = A






x1(n−M1)

x2(n−M2)

x3(n−M3)




 .

Inequality holds under the L2 norm whenever the feedback matrix A

satisfies

‖Ax ‖2 < ‖x ‖2

where

‖x ‖2
∆
=

√

x2
1 + x2

2 + · · · + x2
N .

(the “L2 norm”) ⇔ ‖A ‖2 < 1

46

http://ccrma.stanford.edu/~{}jos/cfdn/

Stable Feedback Matrices

The matrix

A = ΓQ

always gives a stable FDN when Q is an orthogonal matrix, and Γ is

a diagonal gain matrix having entries less than 1 in magnitude:

Γ =








g1 0 . . . 0

0 g2 . . . 0
...

0 0 . . . gN








, |gi| < 1.

It is also possible to express FDNs as special cases of digital

waveguide networks, in which case stability depends on the network

being passive. Smith and Rocchesso 1994 This analysis reveals that

the FDN is lossless if and only if the feedback matrix A has

unit-modulus eigenvalues and linearly independent eigenvectors (see

the Rocchesso and Smith 19964 for details).

4http://ccrma.stanford.edu/˜jos/cfdn/Conditions Losslessness.html

47

http://ccrma.stanford.edu/~{}jos/cfdn/Digital_Waveguide_Networks.html
http://ccrma.stanford.edu/~{}jos/cfdn/Conditions_Losslessness.html

