CENTER FOR COMPUTER RESEARCH IN MUSIC AND ACOUSTICS
DECEMBER 1991

Department of Music
Report No. STAN-M-78

AN OBJECT-ORIENTED REAL-TIME SIMULATION
OF MUSIC PERFORMANCE USING
INTERACTIVE CONTROL

Lounette M. Dyer

CCRMA
DEPARTMENT OF MUSIC
Stanford University
Stanford, California 94305

A DISSERTATION
SUBMITTED TO THE COMMITTEE ON GRADUATE STUDIES
OF THE CALIFORNIA INSTITUTE OF TECHNOLOGY
IN PARTIAL FULFILLMENT OF THE REQUIREMENTS
FOR THE DEGREE OF
DOCTOR OF PHILOSOPHY

© copyright 1991 by Lounette M. Dyer
All Rights Reserved

to Zona Delphine

Acknowledgments

I would like to express my deepest gratitude to Carver Mead for his many contributions to
both my professional and personal development. I, like so many others, have been greatly
ingpired by his vision, wisdom, and humanity.

I owe a special thanks to Max Mathews and Al Barr. Max gave me day-to-day
encouragement, guidance, and inspiration while writing this thesis and shared many
wonderful hours of stimulating conversation. Al supported me and was there for me when
I needed it most. Al also helped me make a thesis out of a hundred pages of words and
made the defense of this thesis an enjoyable experience. I would also like to thank Chuck
Seitz for being on my thesis defense committee and for his continued support over the
years.

I am deeply indebted to Richard Steiger for his constant support and encouragement. He
served as a sounding board while I was developing the ideas in this thesis and was the
source of many valuable insights.

I would like to also thank Adele Goldberg for reading an early draft of this thesis. Her
experience as a writer and editor were invaluable in helping me organize the document. I
also want to thank Adele for gently prodding me until the thesis was finally finished.

Ifeel very fortunate to have had the opportunity to work on this research in two very special
environments: at Caltech in Carver Mead’s research group and also at CCRMA at Stanford
University. I would like to thank the members of “Carver’s group” for creating an exciting
environment to work in. I would also like to thank John Chowning and the staff of CCRMA
for providing me with a stimulating environment and a home while I completed my
research.

I also owe a special thanks to many friends for their patience and understanding while I was
finishing this thesis. Without their support I might have moved to Brazil to study hand
drumming instead.

This research was supported by the System Development Foundation and Hewlett-
Packard.

Abstract

This thesis addresses the problem of interactive control of real-time music performance by
sound synthesizers. The approach to the problem is based on an analysis of a real world
orchestra performance. The problem is decomposed into components that are one-to-one
with the real world entities: a conductor, performers, instruments, a score, and parts. A
detailed object-oriented design of each of the components is presented and the objects and
their real world counterparts are compared. An abstract digital music representation is
defined to represent the musical composition that is to be performed by the system. Areal-
time control mechanism is described that allows a human user to control various aspects of
the performance in musically expressive ways. The model is implemented in a system
called ZED, which has been shown to simulate some of the dynamic behavior of the live
orchestra. Issues concerning the trade-off between runtime efficiency and runtime
flexibility are addressed in detail, as well as how these issues affect real-time scheduling.
Optimization techniques are presented that help insure timeliness. The object-oriented
features of inheritance and encapsulation are shown to provide the system with
extensibility and flexibility. Several other approaches to the problem are briefly outlined
and ZED is compared with these approaches.

vii

Table Of Contents

Chapter 1
Introduction 1
Previous APPIOACHES.......ocvevtiriiiietereetcrienteet ettt e e setesa e e st st et e vesaresraessessaeesaeanens 4
TRESIS OVEIVIEW ..ovevverrrriirenriineeieeeiesrenteresseneeseseesesssesessessessessoseestessessensossossassassssnassose 6

