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1. PROJECT SUMMARY

This research is concerned with computer analysis of complex acoustic signals,
particularly with the development of a robust method to identify and track simul-
taneous acoustic sources in a monaural signal.

In the system, perception results from the interaction of data-driven and expectation:
driven agents. Strategies for allocating resources to system agents and controlling
feedback loops during the analysis of a time-varying signal are based on simulated
real-time problem-solving.

The use of multirate signal processing in conjunction with focus-switching heuris-
tics yields high resolution simultaneously in the time and frequency domains, an
improvement upon traditional bandwidth-time tradeoffs.

Source coherence criteria derived from psychoacoustic observations (including
correlated AM and FM modulation among partials) permit source separation when
simpler methods fail.

The system’s learning co-processor allows parameter adjustement and various
forms of pattern recognition, using traditional numerical techniques as well as
syntactic pattern matching, concept learning, and new hybrid methods combining
parametric and structural views.

In summary, the research addresses key areas of acoustic analysis as well as
important issues in Al, perception and learning. The implemented system is tested
by using it as a front end for various acoustic recognition tasks, including (but not
limited to) the transcription of polyphonic sound.
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2. RESULTS FROM PRIOR NSF SUPPORT

The research discussed below was carried out under NSF Contract No. DCR-

8214350, entitled “An Intelligent System for the Analysis of Digitized Acoustic
Signals”.

2.1. Summary of Completed Work

Combining signal processing techniques and semi-numerical methods with layers
of domain knowledge, a computer program analyzes sound recordings of performed
music and produces musical transcriptions. Many single-voice examples have been
so transcribed. The results obtained with polyphonic data are quite encouraging.

The research contributes to several technical areas. In the area of signal process-
ing, a family of algorithms for time-varying spectral analysis has been devised. The
Bounded-@) transform allies the speed characteristic of the FFT with a non-linear
frequency resolution which, like the ear’s, is almost constant-Q.

The acoustic analysis subsystem mediates between signal processing and higher-
level reasoning. Primarily concerned with event detection and identification, it in-
cludes novel or improved methods for segmentation and polyphonic pitch detection.

Semi-numerical algorithms for rational approximation, for hierarchical clustering,
and for the recognition of subsequence patterns, have been developed within the
higher-level analysis subsystem, which also includes methods specific to the musical
domain.

The central theme of the work has been to develop strategies for reliable sound
perception. The system acts primarily in data-driven regime, but expectation-driven
feedback loops drastically improve its reliability. For example, dips in the auto-
correlation of rhythmic sequences point to possible segmentation errors. This yields
powerful error recovery based on acquired high-level context.

2.2. Publications

The publications listed were supported by NSF Contract No. DCR-8214350.
Copies of these papers (but not of the Ph.D. thesis) are included in Appendix 2.
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2.3. Overview

Earlier work on this project (supported by NSF Contract MCS-8012476) was
only aimed at the transcription of single-voice musical examples. For this purpose,
it used a two-stage process. A sound recording was first reduced to an event list by
a front end responsible for signal processing, pitch estimation and event detection
[22,23]. Then the event list was submitted to musical analysis [10,37).

The current system consists of three main subsystems: signal processing, acoustic
analysis and musical analysis. Each subsystem has an independent user interface
and may be used in isolation, for investigations of limited scope. Interactive access
facilitates debugging and experimentation and allows the user to step the system
through examples that exceed the capabilities of fully automatic operation.

When the subsystems are teamed up for distributed problem-solving, acoustic
analysis mediates between signal processing and higher-level processing. Reliability
of the overall analysis has been enhanced by increasing the level of integration of the
subsystems. This is particularly important for the analysis of polyphonic signals.

The system reliably transcribes recordings of simple melodies played on the piano
or other percussive instruments. Examples that are more difficult due to the acoustic
properties of the instrument, the complexity of the music or the expressiveness of
the performance, are often transcribed with little or no assistance from the user.
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The major limitations of the system arise in the treatment of polyphonic data.
The high-level subsystem does not currently handle multiple voices. In the area
of acoustic analysis of polyphonic sound, the results obtained so far have already
improved the state of the art, but they also point to further research on the
fundamental processes of source segregation in hearing.

The contributions of the project to various technical areas are described below.

2.4. Problem-solving framework

The approach combines mathematically-based methods with domain reasoning
and significant use of context. The knowledge expressed in data representation
choices, algorithms and heuristics covers selected aspects of instrumental acoustics,

psychoacoustics, music theory, notation conventions, and performance practice.

The system uses a layered representation, in which frame-like objects are stored
in a blackboard. Data descriptors span many layers of abstraction, from the surface
signal to various approximations of its meaning. Useful descriptive elements include
frequency-domain signal transforms, spectral peaks and spectral lines, scale tones,
performed durations, rhythmic values of notes, accent markers, global meter and

key markers, and patternsbof varying nature and scope.

