
Music 3SI:
Introduction to

Audio/Multimedia App.
Programming

Week #5 - 5/5/2006
CCRMA, Department of Music

Stanford University

1

5/5/06, Music 3SI, CCRMA, Stanford

Last Week...

• IDE (briefly)

• VST Plug-in

• Assignment 1 hints

2

5/5/06, Music 3SI, CCRMA, Stanford

Today...

• Cocoa

• GUI programming

• Demo: GUI-based Stk app.

! Xcode

! Interface Builder

! StkX

3

5/5/06, Music 3SI, CCRMA, Stanford

Cocoa

4

5/5/06, Music 3SI, CCRMA, Stanford

Wikipedia - Cocoa

“Cocoa is the dried and partially fermented

fatty seed of the cacao tree from which

chocolate is made”
“Uses of cocoa are numerous.

It may be used in cakes, creams, drinks,

toppings.”

“Cocoa was a development environment

created by Apple Computer in the mid- to

late-1990s that allowed children to

develop applications and web sites.”

“This project is particularly difficult to find

information on, because the same

company (Apple) has since released

another, much more important Cocoa.”

The project was cut by Steve Jobs in 1998.http://en.wikipedia.org/wiki/Cocoa_(API)

“Slavery has commonly been used in its

production...”

5

5/5/06, Music 3SI, CCRMA, Stanford

Why Cocoa?

• Cocoa is well thought out
with highly consistent APIs

• Provides a very rich starting point
for exploring application design

• Shows “real-world” implementations
of OO design patterns

6

5/5/06, Music 3SI, CCRMA, Stanford

Cocoa Applications

Mail Safari iChat

Photo Booth Automator iPhoto

Keynote Aperture IB

7

5/5/06, Music 3SI, CCRMA, Stanford

Cocoa Is Many Things

• It’s a runtime environment

! Dynamic dispatch is fundamental

• It’s a user interface framework

! Events, views, buttons, sliders and so on

• It’s a development framework

! A collection of reusable and extendable objects

8

5/5/06, Music 3SI, CCRMA, Stanford

Using Cocoa

• GUI (Graphical User Interface) applications

• Command-line tools

• Plug-ins

• Even device drivers!

9

5/5/06, Music 3SI, CCRMA, Stanford

Mach
BSD 4.4
IOKit

File Systems

Open Source

Core Foundation

Carbon Core

CFNetwork

Web Services

Quartz (2D)
OpenGL (3D)
QuickTime

Cocoa

Carbon

Classic

Java

Mac OS X Architecture

Kernel - Darwin

Core Services

Application Services

Frameworks

10

5/5/06, Music 3SI, CCRMA, Stanford

Cocoa Architecture

Frameworks

Application Kit
Aqua Elements
Application Runtime
UI Widgets

Foundation Kit
Utility Classes
Collection Classes
Object Wrappers

for OS Services

11

5/5/06, Music 3SI, CCRMA, Stanford

Event-Driven Applications

• AppKit manages the flow of events

• Your code is invoked automatically as the
user interacts with the application

• You write small chunks of code that handle
specific events

• Simple, easy-to-use model

12

5/5/06, Music 3SI, CCRMA, Stanford

Basic Tools

• Xcode

! coding

! app-level specifications

! building

! debugging

• Interface Builder

! user-interface design

! basic connections between objects

13

5/5/06, Music 3SI, CCRMA, Stanford

Xcode

• “Wizard” helps you create new projects

! no Harry Potter this

• Best to stick with Xcode-defaults
in new projects for now

• Don’t let the complexity overwhelm you

14

5/5/06, Music 3SI, CCRMA, Stanford

Xcode - A Development

• Edit your code

• Specify how your code is compiled
and linked

• Build and run your code

• Debug your code

15

5/5/06, Music 3SI, CCRMA, Stanford

Interface Builder

• Lays out and connects user-interface
elements

! Target/action

! Outlets

! Bindings

• Edits “nib” files

! A nib file a collection of archived objects
(your user interface) stored on disk

16

5/5/06, Music 3SI, CCRMA, Stanford

OOP

17

5/5/06, Music 3SI, CCRMA, Stanford

Objects: Evolution of C

• In C, the building blocks are structures and
functions

• OOP provides an abstraction over these

• A way of organizing structures and
functions into self-contained units

• Lets you group functions with the data they
operate on

18

5/5/06, Music 3SI, CCRMA, Stanford

OOP Vocabulary

• Class:

! defines the grouping of data and code (“type”)

• Instance:

! a specific allocation of a class

• Method:

! a “function” that an object knows how to perform

• Instance Variable:

! a specific piece of data belonging to an object

19

5/5/06, Music 3SI, CCRMA, Stanford

Encapsulation

• Keeps implementation details private

• Forces a clearly defined interface
to access data or functionality

• Interface is the public “contract” or API

• Implementation can be changed
without affecting callers

20

5/5/06, Music 3SI, CCRMA, Stanford

Polymorphism

• Different objects can respond to the same
methods in specific ways

• Because data is bound to functionality,
methods know what to operate on

• Simplifies interfaces by using consistent
terminology

21

5/5/06, Music 3SI, CCRMA, Stanford

Inheritance

• A class is always derived from a “base”
class

• Subclasses can:

! Add new variables or methods

! Replace method implementations

! Refine or extend inherited methods

• Code that is common among objects
can be factored to a superclass for reuse

22

5/5/06, Music 3SI, CCRMA, Stanford

Inheritance

NSObject

NSControl

NSButton NSTextField

Superclass

Subclass

Memory
management

Generic
behaviors

Specific
behaviors

23

5/5/06, Music 3SI, CCRMA, Stanford

More OOP Info?

