Commuted Synthesis of Strings

Julius Smith and Nelson Lee

RealSimple Project*
Center for Computer Research in Music and Acoustics (CCRMA)
Department of Music, Stanford University
Stanford, California 94305

June 5, 2008

Outline

- Basic Idea
- Body Resonator Factoring
 - Shortened Body Impulse Response
 - Corresponding Amplitude Response
 - Localized Second-Order Mode Elimination Filter
- Commuted Piano Synthesis
 - String Interface
 - Excitation Factoring
- Linear Commuted Violin Synthesis

^{*}Work supported by the Wallenberg Global Learning Network

Commuted Synthesis of Strings

Schematic diagram of a stringed musical instrument.

Equivalent diagram in the linear, time-invariant case.

Use of an aggregate excitation given by the convolution of original excitation with the resonator impulse response.

Possible components of a guitar resonator.

Features of Commuted Synthesis

- Enormous resonators can be implemented inexpensively (three orders of magnitude less computation for typical stringed instruments)
- Good qualitative excitation signals are easy to measure (just tap on the bridge)
- Apparent "resonator size" can be modulated by changing the playback rate of the excitation table

Drawbacks:

• Requires linearity and time invariance

Linear Commuted Violin Synthesis

- Assumes ideal Helmholtz motion
- Sound examples:

http://ccrma.stanford.edu/~jos/wav/vln-lin-cs.wav

Multiple-Excitation Commuted Synthesis

Filtered-Noise Excitation Synthesis

Commuted Synthesis of the Linearized Violin