The predominant direction for information flow in the system is bottom-up.
In addition, feedback links from the higher-level context to the lower levels of
analysis allow powerful error recovery, as will be discussed in the sequel. The
system generally avoids backtracking. This is done by carrying along small sets
of hypotheses in parallel. The degree of ambiguity is controlled at each level
of description with pruning techniques which take advantage of a multiplicity of
evaluation criteria (37, 38].

2.5. Signal processing

The most critical signal processing step is the transformation of the sampled
input signal to a frequency-domain representation. The Fast Fourier Transform is
attractive for its efficiency, but the linear spacing of the frequency bins yields poor
discrimination in the lower frequency range, compared with that of the ear. In
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order to improve this situation while retaining the FFT's speed, we have devised a
method of time-varying spectral analysis, called Bounded-Q Frequency Transform
(or BQFT) which uses FFTs within a recursive scheme of octave decimation. The
algorithm is described and illustrated in Appendix 2a. The BQFT offers better than
semitone resolution, which is sufficient for the effective processing of polyphonic
textures by the further levels of analysis.

2.6. Acoustic Analysis

e Segmentation.

A sudden rise in signal amplitude is the most obvious clue for onset detection.
Reliable attack detection for the piano and for percussive instruments in general is
obtained by thresholding instantaneous slopes obtained by linear regression from a
suitably computed amplitude envelope. Applying the same method to a high-pass
filtered signal is even better [50].

Other kinds of musical articulations, such as slurred bowed string attacks, motivate
the use of frequency domain onset detectors. In addition to these data-driven
event detection methods, messages from higher level routines may suggest candidate
events for tentative identification.

e Identification.

Within spectrally stable segments after each detected event, the BQFT spectrum
is searched for candidate sources. The presence of a source is suggested by a set
of peaks in the instantaneous spectrum that can be grouped as partials of a given
fundamental. Periodicity estimation (polyphonic pitch detection) uses a variant
of Amuedo’s algorithm [2]. Chords are separated into source hypotheses and the
groups of partials are tracked in time.

Each source hypothesis is compared to a model describing the distinct features
of the instrument’s acoustics. For the piano these features include inharmonicity,
exponential decay and amplitude modulation from beating among multiple strings.
Hypotheses are weighed accordingly and “good” notes are added to the note list,
labelled with timing, pitch and dynamic information. More details are given in
appendices 2¢ and 2e.
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2.7. High-Level Processing

Whenever possible, this research favors the development of general algorithms
over the addition of specialized rules, expressing a bias in the “power vs. knowledge”
controversy. As a result, many essential algorithms and strategies developed within
the musical analysis subsystem are applicable outside the musical domain.

¢ Semi-numerical Algorithms.

Methods for hierarchical clustering and rational approximation have been devel-
oped or adapted to deal with timing fluctuations. These domain-independent algo-
rithms assist in the conversion of performed durations to a metrical grid [37,38] but

also have applications in the frequency domain.
e Detection of Structural Patterns.

Pattern detection methods explore auto-correlations in discrete sequences of fea-
tures ([39] and Appendix 2d). One algorithm arranges repeated subsequences into

a hierarchical data structure, and “subsumed” patterns are weeded out.
o Musical Analysis.

Earlier methods [10,37] for determining musical accents, tempo changes, rhythmic
values and other aspects of musical context have been strengthened, notably by
the use of clustering and pattern detection algorithms, in order to expand their
power and applicability. For example, important aspects of metrical organization
are revealed in observing regularities in the placement of instances of patterns.

o Feedback to Acoustic Analysis.

Some of the high-level processing creates context suitable for feedback to lower
levels of analysis. In the system, this often takes the form of peer pressure, used
as a strategy for error detection and recovery ([38], also Appendix 2b). A striking
application of this idea uses pattern detection techniques, followed by statistics
over pattern instances, to reveal spurious events and identification errors. A closely
related technique uses near-miss analysis to suggest not only spurious events, but
also missing events. It specifies the time at which an event was expected to be found
(see [39] and Appendix 2d).
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3. PROJECT DESCRIPTION

3.1. Objectives and significance

The proposal is part of a continuing effort towards computer understanding of
complex acoustic signals. Earlier research discussed in Section 2 (and in Appendix
2) has led to the development of a framework of representations, techniques and
strategies for sound perception, and to a better understanding of some of the key
issues in acoustic analysis. The proposed research, while building upon the previous
work, moves away from specific aspects of the musical domain. It focuses on fun-
damental processes of acoustic analysis that form the basis of domain-independent
approach to the perception of composite sounds.