• Tons of books and articles on OOP

• Most Java or C++ book have OOP
introductions

• ADC document

! http://developer.apple.com/documentation/
Cocoa/Conceptual/ObjectiveC

24

5/5/06, Music 3SI, CCRMA, Stanford

Objective-C

25

5/5/06, Music 3SI, CCRMA, Stanford

Objective-C

• A very simple language, but some new
syntax

• Strict superset of C

• Single inheritance

! classes inherit from one and only one superclass

• Dynamic runtime

26

5/5/06, Music 3SI, CCRMA, Stanford

Why ObjC?

• Exposure to other languages is always
good

• A language focused on simplicity
and the elegance of OO design

• A data point to compare with designs of
C, C++ and Java

27

5/5/06, Music 3SI, CCRMA, Stanford

@interface

{

}

@end

Class Interfaces

 char *name;

 int age;

 float weight;

typedef struct

{

} Person;

void printName(Person *person);- (void)printName;

Person:NSObject

Instance
Variables

Methods

28

5/5/06, Music 3SI, CCRMA, Stanford

- (void)printName

Class Implementations

name);

Person
void printName(Person *person)

{

 printf (“Name: %s\n”,

}
person->name);

@implementation

@end

29

5/5/06, Music 3SI, CCRMA, Stanford

ObjC Files

@interface Person:NSObject
{
 char *name;
 int age;
 float weight;
}
- (void)printName;
@end

Person.h

@implementation Person
- (void)printName
{
 printf (stderr,
 "Name: %s\n", name);
}
@end

Person.m

30

5/5/06, Music 3SI, CCRMA, Stanford

Messaging Syntax

• Calling a method called “doSomething”

[];

C Function: doSomething(anObject);

C++ or Java: anObject.doSomething();

ObjC: anObject doSomething

31

5/5/06, Music 3SI, CCRMA, Stanford

Messaging Syntax

• Calling a method “divide” with arguments

C Function: divide(arg1, arg2);

C++ or Java: obj.divide(arg1, arg2);

[obj]; arg2 by:ObjC: divide: arg1

- (float)divide:(float)arg1 by:(float)arg2;

Selector: divide:by:

32

5/5/06, Music 3SI, CCRMA, Stanford

Types of Methods

• Instance methods operate on a specific
object

• Class methods are global and have no
specific data associated with them

• “-” denotes instance method
! - (void)printName;

• “+” denotes class method
! + (void)alloc;

33

5/5/06, Music 3SI, CCRMA, Stanford

Using Classes

main () {

}

Person *person;

#include “Person.h”

person = [Person alloc];

[person printName];

person = [[Person alloc] init];
[person init];

34

5/5/06, Music 3SI, CCRMA, Stanford

“self” and “super”

• Methods have an implicit local variable
named “self” (like “this” in C++)
! - (void)doSomething {

 [self doSomethingElseFirst];

 ...

 }

• Also have access to “super” methods
! - (void)doSomething {

 [super doSomething];

 ...

 }

35

5/5/06, Music 3SI, CCRMA, Stanford

String Constants

• In C constant strings are
! “simple”

• In ObjC, constant strings are
! @“just as simple”

• Constant strings are NSString instances

36

5/5/06, Music 3SI, CCRMA, Stanford

More ObjC Info?

• Cocoa Programming for Mac OS X (Ch. 3)

! by Aaron Hillegass

• ADC document

! http://developer.apple.com/documentation/
Cocoa/Conceptual/ObjectiveC

• Concepts in Objective C are applicable to
any other OOP language

37

5/5/06, Music 3SI, CCRMA, Stanford

Cocoa Application

Design

38

5/5/06, Music 3SI, CCRMA, Stanford

Basic App Functionality

• Save / Load documents

• Open multiple files simultaneously

! stagger windows nicely to keep things tidy

! offer good default document names

• Keep track of changes user has made

! let them undo and redo changes

! prompt to save or discard when closing

• Double click on documents in Finder

39

5/5/06, Music 3SI, CCRMA, Stanford

What Cocoa Gives Us

• Look and feel similar to other applications

• Object oriented access to system services

• Lots of building blocks to tinker with

• Strong design paradigms to follow

40

5/5/06, Music 3SI, CCRMA, Stanford

Model, View, & Controller

• Breaks an application into 3 main
categories

! model:
manages the app data and state, not concerned
with UI or presentation

! view:
displays the model objects to the user

! controller:
coordinates the model and the view, keeps the
view updated when model changes, etc.
Typically where app “logic” is.

41

5/5/06, Music 3SI, CCRMA, Stanford

Model, View, & Controller

• Coordinates between Model & View

Model View

Controller

Contains Data Presents Data

API
boundaries

42

