
Scheme-snd-lab1
This document assumes knowledge of the concepts in course documents scm1-data and scm2-iter. In
the examples below, you'll use scheme to make sounds. Instead of typing to guile in a terminal, code
development will happen in an editor (with parenthesis matching and code evaluation in the snd audio
environment). The very first time requires installation of some files. Do this once:

1. Open a terminal. Then change directory to: cd ~cc/220a/system
2. Run install script by writing in your terminal: guile -s install.scm
3. If you haven't already, create a ~/220a directoty: cd ~

mkdir 220
4. Copy scheme examples files into it: cd 220

cp -r ~cc/220a/scm .

After these steps you will have a new directory in your home directory called “scripts-220a-user”
which sets up tools for editing. And you will have a directory for working with 220a examples and
stashing your own versions as they accumulate during the course work. Change now to your scm/sine
subdirectory and type ls to list the contents of the directory. There should be several files. Then run
anjuta, a fully customizable integrated editor, writing in your terminal: anjuta &

You can open mutliple documents from the directory at this point. The rest of this document is aimed at
explaining the sine.scm file, but before that phase go through the 5 self-documenting tutorials called
minus-sine-0.scm through minus-sine-4.scm. These introductory files progressively approach the
features of scheme language and CM (Common Music) that will make the tones in sine.scm. To
evaluate the code in a file you're looking at, click on Edit: snd-eval (or directly Shift+$). That will
open a new snd window. If you don't yet see snd's guile listener window, click on View: Show listener.
The window which appears is a guile session where the code in your editor window has been evaluated.
Its current state contains any definitions that may have been specified in the code. You can continue to
interact by typing in it directly. In most cases, you will just observe the result, then close snd, edit your
code, and evaluate it again with changes. Make some simple changes and test them in each tutorial
example. You might want to make a copy of the file under a different name first, so do a File: Save As.
Two other operation hints: the editor automatically saves your edits when you evaluate. And you can
ask the editor to indent your code with Edit: scheme-indent (then reload and click in the window).

When you're comfortable with those, open and evaluate sine.scm, which creates 10 beeps of 0.1 sec
duration with a spacing of 0.2 secs between them. The beeps at 440 hz. go from the left channel to the
right channel, controlled by the azimuth parameter. The only difference between this example and the

earlier minus-sine-4.scm one is that the sine values are sent into the soundfile rather than printing to
the listener window. To do that we need one more unit generator in the list of ug's, so we've added
locsig which directs sound into the output and can vary the position, channel-wise. A good thing to try
is to go into a 4-ch studio and run this in a circle. All you need to change is the argument to CM's interp
function that goes to 90 degrees in num-beeps, instead put 270 degrees and up the number of clm-
channels to 4,
sine.scm

Bill Schottstaedt, snd author, says:
``Snd is a sound editor modelled loosely after Emacs and an old, sorely-missed PDP-10
sound editor named Dpysnd. It can accommodate any number of sounds each with any
number of channels, and can be customized and extended using either Guile or Ruby.''

In two-sines.scm file there are two sine waves of 5 seconds at a distance of two hz. Now the azimuth of
both is 45 degrees (sound comes at equal amplitude from both speakers). Remember that azimuth goes
from 0 (sound comes only from left speaker) to 90 (sound comes from right speaker).
two-sines.scm

You can evaluate again the resulting sound file. Playing it you should hear a 2 Hz beating effect. Have
a look in frequency domain by clicking on the f box (in the left corner). The default display is a single
slice of time transformed into spectra. Sometimes it will be more useful to see the sonogram: go to
Options and then click on Transform Options. By clicking on sonogram your right part of the snd
window will change to a sonogram view of the sound file, with time-varying spectra. Also you will
most likely see more if you specify that the transform should represent amplitude in dB and normalize.
You can zoom in on frequency axis by mousing under the 10000 label and scrolling up.

Open another scheme file with similar 2 hz difference in the tones is two-sine-stereo.scm and for this
you should be using headphones. What happens to the beating effect when the headphones are on
properly, and then when you hold the heaphones close together but in front of your nose?

Next, check out ~/220a/scm/impulse/click.scm and look for the differences in the structure of the
sound computation. Finally, study the file that combines two processes polyphonically, both sines and
clicks, ~/220a/scm/sine/two-sines-and-clicks.scm and have a look at its sonogram. Zoom in and out, in
frequency and time until you see a tic-tac-toe in spectra. Sines are the narrowest in frequency and clicks
are the narrowest in time. Why would a click contain all frequencies?