Chapter 2
Background and Terminology weeed
Object-Oriented Programming.........c.cecoueeeirinenririnnenesenserieseereeseereessesuensassesssssessonseses 9
TEIMINOIOGY ...ttt ettt e et e e et e s ss e e saa e st eeeste s e n e et ennseessaranes 10
Models and SIMULATIONc.ceeieereerierrrrrrenreeniestieneeessersaesssessesessesssnssessssesssassssassssossrsasss 10
REAI-TIME SYSLEIMIS ..evvreeeieireriuenrersieesesieearestesaesssensasssansssessasasesssasssssnssessssssnsnesssssss 11

Chapter 3
Music Performance Model . 15
Orchestra Performance ANALYSiS......cooevuecverrierecrerierseenieneenreoiessesseesessuesmecssesseessssssecnns 15
Conductor and PerfOIMErS........ ...t e sres e saens 15
INSITUMENES ...ttt st s s st et s sne s 16
Score aNnd PamSccocciiiiire et et et 16
Performance DYNAMICS..........ccoceeerveriirienirie e rreecestnseresse e seesarere s besesesseaes e enseesassneesns 16
Orchestra Performance MOGEcocciiveeeeiireeeerenntieeeeceeenieessreeee e ee s e eesseeessnees 17
Conductor and Performer ObJEctScocoiiriierieiicen et 19

INStruMENt OBJECES ... 20

Score and Part ODJECLSccoouiiriiiiiie e et s 20
Chapter 4
ZED Architectural Design.... .“ 23
SYSIEM OVEIVIEW.ccuuiiriirriererrereerennirssasesessessaesaesessssseessassessassasssemsassesssssssssnnsssossnasses 23
Performance Defilitionccoveeceeeiiirieirienieniesierseresieesseeiesssessieessnessecsssaessnsessnens 23
Performance ObJect Designcciieeiiieriiiriree et st a s e e anea 25
MUSIC RePresentation............ccueceoiirinc i e st s a e ssns 25
Real-time Performance OVEIVIEW..............ooueeiriiie e ceeeeesieaeesee s ererae st s enrens 25
The CONAUCTOT ...ceveiieerverenriririeenterienterestersesseesesreesessreseessesasssessosssessesnsessasssesssessesssssne 27
INPUL CONEIONEES ..ottt sr e e re e sae e enee e e enbeeneeen 29
SCREAUINGc.eiieiieeie ettt st s a et eta e ebeeenn et b eeree s ebaeanbaesmneeestaenanes 30
PatChiNg........ceeiiei et e e et en et 30
PEITOITNETSvevvinieeirieriniesiene ettt et cb e e sh et srcae st bt e sb b s e ae st essesnenessaennesns 33
INSITUMENES ...t e e s saa s s s saas e e 34
Performer SpecialiZationcc..coccecvvinireni et 36
Encapsulating DSP Instrument LIbraries.............ccoceveeeevienicniices e 37
Incorporating Other Synthesis Technologiescccoviiviiiiiciiinie 37
SUIITIATY .. .o eveeviie et cteressesseeses st sete st esee st esaeseestenssssesusssesnnessensessussasessosssasnssasesnns 39
Chapter 5
MUSE: A Digital Music Representation . NI) |
Common MUSIC NOTALIONeeverrerrerernrerenenrentiereseeesresseciestesiessessteessnessesssesssssaessasss 41
MUSE OVEIVIEWviiiierieciieeenieeeseeieneessanssesisanesssessesssassstessasssasssassssssscorsusossassuasosn 42
MUSE COMPONEILS....c.vevemrereeerereirierenenriienaoresmesestssesessssosermsaisssortsiesssssssonsssssssnsssonses 43
NUMDBDEIS ..ottt e et crte s srae s sabe s e snae esnenas 43
MUSE SYMDOIS ...ttt ceb e s s 44
Interpretation SymbOISs.........ccocoiiiiiiiii 44
DISCrete SYMDOIS..........oociiieieceecvctie ettt ssaee s s sras s sr e snee e e eaee s 51
Representing Symbols with Messages...........cccooociinninciciiicinceccece e 54
Time-varying FUNCLIONSccccoiriiiie it ettt et e 54
Organizing Symbols int0 SCOTesceveieiiiiirni sttt 55
Chapter 6
Real-time Performance 59
ZED Performance OVEIVIEWc..ccveveerverienrersienieereesisesseenuesesssnessnessuesssessssessssssssssns 59
Performer RUntime Methodsooeiimiiciiie e e 62
Performance EXECULION LOOPcecirieriirieieiieiecicice sttt et e 62
EXample PatChes..... ..o oot e e e 65
Special TemMPO COMLTOLS....c.cvreeeuerririneneiirienesirient sttt sresiesrosessesrosiornesresses 66

