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Body Resonator Factoring

A valuable way of shortening the excitation table in commuted

waveguide synthesis is to factor the body resonator into its

most-damped and least-damped modes.

• The most-damped modes are then commuted and convolved

with the external excitation.

• The least-damped modes can be left in parametric form

(recursive digital filter sections)

Advantages:

• Excitation table is shortened

• Excitation-table signal-to-quantization-noise ratio is improved

• The most important resonances remain parametric, facilitating

real-time control.

• Multiple body outputs become available (e.g., for more diverse

spatialization)

• Resonators are often available in a separate effects unit, making

them “free”

• Provides a fairly continuous memory vs. computation trade-off
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Mode Extraction Techniques

The goal of resonator factoring is to identify and remove the

least-damped resonant modes of the impulse response. This means

finding and removing the narrowest “peaks” in the frequency

response.

Two Basic Methods:

1. Complex spectral subtraction (equivalent to subtracting a

second-order impulse-response)

Hr(z) = H(z) −
b0 + b1z

−1

1 + a1z−1 + a2z−2

• Must accurately estimate phase and amplitude, as well as

frequency and bandwidth

• Requires resonators in parallel with residual

⇒ residual not readily commuted with string

2. Inverse-filtering

Hr(z) = H(z)
(

1 + a1z
−1 + a2z

−2
)

• Factored resonator components are in cascade (series)

• Residual (damped) modes more easily commuted with the

string

• Only need to measure frequency and bandwidth, not

amplitude and phase

3

Mode Extraction by Inverse Filtering

Various methods are applicable for estimating spectral peak

parameters:

(1) Direct amplitude-response peak measurement on FFT magnitude

data

• Center frequency

• Bandwidth

(2) Weighted digital filter design

(3) Linear prediction

(special case of (2))

(4) Sinusoidal modeling

(like (1) but looking across multiple time frames)

(5) Late impulse-response analysis

(useable with all methods)

(6) Work over Auditory frequency scale such as the Bark scale

(useable with all methods)
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Example of Body Resonator Factoring

Example of weighted digital filter design using invfreqz in Matlab:
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Shortened Body Impulse Response

Classical guitar body impulse response body before and after

removing the first peak (main Helmholtz air resonance) using a

second-order inverse filter:
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• Shortened excitation can be truncated to ≈ 100 ms

• Shortened excitation can often be replaced by a filtered noise

burst
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Corresponding Amplitude Response

Normalized Bark-warped amplitude response, classical guitar body,

before and after second-order FIR inverse filtering:
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Localized Second-Order Mode Elimination Filter

Hr(z)
∆
=

A(z)

A(z/r)
∆
=

1 + a1z
−1 + a2z

−2

1 + a1rz−1 + a2r2z−2

• A(z) = inverse filter determined by

– peak frequency

– peak bandwidth

• A(z/r) = same polynomial with roots contracted by r

• For r ≈ 1 (but < 1 for stability), poles and zeros substantially

cancel far away from the removed mode ⇒ mode removal is

localized.

• Similar in spirit to dc blocker

• r can be interpreted as the new pole radius for the “canceled”

pole.

• Ideally, r should equal the radius of the neighboring poles so that

all will decay at the same rate (recall late reverb synthesis story)
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Matlab for Localized Peak Removal

freq = 104.98; % estimated peak frequency in Hz

bw = 10; % peak bandwidth estimate in Hz

R = exp( - pi * bw / fs); % pole radius

z = R * exp(j * 2 * pi * freq / fs); % pole itself

B = [1, -(z + conj(z)), z * conj(z)] % inverse filter numerator

r = 0.9; % zero/pole factor (notch isolation)

A = B .* (r .^ [0 : length(B)-1]); % inverse filter denominator

residual = filter(B,A,bodyIR); % apply inverse filter
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Localized Peak Removal Example

In this example, r = 0.9 (arbitrary choice - not critical)
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Close-Up on Localized Peak Removal Example
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First eighth of previous figure.
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