The central goal of the proposed work is to develop a system for the perception

of monaural sound, capable of reliably separating simultaneous sound sources.

In the next three sections, we define the various aspects of the problem more
precisely, outline the approach, and discuss suitable domains for the research. The
significance of the work is discussed throughout but is also the object of a separate
final section.

The problem

The goal of the proposed system is to perform an automatic acoustic analysis
of signals resulting from simultaneous sound sources. Reliable performance in the
tracking and identification of individual sound sources is the overriding considera-
tion.

The research is not aimed at modeling the specific mechanisms of human hearing.
Naturally, comparisons with human performance helps gaining a sense of direction
and a measure of success. Also, psychoacoustical findings provide important in-
sights. Research on human hearing has shown that listeners use a substantial num-
ber of distinct clues when hypothesizing sources, as well as complex conflict resolu-
tion strategies. Source tracking, which is one of the most fundamental principles
at work, exploits both short-term and long-term continuity in the manifestations

of each source. Short-term continuity is straighforward, once a proper metric is
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chosen, but long-term continuity involves intelligent memory processes, with the
ability to extract and recognize source behavior patterns.

The technical facets of acoustic analysis include segmentation (or event detec-
tion), source segregation, source identification (including pitch detection) and source
tracking. These subproblems are not independent, however, from one another or
from the larger context of signal interpretation. The somewhat tangled situation
that results is typical of non-trivial perception tasks, and dictates important aspects
of the problem-solving architecture required for the task.

As part of the initial assumptions underlying this work, we postulate the need
for a layered data representation. We also believe that perceptual choices result
from the convergence between observation (sensation, bottom-up processes) and
expectation (prediction, top-down processes). Such a formulation leads to a wealth
of technical issues, which we propose to address by experimenting with a program
for “intelligent listening”:

What causes sources to be formed against a background of noise and other
sources? How are sources characterized? Can this process be modeled by the
propagation of information in a descriptive hierarchy, and if so, how? What
constitutes a proper balance of data-driven and expectation-driven reasoning, and
how can it be achieved? How do adaptation and learning processes affect perception?

The approach

The proposed approach inherits its general character from prior research, which
has been rather successful with single-source acoustic recognition problems, and, up
to a point, with multi-source problems. The proposed approach, however, includes
substantial new developments. It is described below using four key points.

e Computational Framework.

The primary global data structure (the “memory”) is a two dimensional structure
organized by time and level of abstraction. Information is collected and propagated
by system agents, which are loosely coupled processes communicating via this
memory. A key assumption shared with the earlier work is that perception occurs
as the result of a careful balance of sensation and expectation. Accordingly, the
implemented system relies on the interaction of two types of agents, data-driven
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agents which propagate information from more detailed levels to more abstract
levels, and context-driven agents which propagate information in the opposite direc-
tion. Feedback loops involving both types of agents are important for the robust-
ness of the system. But since these loops require delicate regulatory mechanisms,
their use in prior research had been limited to a small number of special cases
where regulatory strategies could be devised. Loop control will now be addressed
by viewing computation as unfolding in (simulated) real-time. This approach offers
a uniform way to regulate feedback, but it also leads, as the speed of hardware

increases, to true real time processing.
o Multirate Signal Processing.

Closely related to, but distinct from, abstraction/time tradeoffs are frequency /time
resolution tradeoffs. The use of multirate signal processing together with suitable
focus-switching strategies should allow one to obtain high resolution simultaneously
in time and frequency. This type of process provides an efficient method by which
the system can get around usual forms of the bandwidth-time tradeoff, and remain

close to theoretical limits in the greatest part of the useful range.
e [Expanded Psychacoustic Knowledge.

Recent work on fusion and streaming provides important insights into the process-
ing of multi-source textures by the human ear [6, 14, 33, 34]. Criteria for the
grouping of acoustic features suggested by these experiments aim at forming one or
more coherent auditory images. In addition to familiar time-domain and frequency-
domain clues, these criteria include more subtle effects such as correlated AM and/or
FM modulation across partials. These clues may be expected to succeed in some
cases where all else fails, but the computational cost and benefits remain to be

investigated.
e Adaptation and Learning.

Adaptive techniques and unsupervised learning have important contributions to -
make to machine perception. Knowledge-intensive systems tend to focus on too nar-
row a domain. Training is known to be an attractive (if challenging) alternative to
building specialized knowledge into the system. In some cases, a learning phase can
be carried out “off-line” using a combination of trial-and-error, optimization algo-
rithms, and other methods. But we are most concerned here with “on-line” learning
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and adaptation. Our prior research offers examples of the use of both parameter
adaptation and learning of stuctural descriptions, in order to yield context-gathering
and error-recovery mechanisms. The intention is to generalize this type of strategy

by postulating a “learning co-processor” as part of the memorization process.

Interpretation domains

For the purpose of experimenting with the tracking and segregation of simul-
taneous sources, polyphonic data remains quite attractive. Musical data do present
eminently desirable characteristics for the effective pursuit of the research issues,
including the investigation of learning techniques in the context of perception, but
they may not be unique in this respect.

The “domain” for this work is that of composite acoustic signals. The choice
of specific interpretation domains is important, yet subordinate to other research
concerns. This contrasts with prior research, which was specifically focused on
the music transcription task. Since the research has progressed towards more
fundamental issues in sound perception, it seems useful to open the investigation to
other acoustic domains and tasks, if only to reveal domain dependencies.

The basic intention is to provide a tool for acoustic analysis that is as general
as possible, and can be shown to perform well at least in the context of polyphonic
music. This is further discussed as part of the “Research Plans”.

Significance

e Signal Processing and Acoustic Analysis.

In the signal processing area, the implications of simultaneous multirate signal
processing could be quite deep. The idea is in principle applicable whenever the use
of a fixed time-frequency resolution tradeoff is inadequate, and a finer control of
bandwidth-time tradeoffs is desired. The implementation raises non-trivial issues,
and it remains to be seen if the theoretical beauty of the scheme carries over to
practical situations.

The most obvious contributions from this research are in key areas of acoustic
analysis: acoustic segmentation, source identification (notably polyphonic pitch
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detection) and, particularly, source segregation.

The problem of “hearing” multiple acoustic sources is a well-known challenge
for machine perception research — one which is significant for both theoretical and
practical reasons. The experience acquired in past work, combined with the new
directions outlined in this proposal, offer the promise of a vigorous attack on the
problem. The unique character of the proposed approach is reflected in the simul-
taneous use of multiple sampling rates, in the implementation of a psychoacousti-

cally mature notion of acoustic source coherence, and in the Al concepts in use.

The applications of multiple-source acoustic analysis are numerous. As Amuedo
[2] has justly observed, single-source problems in the presence of a significant
amount of noise are best approached as multiple-source problems. [In practice,
noise and untracked sources are effectively indistinguishable — one is reminded
of the “cocktail-party effect”]. The possible application domains include music
recognition, speech recognition (in multi-speaker or in noisy situations), underwater
signal analysis, ecological studies from sound recordings, and many others.

e Al Architectures, Perception and Learning.

Other contributions concern machine perception and artificial intelligence in
terms that are not specific to the acoustic domain. In particular, the systems
aims at achieving an on-line synergy of perception and learning agents in an intel-
ligent and highly adaptive analysis system, and the principles involved are readily
generalizable.

Specific aspects of the proposed Al framework that may become significant in
broader Al contexts include resource allocation and pruning strategies, and the
use of “real-time” as the basis of a methodology for controlling expectation-based
feedback paths.

Contributions may also expected in the area of machine learning, where research-
ers have recently turned to hybrid methods combining parametric and symbolic
points of view [27, 20], and many recognize the importance of addressing learning
issues in the realistic context of perceptual tasks [45, 46).

3.2. Research Plans

The proposal focuses on the development of an acoustic analysis front end suitable
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for use in a partially unspecified intelligent system. The acoustic analysis system
must be exercised and tested as part of larger systems devoted to various intelligent
acoustic recognition tasks. The first subsection below discusses specific tasks and
domains that seem suitable for this purpose. The next four subsections respectively
expand the four major points on which the approach is based.

Experimental domains

As indicated earlier, a significant difference between the prior work and the
proposed research is that the latter focuses on more fundamental problems of acous-
tic analysis in a largely domain-independent manner. Working with several acoustic
analysis tasks appears to be a good way to properly factor domain dependencies.
In any case, the choice of domain is subordinate to the pursuit of two key research
issues, acoustic source formation and pattern acquisition.

While automatic transcription of polyphonic sound is no longer the primary goal
for the research, the use of musical data continues to be eminently desirable. In no
other domain is the simultaneity of acoustic sources exploited as systematically as in
polyphonic music. Also, data easily available for the research present great oppor-
tunities for controlling independently the various dimensions of difficulty inherent
in the problem. In particular, under the enormous variety of sound manifestations,
musical passages usually present a number of levels of organization, some of which
are good targets for feature abstraction followed by pattern detection, leading to
unsupervised learning. Rather than being constructed according to a pre-specified
grammar, a musical composition typically establishes some simple patterns and then
uses them as building blocks, providing a good test for learning methods.

Other tasks that point to similar technical issues should be useful, in order to
broaden the experimental basis of the work without diluting the effort. A task
that presents good characteristics in this respect is the automatic recognition and
classification of bird songs. Bird song patterns appear to be good targets for learning
methods. As usual, the complexity of the problem depends on whether a vocabulary
of features is given by experts. [Note that most birds emit a sound formed by a
single sine wave, subject to (possibly rapid) modulation. ]

The “multi-bird recognition” problem, which appears to meet all our research-
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driven criteria, also turns out to have practical applications. An important indicator
of the ecological evolution of specific habitats is the variety of bird species that
inhabit it. Since it is expensive and inconvenient to send experts to listen directly
to the birds at specific times and places, sound recordings are made locally and sent
to the expert, who then identifies species and attempts to count individuals, or at
least species variety. For some regions of the world, very few experts are capable of
making the necessary judgements from these field recordings. Computer analysis
of the recordings may be just what is needed in some cases.

While it is not clear how far to proceed with bird songs, within the context of the
proposed investigation, it is obvious that taking at least some steps in that direction

will help insure that the acoustic analysis system being constructed present a fair
degree of domain independence.

Problem-solving framework

The data representation or memory is primarily organized in terms of a verti-
cal dimension (the level of abstraction) and a horizontal dimension (time). The
structure underlying the “vertical axis” is a partial order over the set of feature
classes. This partial order, whose representation is a part of the self-description of
the system, indicates what feature types may offer evidence for what other feature
types.

The object instances are frame-like structures stored in a blackboard. They are
organized in a network which uses evidence links as well as temporal succession
links, pattern/instance links, etc.

Pure data-driven hypothesis formation stores values determined from lower-level

slot values into higher-level slots and sets up the corresponding evidence links (H1
“provides direct evidence for” H2)

Ideally, a slot holds a single value. But it may have none or several, resulting
in incomplete or ambiguous descriptions which are still very useful. Often the fact
that a slot contains missing or ambiguous information ends up being irrelevant,
because some other piece of evidence takes over along a different path.

Sets of alternative values are pruned on the basis of partial orders over multiple
evaluation criteria. This technique helps maintain a level of ambiguity appropriate
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to the context. It helps avoids backtracking by making it practical to carry several
choices in parallel until the addition of further context allows a decision to be made.
This is further discussed in [37, 38] and in Appendix 2b.

System agents are loosely-coupled processes communicating via the blackboard.
The gathering of possible representations of the signal proceeds by the parallel
activity of all enabled agents. The major flow of activity is bottom up and results in
upward evidence relations. The use of predictive agents (that postulate lower-level
features on the basis of higher-level context — these are rarely used) or context-
sensitive explanatory agents (bottom-up agents that also use context parameters
from higher up) causes the addition of downward (context) links in the network.

The interactions between agents may also be understood in terms of the two
dimensions in the data representation. The bulk of the computation is carried out by
straighforward bottom-up agents responsible for incremental steps in abstraction,
i.e. in the wvertical structure. In order to visualize the structure of the larger
system, one begins with a data flow graph linking features in a strictly upward (and
thus loop-free) manner. Then one may add optional context parameters that may
affect the behavior of many bottom-up agents. Since context parameters are also
computed in the data flow graph, we obtain feedback loops, which can be quite
useful in achieving various forms of adaptation and focusing.

Naturally, feedback loops also present a potential for instability (over-reaction
to change) or stubbornness (inability to adjust to change) and for an explosion
in computational complexity. It seems difficult to explicitly limit the number of
iterations of any given context feedback loop, because such loops only exist as a
by-product of evidence and context propagation paths, and there is no centralized
mechanism to keep track of all possible loops. In some cases it is possible to trust
that convergence (a recognizable situation of negligible state change which stops
the transitive propagation of consequences) will obtain quickly. This happens with
context-gathering mechanisms that have a built-in “central tendency” — this is the
key idea of the peer pressure strategy described in [38] (see Appendix 2b).

However, there is another approach to the control of feedback loops, which may
be used in conjunction with peer pressure or separately. The idea is to assume
that all processing happens in “real time,” i.e. simultaneously with reading input
samples. The notion of time used here is “simulated real-time” but it is pleasant to
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know that if sufficient computing bandwidth is present in the processing network,
the analysis model actually turns into a true real-time system.

The basic principle is that system agents take finite time to do their work, even
though they work in parallel. Every analysis step is causal and it delivers at time
t+D the results of observing the situation at time t. Since positive delays add up in
every computational path, what appears at first to be a “vertical loop” (a recursive
system of equations in the instantaneous system variables) actually has a horizontal
drift. In other words, feedback loops cannot be “pure repetitions” operating with
the same lower-level data over and over again.

Further, as long as we use simulation, the delay incurred in any one step need not
reflect the computational complexity of this step. By choosing delays appropriately
one effectively assigns a “time constant” to every feedback mechanism. Intuition
(aided, when available, by psychophysical data) will guide the choice of processes
and delays to be used.

The idea of simulating “real-time” ought to offer a promising approach to the
control of attention and the stabilization of feedback loops between data-driving and
context-driving. In the same spirit, we will provide each level of data description
with only finite buffering, and introduce forgetting mechanisms that enforce the
space constraint gracefully. Thus, the memory has a tendency to decay as time
passes, unless features are remembered as part of patterns that remain active.

In the memory structure there is also a vertical gradient of quality as well as
quantity. Features found higher up tend to describe larger time spans, and are also
computed with greater delays. Feedback from high-level context may eventually
affect the lowest levels of computation. Naturally, the higher the feedback context,
the greater the delay. This is as it ought to be. When dealing with a given “chunk”
(phoneme, word, note, sentence, musical phrase) the urgency of identifying the
chunk typically rises for some time after the chunk is finished, and the acceptable
delay is essentially proportional to the duration of the chunk.

In addition to this orderly bottom-up progression, context or redundancies create
expectations which, for example, allow one to understand a sentence before it is
finished, or to predict the next word to come. This phenomenon is essential to
perception, although it is easy to go overboard with the use of predictive models.
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While prediction will help recognize an input word if it matches one of the expected
words, the ability of recognizing unexpected chunks must remain strong. Coupling
mechanisms that foster a correct balance between expectation and sensation are
actively sought in this research. Prior work that emphasized the peer pressure
strategy will be further developed, notably by adapting these ideas to the use of
“real-time” notions.

Multirate Signal Processing

The Bounded-Q Frequency Transform (BQFT) is an algorithm for time-varying
spectral analysis which has proved useful for obtaining high-resolution spectral
data. The algorithm is described in Appendix 2a. In brief, one computes successive
identically-sized windowed FFTs of the original signal and of the derived signals
obtained by repeatedly down-sampling by factors of 2. The surprising efficiency of
the method, both in terms of compute time and in terms of the size of the data,
comes from the fact that (1 + 1/2 + 1/4 + 1/8 + ... ) does not exceed 2.

The BQFT provides a redundant spectral representation which yields a range of
frequency/time tradeoffs simultaneously. The reader is invited to examine Figures
1 through 7 at this point (Appendix 2a). The display uses 4 by 4 pixels with 17 gray
levels from 0 to 16. Although the displays are not fully calibrated and show some
artifacts, one gets the intention clearly by comparing figures. Consider for example
the first event in Figure 7. Its frequency is defined within a half of a semitone,
which is the resolution of the visual display. Note that the timing of this event
is quite fuzzy. But if one locates this event in Fig 3 or Fig 2, the timing becomes
clearer, resolved down to a single 4 by 4 pixel representing a 20 msec interval.

It is important to realize that neither an FFT analysis nor a constant-Q analysis
can deliver simultaneously such accuracy in both time and frequency. The way we
“cheat” is by claiming that the first event visible in Fig 7 is the same as that in
Fig 3. In the presence of sufficient noise or polyphonic complexity, such claims may
become hazardous. But among the many strong partials of a tone, chances are some
are relatively noise-free and can be used for accurate frequency measurement.

In the course of acoustic analysis, it frequently happens that subtle articulations
are detectable only at one level of resolution and barely visible at others. This
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suggests a concurrent approach in which event detection and identification rely on
running detectors in parallel and heuristically merging their results.

Informal experiments to assess the power of the BQF'T to resolve subtle phenomena
have been encouraging. For example, in Fig 5, the first five events may be labeled
with the (transposed) musical pitches B, C, D, C and B. Immediately after this
appears a more confusing situation (near the center of the figure). On the way
down to G, there is first a weak C, and before that, an even weaker and shorter
almost D-sharp tone. By ear it was possible to tell that “something” was happening.
Well-trained musicians actually recognized the passing C without much difficulty.
But they did not hear the D-sharp until the digital recording was played at one
quarter the speed. It is comforting to see that visual scanning of the BQFT data
was correctly pointing to subtle acoustic features.

At the very least, in the lower octaves, the method surpasses the FFT in frequency
resolution, and surpasses constant-Q in time resolution. (Of course, one can do
repeated constant-Q analyses with successive factors of 2 in BT tradeoffs, but by
then the method is almost equivalent to the BQFT and less efficient. Another
remark: when the BQFT itself becomes fuzzy in the lower frequency range (tens of
Hz) it is time to abandon the “place” theory of pitch and switch to time-domain
pitch detection.

The BQFT eliminates the difficulty that Amuedo saw in his own periodicity es-
timation algorithm, which computes a virtual pitch by detecting clusters of subhar-
monics [2]. Because the algorithm relies on the original FFT only (without decima-
tion), it has trouble with pitches below middle C, due to the lack of resolution in
the lower part of the useful range.

A final remark on sound preprocessing: For purposes of this project, we may well
be content with the BQFT family of algorithms for “efficient” spectral analysis.
But it is possible that greater attention needs to be given to a more detailed
understanding of the human ear. (See [1] for a recent review of cochlear models).
Such concerns had until recently been excluded from serious consideration in our
system, partly because of the substantial computational burden of realistic cochlear
models. However, an accurate model of the human ear may soon become available
in hardware implementation that makes its use practical [29]. We have begun some
experiments comparing the information provided by our BQFT front-end with that
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given by Richard Lyon’s model. Unfortunately, at the time of this writing, the
results are not yet available. In any case, for the time being, the plan is to rely on
the BQFT for the initial audio transform.

Acoustic Source Formation

Source segregation is an ill-named problem. When attempting to “separate”
sources, the actual emphasis is on “grouping” subsets of clues in order to form
coherent acoustic images.

Intuitions backed up by psychoacoustic research suggest that both horizontal
(time-axis) grouping and vertical (frequency-axis) grouping of acoustic elements
play important roles. Another important element is the recognition of previously
encountered sources. It thus appears that reliable identification (including the
determination of pitch, loudness, timbral identity, etc.) stems from the interaction
between grouping processes and memory processes. The more refined memory
processes, which support adaptation, learning and prediction, are discussed in the
next section.

The approach for source segregation involves an initial segmentation. Time-
domain cues are used, but abrupt spectral change also causes event detection. This
is followed, first by the tracing of spectral lines, and next by grouping processes that
attempt to assign spectral lines to source labels according to the coherent behavior

of sub-groups of lines (partials). Criteria for coherence are expressed in the grouping
rules. '

To put it another way, initial processing breaks up the data into time slices and
frequency bins, resulting in a large number of small cells. The task is then to regroup
these into one or more coherent acoustic images, together with some background
noise. Instantaneous energy peaks found in the original frequency domain transform
must be grouped both in time and in frequency to form an image. Steps towards
forming coherent images include horizontal grouping resulting in spectral lines and
vertical grouping resulting in harmonic sets.

The first and last of the grouping rule sets operate horizontally. The others are
vertical, allowing the building of sources on the basis of coherent patterns in the
amplitude and frequency behavior (as functions of time) of the spectral lines. One
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must decide whether a source arises as a by-product of the emergence of a pattern

of coherence, or if it claims lines (partials) on the basis of mutual coherence.

The hypothesis that a new source is present may be triggered by one of two
criteria. The first is a transient in the global amplitude envelope. The second is
activity in any frequency channel that appears incoherent (largely uncorrelated)
with its recent activity or with activity in adjacent channels. Once a source is
hypothesized, it begins to make claims on existing spectral lines, starting with ones
appearing in the temporal vicinity of its initiation. It makes claims based on the
simultaneous grouping criteria. The strength of the claim depends on the degree to
which the line in question fits with the ensemble labeled by the source. Thus each
line may have several weighted claims on it as a partial of the existing hypothesized
sources [7].

In some cases, modeling can reduce the amount of computation by setting up
expectations about reasonable continuation of the present state of the world. In

so doing, constraints are formed on possible interpretations of the present acoustic
situation.

The first series of rules address the horizontal grouping of peaks into spectral
lines. The next set of rules serves to group spectral lines into sources (vertical
linking of partials). Another set of horizontal grouping rules serves to group source
events into streams exhibiting continuity of sources. These rules are derived from
work in human auditory organization [6, 32, 33, 34]. The latter set is actually wide
open to the influence of other principles, as will be discussed later.

e Partial Following (Horizontal Grouping).

This procedure has decision-making on both local and global scales of time and
frequency. Locally, one assumes that there is a certain amount of inertia in the
behavior of a component frequency: frequencies do not generally make sudden
jumps or changes in direction. Finding a coherence discrepancy in the following
of a spectral line may provoke a more fine-grained acoustic analysis and propose
some reasonable possibilities, thus constraining the breadth of the search necessary
to resolve the problem. For example, once a component is labeled as a partial of a
given source, it is most likely that its variation in frequency and amplitude will be
correlated with the behavior of the ensemble of partials believed to comprise that
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source. This, in effect, constitutes a constraining feedback mechanism from higher
to lower levels of decision making. This level of operation is more important once
a view of the world is constructed and is being monitored for change.

e Amplitude modulation behavior [6, 14, 47]

Partials of same source grow, sustain and decay in a coherent fashion; this includes
the principle of synchronicity which states that partials from the same source start
at approximately the same time. A good rule of thumb for instruments might be
that anything occurring within a group spread of 25 msec or less can be considered
as synchronous.

e Frequency modulation behavior [33, 34].

Partials of the same source change in frequency in a coherent fashion (maintaining
constant ratios among themselves) in sustaining forced-vibration systems once stability
is established. One needs to verify the parallelism of frequency trajectories, in the
original form and also after removing vibrato, if any.

e Resonance structure behavior (48, 26, 34].

Low frequency FM-AM coupling gives an indication of resonance behavior which
varies in a coherent fashion for a given source. These structures generally vary
more slowly than the frequencies themselves, making them accessible to analysis.

Deducing aspects of the resonance structure provides a handle on the identity of
the source.

e Frequency structure characterization (Vertical Grouping).

Musical sources are partly characterized by the frequency and amplitude of
partials. Specific structures are associated with struck or plucked strings, and with
tuned metal and wood objects. If harmonic, these structures may modulate. Severe

modulation in the amplitudes of the components will be present with inharmonic
sources.

e Spatial location.

Partials of the same source come from a location that is either fixed or slowly
moving, compared to sound propagation. This is only included for completeness —
we are planning to use a single input channel, omitting the development of a stereo

localization model; other spatial clues are too unreliable for analysis purposes.



3 PROJECT DESCRIPTION Page 23

e Source Continuity [5, 8, 32]

The events emitted by a given source continue to behave in more or less the
same way, i.e. the ensemble properties do not change too suddenly. This principle
may be understood as the simple numeric continuity over short-term spans. This
understanding may then expand to to a variety of pattern matching and learning
rules (cf. next section) representing an intelligent memory-based predictive process.
Finally, the latter formulation is clearly open to arbitrarily varied semantic con-
straints. Thus we have reached the zone at which a properly acoustic model gives
way to learning and cognition.

Adaptation and Learning

It was argued earlier that “training” can be an attractive alternative to building
massive knowledge into a system. When possible, one may want to use algorithms
capable to “tune” quickly into the essential properties of a given situation, using
a spectrum of adaptation techniques. From another front, psychoacoustic studies
point to the importance of intelligent memory processes that range from following
low-level parametric continuity to higher forms of predictability based on larger
patterns.

In response to these felt needs, we postulate a “learning co-processor” which
regroups a potentially large and varied collection of learning agents. The co-
processor metaphor implies (at least partial) asynchrony with the problem-solving
activity, but it does not exclude further parallelism among learning agents, each of
which is loosely supervised by a critic (or “coach”) which selects training goals and
training data for the agent.

There are several classes of agents, and great disparities in their levels of com-
plexity. Classical pattern-matching agents may account for the bulk of the processes
that operate below the “event” level, including short-term temporal continuity and
the recognition of qualities such as timbre. Other agents look for higher-level pat-
terns in a level of representation where discrete events are already formed and
at least partially labeled. Yet other agents may look both above and below the
event level in order to correlate discrete qualities with more continuous, lower-level
features.
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Adaptive algorithms and learning methods suited for the various contexts in-
clude parametric techniques of optimization, clustering and numerical taxonomy;
symbolic techniques related to grammatical inference, string matching, and con-
cept formation; and hybrid techniques which, like conceptual clustering, combine
parametric and structural views. [35, 20, 27].

It is reasonable to expect that hybrid techniques are important for perception, as
well as they are bound to play an increasing role in learning research, as they rep-
resent a more realistic and generally useful model of learning situations. Recently,
several authors have commented on the fact that a more genuine kind of learning
problem results from operating in the context of a perception task. Partridge [45]
says: “Consider the Al paradigm of rule-learning but in the empirical world rather
than an abstracted concept characterized by drastically pruned descriptions. The
act of describing removes most [...] attributes of each event before the learning
algorithm sets to work - it is fed predigested reality... ”. Phelps and Musgrove [46]
“.. but the most difficult part of the work has already
been accomplished when the relevant features for rule formation have been found.”
They use 2D visual perception problem for studying realistic learning situations.
Fisher and Langley, while presenting their approach to conceptual clustering, in-
troduce it as a hybrid method of the kind just discussed, a cross between numerical
taxonomy and concept learning [20].

express a similar opinion:

There are now good reviews of the range of methods available for adaptation
and learning (see, e.g., [35]). We plan to examine the role that such algorithms
(and others to be developed) can play in perception, guided by the various needs
of acoustic grouping processes leading to source formation. This may not be an
easy task, but it appears that the level of maturation reached by learning and
perception research should now permit a smooth junction. In fact, it would seem
that the perception context in which this research operates, as well as the specific
domains considered for experimentation, create an ideal environment for a thorough
investigation of the synergy of perception, memory and learning.

In a situation so full of exciting ramifications, it is important to keep in mind
the task goal, which is to reliably and accurately parse composite sounds into its
component sources.
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