Preparatory BEatScoociriiriiiiicceen ettt s s a et eaneenee 67

Synchronizing the Performance with CUESc.ccocoieiiiiiiiec e 68
SUMIMATY c.viiiiiiniriiient it restestsassseres e seesassesssssesaessostensssssstossessessassessassasness 70
Conclusions w73
Appendix A
Real-Time Scheduling 77
Overview of Selected Scheduling AIZOHtAMS.......coceviriiieniiienenniiiieieiiiceireseeeneenens 77
VITUAT THMIE ..ceiiiiee ettt ettt stk st a e neeesae e e sneabe e 78
Discussion of Scheduling AIZOMAMS.........ceoevceveviruririnieineninietnceeereeeereieenes 78
Real-time Scheduling for MusiC SYStEIMS......ccccverueerreieneerreneerininiecererenrecrcnensennens 79
Static and Dynamic COMPONENES.............ccoviriieeiiieireenterereee ettt ne 80
Static SChEAUIINGcccovirvieiriee ettt sttt et e st e e sra et sreenaenes 80
Dynamic SChedUliNgccc.oviriieieriiicre et e s e 82
Merging Static and Dynamic QUEUEScccoceviriirirrceiairinicrireee et e 83
Multiple Time ReferenCesccuoiiiiiiiii ettt e e e e e 84
OPHMIZALIONSeeoiviirriiie et e e st e sabe st et e e e e tbas st eesenaes e 84
SUMMATY c..oveeeeieiereeeeriecrreeeeestereae st eesaeeessesssaesssnssssessssssasssesasssaesssssesessesassssesssssnasssn 86
Appendix B
Score Files 89
SCOE REAUETS....coveiuvierirrierenreeereriesteeressessesensseeneessessessessaesstenesssassessseansesssessasssessensasons 89
MUSE SCOTE FLIES.....c.veeviereereirirenririeieeriaessestessessasssesesssesssessassassesssssssossasssarsaessassnens 90
BasiC SYNTAXc..ooiiiiiieee et st et et sb e e 90
Interpretation SYMDOISooiiii et 91
DISCrete SYMDOISccooiiiiie e e bbb sae e e enaae e 95
Instantiation and DEPEeNdENCYc.civeerriiuriieeieie et ee e eme s aeeee e s 97
Organizing SYMDOISc.oiiiiiieie ettt et et e et ae e ssaee e snne e 99
MIDI FIIES...ccueeeriieririteneniiresreeieaesessssaesesssessesssossensessesseassesssessesssssesssesssessssssassnanse 104
TIME MAPPING ...veeeeeetiie et a et s re et e e esteas et reeesbe b eeeneessnesernas 105
Mapping MIDI Pitch to MUSE Pitchcocooiiicciiecce e 106
Articulation Mappingcco.overiiiicrc ettt e e e e e 107
DyNamiCs MaPPINGccoouieiieeiieiiiiieeie st ser e st et e st e et et e e esee e sbnesasanennnen 107
ONEr EVENES ...ttt et e e eaae s s sataesas e esan e st e e enne e s e eesesesasaeeanes 108
Scores with Multiple SCOTE FIlEscoeveviniinrnniinieininininciienriienrtecetssveseeaaes 108
Appendix C
Other Approaches .“ 111
Other APPIOACHES.....cccvirterieriirerrieirtrseniiecterenras e sreseeaesras e e st sraestesseeeeesseesesssssnenns 111
NEXT MUSIC Kit ...ttt e et se e e s sr e e saeenn 111

Xi

ACCOMPANIMENT SYSEMScc.viiieiiiiciiee ettt e e see e sttt esan e sbbe s ssbnesnneen 114
Summary of MAX and the Accompaniment SyStems..........c.ccccecvvecervinicenenrccviin oo, 115
Comparison With ZED...........coveiiiieiiicrcie ettt e e se s s 116
SUMIMATY o.ccvvevvreeviveiterereeriereeresresess e seetessestasseesesseaseessassossssessssssessessessssssesssesssesssens 116
Appendix D
MIDI Specification R L

Xii

List of Figures

FIGURE 3.1
FIGURE 3.2
FIGURE 4.1
FIGURE 4.2
FIGURE 4.3
FIGURE 4.4
FIGURE 4.5
FIGURE 4.6
FIGURE 4.7
FIGURE 4.8
FIGURE 5.1
FIGURE 5.2
FIGURE 5.3
FIGURE 6.1
FIGURE 6.2
FIGURE 6.3
FIGURE 6.4
FIGURE 6.5
FIGURE 6.6
FIGURE 6.7
FIGURE 6.8
FIGURE 6.9
FIGURE A1

Orchestra perfformance dynamiCs.............ccovecieivieinieeiesine et seecres e 17
Orchestra performance model dynamics.............cccoeviverreeriiiie s 18
ZED real-time music performance workstation...............cccocceeriirenniicce e 24
ZED performance objects.cc.cociiiiiceiine e 26
ZED score file and device independence.ccecceeveeiniiinicinieees e 27
ZED objects and data flow..............cocorieieeiveiiie e 28
ZED patChing OVEIVIEW.cccoviieciieiiiinieiiic et s eneennees 31
Performer and instrument interfaces.ccccoceniniiniiiiinec 33
MIDIPerformer playNote: method.ccoivvireeninininereeiie e 35
Encapsulating the NeXT Music Kit instrument library................ccceoenniveennicce. 38
The group C12 and natural scale C7.........cccccvivieeieiicie e 47
Pitches in @ C Major SCAIE.cccve ittt 47
Pitches expressed in E" Major. ... e 48
Default scheduling and runtime methods. ... 60
Detailed MIDI performer runtime method for playing anote..............ccoceeeenns 61
Scheduling and runtime methods for a static performance.cccccccoeveeeen. 63
Real-time performance execution [00p.cc.ccceceveriiinninicciecece e 64
Example patches for controlling the global tempo and local dynamics. 65
Example patch for triggering a sequence.cooecceeveciinieciec e 66
Example patch for sampling MIDI “key up” and “key down” events.................... 67
Tempo prediction for performance that follows rehearsal tempo.............c........... 70
Tempo prediction for performance that differs from rehearsal.............ccc..ccccoee 71
Data structures for a simple scheduler.ocoocoeeririiiier e 81

Xiii

List of Tables

TABLE D.1
TABLE D.2
TABLE D.3
TABLE D4

MIDI Channel Voice MeSSaQeSsc.cccvverrevvirrienieneeeiecerrreeasiesenesneesnsensnesees 119
MIDI System Common MESSAJESc..overurvirreiiriiireereeceie et sreeae e 120
MIDI Controller MESSAJESccccevrreiieieiieeieetresie e ceesreesveeeneesntesseesnesanesaees 120
MIDI Channel Mode MESSAQESc..cereirieinienieseetee et e e see e 120

Chapter 1

Introduction

Twenty-five centuries ago Pythagoras and his disciples developed the first musical scales
through the mathematical measurement of vibrating strings. These experiments became
the basis of Western music and tonality [Grout, 1973]. For hundreds of years, musical
instruments were invented and their tunings and timbres were refined so that the
instruments could be played together in ensembles. At the same time people developed
skills to play these instruments. The result of this evolution is the modern symphony
orchestra, which has remained virtually unchanged for the last one hundred or so years.

Musical instrument invention saw very little activity until three decades ago when a new
generation of musical instrument inventors developed the first electronic musical
instruments. Two separate schools of inventors evolved: those who developed analog
sound synthesizers that operated in real-time; and those who developed digital sound
synthesizers that did not operate in real-time. The digital computer revolution was just
beginning and the analog synthesizers were to go the way of analog computers. Digital
computer technology would later make it possible for digital sound synthesizers to operate
in real-time, thus offering the interactive capabilities of the analog synthesizers.

The first digital sound synthesizers were computer programs that computed sound samples
that could be played back through digital-to-analog converters (DACs). These programs
were written for the state-of-the-art computers: large, expensive, batch mainframe
computers that took tens of minutes to compute a single second of sound. Because of the
limited availability of computers and the non-real-time nature of the synthesis, evolution
in the field was slow. Computer music compositions were generated in segments by a
computer and recorded onto audio tape. Audio tapes lack the real-time spontaneity and
expressiveness that audiences are accustomed to experiencing in live music performance.

Introduction

Therefore, early computer music compositions were not really performed but were
rendered and played back in the same way that static frames of visual images can be created
with computer graphics and stored on film or video tape for future animation playback. The
primary difference between playback of a recording and a performance is that recordings
are identical every time they are played.

As computer technology evolved, in particular, VLSI technology, music synthesis
algorithms evolved to take advantage of the additional computational capacity. But faster
sound synthesis hardware did not change the way computer music was thought about and
produced. Faster sound synthesis hardware only changed the quantity of computer music
and the quality of the sounds that could be produced. It was not until sound samples could
be computed in real-time that the computer technology revolution reached computer music.

Max Mathews described the changing emphasis in the field of computer music that resulted
from real-time sound synthesis in the following way:

The ‘problems’ of computer music are no longer that of technology but rather of our ability to
control it [Mathews, 1989a].

Thus, now that real-time sound synthesis hardware was available, how could we control the
technology to make music, rather than simply sound?

The first computer programs that were written to control real-time synthesis hardware were
similar to non-real-time synthesis software. Lists of parameters were created that defined
the sound. These parameters were sent to the sound synthesizer in real-time to create the
performance. Such programs still lacked the expressive and spontaneous components of
live performance. The performance was still the same every time just as with the audio tape
performances of non-real-time sound synthesis. In order to take full advantage of the real-
time nature of the sound synthesis hardware, user interaction was required to provide the
creative and spontaneous elements found in live orchestra performances. Therefore, in
addition to real-time sound synthesis hardware, real-time input controllers were required to
map a human user’s physical gestures into real-time synthesis parameters for the sound
synthesis hardware.

A standard interface protocol called the Musical Instrument Device Interface (MIDI)
[MMA, 1987] was invented to allow a variety of controllers to be used to control
parameters of many different synthesizers. Initially there were two basic types of
controllers: musical instrument controllers such as piano keyboards, wind instruments, and
string instruments; and special effects controllers such as sliders, wheels, and foot pedals.
The musical instrument controllers allowed trained musicians to have direct control over a
sound synthesis voice in much the same way that an acoustical instrument is played. The
special effects controllers allowed other parameters of the sound to be controlled that could
not be directly controlled with the instrument controllers.

More recently, a number of research projects have focused on unique and novel controllers.
Examples include: the Daton [Mathews, 1989b], a mechanical device that detects three

Introduction

dimensions (X, y, and force) when it is struck; the Stanford Radio Baton (previously known
as the “Stanford Radio Drum”) [Boie and Mathews, 1989], a device that senses three-
dimensional continuous motion of two sticks; the Polhemus sensor [LLogemann, 1989], a
device that senses a three-dimensional location and a three-dimensional orientation of a
sensor; the Video Harp [Rubine and McAvinney, 1990], a device that responds to
movements similar to those of harpists; and BioMuse [Knapp and Lusted, 1990], a system
that senses biological signals, including eye movement, muscle flexing, and alpha brain
waves. These controllers, when used in conjunction with computer software, allows an
untrained musician to achieve subtle interactive control over a variety of independent
sound synthesis voices.

Thus, with the advent of sophisticated real-time controllers, coupled with real-time sound
synthesis hardware, the problem now is that of building software systems that will allow a
user to expressively control many aspects of a real-time music performance by sound
synthesis devices. Clearly the problem of real-time control of synthesis hardware has little
in common with the early non-real-time sound synthesis programs. Despite this fact, much
of the research to date in real-time music performance systems has focused on applying the
concepts used in non-real-time software sound synthesis systems to the problem of real-
time interactive control. But the concepts developed in non-real-time music synthesis do
not extend to encompass the dynamic environment of interactive control.

This thesis presents a new software architecture that was inspired by Carver Mead’s
remarks concerning the VLSI revolution:

After an evolution of six or more orders of magnitude in the most important metrics of the
underlying technology, we are still using the same conceptualization of computing that was
common in the era of vacuum tubes and core memories. A quantitative improvement of many
orders of magnitude makes a qualitative difference in the way one must conceptualize a field
[Mead, 1983].

The work described in this thesis introduces a new conceptual framework to the area of
interactive computer music performance. A real world system that controls musical
instruments in real-time—that of the live orchestra——provides a basis for thinking about the
problem of controlling real-time sound synthesis hardware. The primary contribution of
this thesis is the decomposition of the live orchestra into a model consisting of objects and
methods that simulate some simple behaviors of a live orchestra. These objects and
behaviors are implemented by a software simulation system called ZED that is used to
validate the model. The resulting software architecture provides a general, extensible
framework that is device independent and could be used as the basis for a variety of other
real-time interactive control applications such as real-time animation and robotics.

ZED was designed using an object-oriented design methodology. We will show that the
object-oriented concepts provided a natural paradigm for representing the components of a
live orchestra. The resulting system has been shown to demonstrate responsiveness to a
user’s inputs. Furthermore, the system demonstrates some of the types of expressive
control that a conductor has over a live orchestra. ZED can be used to create live,

Introduction

interactive concert performances of synthesized music. In addition, the system can be used
by researchers to experiment with expressive musical control of computer generated sound
in an effort to better understand sound synthesis models, and musical interpretation and
expression.

A key component of the software architecture is the invention of a semantic digital music
representation. This music representation provides many of the same features as the
conventional music notation in use by composers of Western music for hundreds of years.
These properties include instrument independence, extensibility, instrument specific
extensions, and a clear separation between a note and its interpretation. These properties
play an integral role in the success of ZED’s design. The representation separates the
representation of notes and their interpretation as a basis for affecting the interpretation
with interactive control inputs.

Real-time music performance is an interesting computer science problem because it
encompasses several research areas, including discrete event simulation, real-time systems,
and object-oriented software design. Experimental implementations of the design were
done in a variety of programming languages. Initially, portions of the system were
implemented in Pascal [Jensen and Wirth, 1978] and C [Kernighan and Ritchie, 1978].
These languages did not provide sufficient data abstraction, extensibility, and polymorphy
to make them practical for a system of this type. Then, the system was prototyped in
Smalltalk [Goldberg and Robson, 1983]. Smalltalk provided an ideal environment for
experimenting with various designs. The timeliness, however, was affected by the
Smalltalk memory manager and Smalltalk was found to be unsuitable for actual real-time
music performances. Objective-C [Cox, 1987; NeXT, 1989] was found to be an ideal
compromise: it has basically the same semantics as Smalltalk so the prototype could be
trivially ported from Smalltalk to Objective-C; Objective-C provides the ability to statically
bind methods, thus increasing runtime efficiency; and Objective-C does not have a memory
manager. The developer therefore has control over how the CPU cycles are spent. The
Objective-C implementation demonstrates that object-oriented languages on modern
workstations are suitable for implementing real-time systems with the timing requirements
of music performance.

Previous Approaches

A number of real-time performance systems have been developed to date. One type of
system supports low level MIDI patching—the routing of input events from MIDI
controllers to parameters of a synthesis output device. A notable example is MAX
[Puckette, 1986; Puckette, 1988], a MIDI patching application that allows a user to
configure patches via a graphical user interface (GUI). Patches can be defined to use any
input to control any synthesis parameter. MAX is based on an object model whereby
objects, represented by boxes, receive inputs and generate outputs. Interobject
communication is defined by messages, represented with lines between boxes. The user

Previous Approaches

can program computations on the data, and can also write code for new objects using a
conventional programming language such as C. MAX could be thought of as a visual
programming language that allows a user to develop applications that manage the data flow
of low-level MIDI data events.

Another type of real-time performance system is an accompaniment system. These systems
extract timing information from inputs generated by a human user with a controller, and
synchronize a synthesizer accompaniment with the user. These systems focus on the tight
integration between a live performer and a sound synthesis accompaniment.
Accompaniment systems are generally closed applications whose behavior cannot be
changed by the user. The functionality of accompaniment systems could be programmed
in MAX, but MAX is not in and of itself an accompaniment system.

One example of an accompaniment system is the Conductor Program [Mathews, 1989b].
The Conductor Program was written specifically for the Stanford Radio Baton. The
Conductor Program allows a user to control the tempo by striking a surface with the baton.
The program knows on which beats to expect the inputs and synchronizes the
accompaniment with the input when it arrives. Other inputs from the baton can be used to
control other aspects of the performance such as phrasing, balance, and dynamics. This
system has been used in numerous concert performances, primarily with a live vocalist and
a live performer of the baton. The system has demonstrated that it is possible to obtain
expressive musical interpretation with synthesized sounds.

Two other accompaniment systems are those of Bloch and Dannenberg [Bloch and
Dannenberg, 1985] and Vercoe and Puckette [Vercoe and Puckette, 1985]. Both of these
systems use a musical instrument for input. The timing of the inputs from the performer
are used to control the tempo of the accompaniment. But unlike the Conductor Program,
these systems use the pitches as well as the time of the inputs. The system can adapt to
errors in the live performer’s performance, such as pitch mistakes and skipped notes.

Another type of software system that has been used for real-time music performance is the
object-oriented tool kit. Tool kits are not complete applications, but rather they provide a
basis for a composer/programmer to develop real-time music performance applications.
They are similar to MAX in this regard, but differ from MAX in that they require that a
textual object-oriented programming language be used to program them. An example of
an object-oriented tool kit that can be used with interactive control is the NeXT Music Kit
[Jaffe, 1989]. The Music Kit can be used to build applications in Objective-C on the NeXT
Computer. Music Kit applications can play score files on MIDI synthesizers and
instruments defined in the NeXT DSP synthesis instrument library. MIDI input can be used
to control synthesis but the tool kit does not have explicit abstractions for configuring real-
time performances. Like MAX the Music Kit can be programmed to track a score, but no
explicit notion of an accompaniment is provided.

These real-time performance systems have different goals. The accompaniment systems
were designed to enable the concert performance of computer music under the real-time

Introduction

control of a live user. These systems use a specific controller and specific synthesis
devices. MAX was designed as a tool for non-programmers to specify and execute real-
time music performances with a variety of different controllers and synthesis devices. The
Music Kit was designed as a framework for programmers to develop real-time performance
applications for the NeXT Computer using MIDI and DSP synthesis.

ZED’s design is based on the decomposition of the live orchestra performance and the
implementation of objects that correspond to the live orchestra components. ZED’s
primary purpose is to validate the proposed model of a live orchestra performance. In
addition to being a simulation system that can be used for concert performances, ZED also
provides a framework for experimenting with expressive musical control of sound
synthesis devices.

As a music performance system, ZED provides a number of features of the other systems.
ZED provides the programmability and extensibility of MAX and the Music Kit. ZED also
provides tight integration of a live performer and a synthesis accompaniment like that
provided by the accompaniment systems. ZED defines an abstract digital music
representation for scores that none of the other systems have. ZED also provides specific
abstractions for the performance that are well beyond those of any of the other systems. For
example, a conductor object provides a mechanism for routing real-time inputs to other
objects in the performance. Performer objects are used that interpret abstract musical
symbols and map them into synthesis parameters. Instrument objects are defined that hide
the specifics of the synthesis device. This approach allows the scores and the real-time
patches to be device independent. The specialization of performer objects through
subclassing and message overriding provides ZED with easy extensibility. In addition, the
use of performer objects creates an evolutionary path for the system so that new
technologies and new knowledge of how to control the technology can be easily
incorporated.

A more detailed description of these other systems and a more complete comparison with
ZED can be found in Appendix C on page 111.

Thesis Overview

Chapter 2, Background and Terminology, provides a brief introduction to object-oriented
programming concepts and terminology for readers who are not familiar the field. Models
and simulation are briefly discussed and an overview of the issues involved in real-time
control are presented. Chapter 3, Music Performance Model, describes the live orchestra.
A model of the live orchestra is proposed by identifying, analyzing, and abstracting the
components of the live orchestra into a set of object definitions and behaviors. Chapter 4,
Architectural Design, describes the architecture of the software simulation system called
ZED that implements the performance model. Chapter 5, MUSE: A Digital Music
Representation, defines a generic score representation as a set of object definitions for the

Thesis Overview

symbols that are used to represent printed music. Chapter 6, Real-time Performance,
describes how interactive control inputs are used to control the performance. And finally,
Conclusions summarizes the thesis and discusses ideas for future work.

A number of appendices are also provided. Appendix A, Real-Time Scheduling, provides a
detailed design of ZED’s scheduler, as well as an overview of scheduling algorithms used
in other real-time music performance systems. Appendix B, Score Files, defines the MUSE
score file format and also discusses the mapping of MIDI score files to the generic MUSE
digital music representation. Appendix C, Other Approaches, gives an overview of some
of the other real-time music performance systems developed to date. These systems are
compared and contrasted with ZED. Appendix D, MIDI Specification, provides tables that
show the details of the MIDI specification.

References

Bloch, J. J. and Dannenberg, R. B. Real-Time Computer Accompaniment of Keyboard
Performances. In Truax, B. (ed), International Computer Music Conference at Simon
Fraser University. San Francisco, CA: Computer Music Association, 1985, p. 279.

Boie, B. and Mathews, M. V. The Radio Drum as a Synthesizer Controller. In Wells, T.
and Butler, D. (eds), International Computer Music Conference at Ohio State University.
San Francisco, CA: Computer Music Association, 1989, p. 42.

Cox, B. J. Object-oriented Programming: An Evolutionary Approach. Reading, MA:
Addison-Wesley, 1987.

Goldberg, A. and Robson, D. Smalltalk-80: The Language and its Implementation.
Reading, MA: Addison-Wesley, 1983.

Grout, D. J. A History of Western Music. New York, NY: W. W. Norton, 1973, pp. 27-34.

Jaffe, D. A. Overview of the NeXT Music Kit. In Wells, T. and Butler, D. (eds),
International Computer Music Conference at Ohio State University. San Francisco, CA:
Computer Music Association, 1989b, p. 135.

Jensen, K. and Wirth, N. Pascal User Manual and Report. New York, NY: Springer-
Verlag, 1978.

Kernighan, B. W. and Ritchie, D. M. The C Programming Language. Englewood Cliffs,
NIJ: Prentice-Hall, 1978.

Knapp, R. B. and Lusted, H. S. A Bioelectric Controller for Computer Music Applications.
Computer Music Journal, 14(1):42-47, 1990.

Introduction

Logemann, G. W. Experiments with a Gestural Controller. In Wells, T. and Butler, D.
(eds), International Computer Music Conference at Ohio State University. San Francisco,
CA: Computer Music Association, 1989, p. 184.

Mathews, M. V. Personal communication, 1989a.

Mathews, M. V. The Conductor Program and Mechanical Baton. In Mathews, M. V. and
Pierce, I. R. (eds), Current Directions in Computer Music Research. