
ar
X

iv
:q

ua
nt

-p
h/

99
04

05
0v

1
 1

3
A

pr
 1

99
9

In C. Freksa, ed., Foundations of Computer Science: Potential - Theory - Cognition

Lecture Notes in Computer Science, pp. 201-208, Springer, 1997.

A Computer Scientist’s View of

Life, the Universe, and Everything

Jürgen Schmidhuber

IDSIA, Corso Elvezia 36, CH-6900-Lugano, Switzerland

juergen@idsia.ch - http://www.idsia.ch/∼juergen

Abstract

Is the universe computable? If so, it may be much cheaper in terms of

information requirements to compute all computable universes instead of

just ours. I apply basic concepts of Kolmogorov complexity theory to the

set of possible universes, and chat about perceived and true randomness,

life, generalization, and learning in a given universe.

Preliminaries

Assumptions. A long time ago, the Great Programmer wrote a program
that runs all possible universes on His Big Computer. “Possible” means “com-
putable”: (1) Each universe evolves on a discrete time scale. (2) Any universe’s
state at a given time is describable by a finite number of bits. One of the many
universes is ours, despite some who evolved in it and claim it is incomputable.

Computable universes. Let TM denote an arbitrary universal Turing
machine with unidirectional output tape. TM ’s input and output symbols are
“0”, “1”, and “,” (comma). TM ’s possible input programs can be ordered
alphabetically: “” (empty program), “0”, “1”, “,”, “00”, “01”, “0,”, “10”, “11”,
“1,”, “,0”, “,1”, “,,”, “000”, etc. Let Ak denote TM ’s k-th program in this list.
Its output will be a finite or infinite string over the alphabet { “0”,“1”,“,”}. This
sequence of bitstrings separated by commas will be interpreted as the evolution
Ek of universe Uk. If Ek includes at least one comma, then let U l

k denote the
l-th (possibly empty) bitstring before the l-th comma. U l

k represents Uk’s state
at the l-th time step of Ek (k, l ∈ {1, 2, . . . , }). Ek is represented by the sequence
U1

k , U2
k , . . . where U1

k corresponds to Uk’s big bang. Different algorithms may
compute the same universe. Some universes are finite (those whose programs

1

http://arxiv.org/abs/quant-ph/9904050v1
http://www.idsia.ch/~juergen

cease producing outputs at some point), others are not. I don’t know about
ours.

TM not important. The choice of the Turing machine is not important.
This is due to the compiler theorem: for each universal Turing machine C
there exists a constant prefix µC ∈ { “0”,“1”,“,”}∗ such that for all possible
programs p, C’s output in response to program µCp is identical to TM ’s output
in response to p. The prefix µC is the compiler that compiles programs for TM
into equivalent programs for C.

Computing all universes. One way of sequentially computing all com-
putable universes is dove-tailing. A1 is run for one instruction every second
step, A2 is run for one instruction every second of the remaining steps, and so
on. Similar methods exist for computing many universes in parallel. Each time
step of each universe that is computable by at least one finite algorithm will
eventually be computed.

Time. The Great Programmer does not worry about computation time.
Nobody presses Him. Creatures which evolve in any of the universes don’t
have to worry either. They run on local time and have no idea of how many
instructions it takes the Big Computer to compute one of their time steps, or
how many instructions it spends on all the other creatures in parallel universes.

Regular and Irregular Universes

Finite histories. Let | x | denote the number of symbols in string x. Let the
partial history Si,j

k denote the substring between the i-th and the j-th symbol

of Ek, j > i. Si,j
k is regular (or compressible, or non-random) if the shortest

program that computes Si,j
k (and nothing else) and halts consists of less than

| Si,j
k | symbols. Otherwise Si,j

k is irregular (incompressible, random).
Infinite histories. Similarly, if some universe’s evolution is infinite, then

it is compressible if it can be computed by a finite algorithm.
Most universes are irregular. The evolutions of almost all universes are

incompressible. There are 3n strings of size n, but less than (1/3)c ∗ 3n <<
3n algorithms consisting of less than n − c symbols (c is a positive integer).
And for the infinite case, we observe: the number of infinite symbol strings is
incountable. Only a negligible fraction (namely countably many of them) can
be computed by finite programs.

The few regular universes. There are a few compressible universes which
can be computed by very short algorithms, though. For instance, suppose that
some Uk evolves according to physical laws that tell us how to compute next
states from previous states. All we need to compute Uk’s evolution is U1

k and
the algorithm that computes U i+1

k from U i
k (i ∈ {1, 2, . . . , }).

Noise? Apparently, we live in one of the few highly regular universes. Each
electron appears to behave the same way. Dropped breads of butter regularly hit

2

the floor, not the ceiling. There appear to be deviations from regularity, how-
ever, embodied by what we call noise. Although certain macroscopic properties
(such as pressure in a gas container) are predictable by physicists, microscopic
properties (such as precise particle positions) seem subject to noisy fluctua-
tions. Noise represents additional information absent in the original physical
laws. Uniform noise is incompressible — there is no short algorithm that com-
putes it and nothing else.

Noise does not necessarily prevent compressibility. Laws currently
used by physicists to model our own universe model noise. Based on Schrödinger’s
equation, they are only conditional probability distributions on possible next
states, given previous states. The evolution of Schrödinger’s wave function
(WF) itself can be computed by a very compact algorithm (given the quantiz-
ability assumptions in the first paragraph of this paper) — WF is just a short
formula. Whenever WF collapses in a particular way, however, the resulting
actual state represents additional information (noise) not conveyed by the al-
gorithm describing the initial state (big bang) and WF. Still, since the noise
obviously is non-uniform (due to the nature of the physical laws and WF), our
universe’s evolution so far is greatly compressible. How? Well, there is a com-
paratively short algorithm that simply codes probable next states by few bits,
and unlikely next states by many bits, as suggested by standard information
theory [8].

More regularity than we think? The longer the shortest program com-
puting a given universe, the more random it is. To certain observers, certain
universes appear partly random although they aren’t. There may be at least
two reasons for this:

1. Shortest algorithm cannot be found. It can be shown that there is
no algorithm that can generate the shortest program for computing arbitrary
given data on a given computer [2, 9, 1]. In particular, our physicists cannot
expect to find the most compact description of our universe.

2. Additional problems of the Heisenberg type. Heisenberg tells us
that we cannot even observe the precise, current state of a single electron, let
alone our universe. In our particular universe, our actions seem to influence our
measurements in a fundamentally unpredictable way. This does not mean that
there is no predictable underlying computational process (whose precise results
we cannot access). In fact, rules that hold for observers who are part of a given
universe and evolved according to its laws need not hold outside of it. There
is no reason to believe that the Great Programmer cannot dump a universe
and examine its precise state at any given time, just because the creatures that
evolved in it cannot because their measurements modify their world.

How much true randomness? Is there “true” randomness in our uni-
verse, in addition to the simple physical laws? True randomness essentially
means that there is no short algorithm computing “the precise collapse of the
wave function”, and what is perceived as noise by today’s physicists. In fact, if
our universe was infinite, and there was true randomness, then it could not be

3

computed by a finite algorithm that computes nothing else. Our fundamental
inability to perceive our universe’s state does not imply its true randomness,
though. For instance, there may be a very short algorithm computing the po-
sitions of electrons lightyears apart in a way that seems like noise to us but
actually is highly regular.

All Universes are Cheaper Than Just One

In general, computing all evolutions of all universes is much cheaper in terms of
information requirements than computing just one particular, arbitrarily chosen
evolution. Why? Because the Great Programmer’s algorithm that systemati-
cally enumerates and runs all universes (with all imaginable types of physical
laws, wave functions, noise etc.) is very short (although it takes time). On the
other hand, computing just one particular universe’s evolution (with, say, one
particular instance of noise), without computing the others, tends to be very
expensive, because almost all individual universes are incompressible, as has
been shown above. More is less!

Many worlds. Suppose there is true (incompressible) noise in state transi-
tions of our particular world evolution. The noise conveys additional information
besides the one for initial state and physical laws. But from the Great Program-
mer’s point of view, almost no extra information (nor, equivalently, a random
generator) is required. Instead of computing just one of the many possible evo-
lutions of a probabilistic universe with fixed laws but random noise of a certain
(e.g., Gaussian) type, the Great Programmer’s simple program computes them
all. An automatic by-product of the Great Programmer’s set-up is the well-
known “many worlds hypothesis”, c©Everett III. According to it, whenever our
universe’s quantum mechanics allows for alternative next paths, all are taken
and the world splits into separate universes. From the Great Programmer’s
view, however, there are no real splits — there are just a bunch of different al-
gorithms which yield identical results for some time, until they start computing
different outputs corresponding to different noise in different universes.

From an esthetical point of view that favors simple explanations of every-
thing, a set-up in which all possible universes are computed instead of just ours
is more attractive. It is simpler.

Are we Run by a Short Algorithm?

Since our universes’ history so far is regular, it by itself could have been com-
puted by a relatively short algorithm. Essentially, this algorithm embodies the
physical laws plus the information about the historical noise. But there are
many algorithms whose output sequences start with our universe’s history so
far. Most of them are very long. How likely is it now that our universe is indeed

4

run by a short algorithm? To attempt an answer, we need a prior probability
on the possible algorithms. The obvious candidate is the “universal prior”.

Universal prior. Define PU (s), the a priori probability of a finite symbol
string s (such as the one representing our universe’s history so far), as the
probability of guessing a halting program that computes s on a universal Turing
machine U . Here, the way of guessing is defined by the following procedure:
initially, the input tape consists of a single square. Whenever the scanning head
of the program tape shifts to the right, do: (1) Append a new square. (2)
With probability 1

3 fill it with a “0”; with probability 1
3 fill it with a “1”; with

probability 1
3 fill it with a “,”. Programs are “self-delimiting” [3, 1] — once U

halts due to computations based on the randomly chosen symbols (the program)
on its input tape, there won’t be any additional program symbols. We obtain

PU (s) =
∑

p:U computes s from p and halts

(
1

3
)|p|.

Clearly, the sum of all probabilities of all halting programs cannot exceed 1 (no
halting program can be the prefix of another one). But certain programs may
lead to non-halting computations.

Under different universal priors (based on different universal machines),
probabilities of a given string differ by no more than a constant factor inde-
pendent of the string size, due to the compiler theorem (the constant factor
corresponds to the probability of guessing a compiler). This justifies the name
“universal prior,” also known as Solomonoff-Levin distribution.

Dominance of shortest programs. It can be shown (the proof is non-
trivial) that the probability of guessing any of the programs computing some
string and the probability of guessing one of its shortest programs are essen-
tially equal (they differ by no more than a constant factor depending on the
particular Turing machine). The probability of a string is dominated by the
probabilities of its shortest programs. This is known as the “coding theorem”
[3]. Similar coding theorems exist for the case of non-halting programs which
cease requesting additional input symbols at a certain point.

Now back to our question: are we run by a relatively compact algorithm?
So far our universe could have been run by one — its history could have been
much noisier and thus much less compressible. Hence universal prior and cod-
ing theorems suggest that the algorithm is indeed short. If it is, then there
will be less than maximal randomness in our future, and more than vanishing
predictability. We may hope that our universe will remain regular, as opposed
to drifting off into irregularity.

Life in a Given Universe

Recognizing life. What is life? The answer depends on the observer. For
instance, certain substrings of Ek may be interpretable as the life of a living

5

thing Lk in Uk. Different observers will have different views, though. What’s
life to one observer will be noise to another. In particular, if the observer is
not like the Great Programmer but also inhabits Uk, then its own life may be
representable by a similar substring. Assuming that recognition implies relating
observations to previous knowledge, both Lk’s and the observer’s life will have
to share mutual algorithmic information [1]: there will be a comparatively short
algorithm computing Lk’s from the observer’s life, and vice versa.

Of course, creatures living in a given universe don’t have to have any idea
of the symbol strings by which they are represented.

Possible limitations of the Great Programmer. He does not need not
be very smart. For instance, in some of His universes phenomena will appear
that humans would call life. The Great Programmer won’t have to be able to
recognize them.

The Great Programmer reappears. Several of the Great Programmer’s
universes will feature another Great Programmer who programs another Big
Computer to run all possible universes. Obviously, there are infinite chains of
Great Programmers. If our own universe allowed for enough storage, enough
time, and fault-free computing, then you could be one of them.

Generalization and Learning

In general, generalization is impossible. Given the history of a particu-
lar universe up to a given time, there are infinitely many possible continuations.
Most of these continuations have nothing to do with the previous history. To see
this, suppose we have observed a partial history Si,j

k (the substring between the
i-th and the j-th symbol of Ek). Now we want to generalize from previous expe-

rience to predict Sj+1,l
k , l > j. To do this, we need an algorithm that computes

Sj+1,l
k from Si,j

k (Si,j
k may be stored on a separate, additional input tape for an

appropriate universal Turing machine). There are 3l−j possible futures. But for
c < l− j, there are less than (1/3)c ∗ 3l−j algorithms with less than l− j− c bits
computing such a future, given Si,j

k . Hence in most cases the shortest algorithm
computing the future, given the past, won’t be much shorter than the shortest
algorithm computing the future from nothing. Both will have about the size of
the entire future. In other words, the mutual algorithmic information between
history and future will be zero. As a consequence, in most universes (those
that can be computed by long algorithms only), successful generalization from
previous experience is not possible. Neither is inductive transfer. This simple
insight is related to results in [10].

Learning. Given the above, since learning means to use previous experi-
ence to improve future performance, learning is possible only in the few regular
universes (no learning without compressibility). On the other hand, regularity
by itself is not sufficient to allow for learning. For instance, there is a highly
compressible and regular universe represented by “,,,,,,,...”. It is too simple to

6

allow for processes we would be willing to call learning.
In what follows, I will assume that a regular universe is complex enough

to allow for identifying certain permanent data structures of a general learner
to be described below. For convenience, I will abstract from bitstring models,
and instead talk about environments, rewards, stacks etc. Of course, all these
abstract concepts are representable as bitstrings.

Scenario. In general, the learner’s life is limited. To it, time will be impor-
tant (not to the Great Programmer though). Suppose its life in environment E
lasts from time 0 to unknown time T . In between it repeats the following cycle
over and over again (A denotes a set of possible actions): select and execute
a ∈ A with probability P (a | E), where the modifiable policy P is a variable,
conditional probability distribution on the possible actions, given current E .
Action a will consume time and may change E and P . Actions that modify
P are called primitive learning algorithms (PLAs). P influences the way P is
modified (“self-modification”). Policy modification processes (PMPs) are action
subsequences that include PLAs. The i-th PMP in system life is denoted PMPi,
starts at time si > 0, ends at ei < T , ei > si, and computes a sequence of P -
modifications denoted Mi. Both si and ei are computed dynamically by special
instructions in A executed according to P itself: P says when to start and end
PMPs.

Occasionally E provides real-valued reward. The cumulative reward obtained
in between time 0 and time t > 0 is denoted by R(t) (where R(0) = 0). At each
PMP-start si the learner’s goal is to use experience to generate P -modifications
to accelerate future reward intake. Assuming that reward acceleration is possible
at all, given E and A, how can the learner achieve it? I will describe a rather
general way of doing so.

The success-story criterion. Each PMP-start time si will trigger an
evaluation of the system’s performance so far. Since si is computed according
to P , P incorporates information about when to evaluate itself. Evaluations
may cause policy modifications to be undone (by restoring the previous policy
— in practical implementations, this requires to store previous values of modified
policy components on a stack). At a given PMP-start t in the learner’s life, let
V (t) denot the set of those previous si whose corresponding Mi have not been
undone yet. If V (t) is not empty, then let vi (i ∈ {1, 2, . . . , | V (t) |} denote
the i-th such time, ordered according to size. The success-story criterion SSC
is satisfied if either V (t) is empty (trivial case) or if

R(t)

t
<

R(t) − R(v1)

t − v1
<

R(t) − R(v2)

t − v2
< . . . <

R(t) − R(v|V (t)|)

t − v|V (t)|
.

SSC essentially says that each surviving P -modification corresponds to a long
term reward acceleration. Once SSC is satisfied, the learner continues to act
and learn until the next PMP-start. Since there may be arbitrary reward de-
lays in response to certain action subsequences, it is important that A indeed

7

includes actions for delaying performance evaluations — the learner will have
to learn when to trigger evaluations. Since the success of a policy modification
recursively depends on the success of later modifications for which it is setting
the stage, the framework provides a basis for “learning how to learn”. Unlike
with previous learning paradigms, the entire life is considered for performance
evaluations. Experiments in [7, 6] show the paradigm’s practical feasibility. For
instance, in [7] A includes an extension of Levin search [4] for generating the
PMPs.

Philosophy

Life after death. Members of certain religious sects expect resurrection
of the dead in a paradise where lions and lambs cuddle each other. There is a
possible continuation of our world where they will be right. In other possible
continuations, however, lambs will attack lions.

According to the computability-oriented view adopted in this paper, life after
death is a technological problem, not a religious one. All that is necessary for
some human’s resurrection is to record his defining parameters (such as brain
connectivity and synapse properties etc.), and then dump them into a large
computing device computing an appropriate virtual paradise. Similar things
have been suggested by various science fiction authors. At the moment of this
writing, neither appropriate recording devices nor computers of sufficient size
exist. There is no fundamental reason, however, to believe that they won’t exist
in the future.

Body and soul. More than 2000 years of European philosophy dealt with
the distinction between body and soul. The Great Programmer does not care.
The processes that correspond to our brain firing patterns and the sound waves
they provoke during discussions about body and soul correspond to computable
substrings of our universe’s evolution. Bitstrings representing such talk may
evolve in many universes. For instance, sound wave patterns representing no-
tions such as body and soul and “consciousness” may be useful in everyday lan-
guage of certain inhabitants of those universes. From the view of the Great Pro-
grammer, though, such bitstring subpatterns may be entirely irrelevant. There
is no need for Him to load them with “meaning”.

Talking about the incomputable. Although we live in a computable
universe, we occasionally chat about incomputable things, such as the halting
probability of a universal Turing machine (which is closely related to Gödel’s
incompleteness theorem). And we sometimes discuss inconsistent worlds in
which, say, time travel is possible. Talk about such worlds, however, does not
violate the consistency of the processes underlying it.

Conclusion. By stepping back and adopting the Great Programmer’s point
of view, classic problems of philosophy go away.

8

Acknowledgments

Thanks to Christof Schmidhuber for interesting discussions on wave functions,
string theory, and possible universes.

References

[1] G.J. Chaitin. Algorithmic Information Theory. Cambridge University
Press, Cambridge, 1987.

[2] A.N. Kolmogorov. Three approaches to the quantitative definition of in-
formation. Problems of Information Transmission, 1:1–11, 1965.

[3] L. A. Levin. Laws of information (nongrowth) and aspects of the foundation
of probability theory. Problems of Information Transmission, 10(3):206–
210, 1974.

[4] L. A. Levin. Randomness conservation inequalities: Information and in-
dependence in mathematical theories. Information and Control, 61:15–37,
1984.

[5] J. Schmidhuber. Discovering neural nets with low Kolmogorov complexity
and high generalization capability. Neural Networks, 1997. In press.

[6] J. Schmidhuber, J. Zhao, and N. Schraudolph. Reinforcement learning with
self-modifying policies. In S. Thrun and L. Pratt, editors, Learning to learn.
Kluwer, 1997. To appear.

[7] J. Schmidhuber, J. Zhao, and M. Wiering. Shifting inductive bias
with success-story algorithm, adaptive Levin search, and incremental self-
improvement. Machine Learning, 26, 1997. In press.

[8] C. E. Shannon. A mathematical theory of communication (parts I and II).
Bell System Technical Journal, XXVII:379–423, 1948.

[9] R.J. Solomonoff. A formal theory of inductive inference. Part I. Information

and Control, 7:1–22, 1964.

[10] D. H. Wolpert. The lack of a priori distinctions between learning algo-
rithms. Neural Computation, 8(7):1341–1390, 1996.

9

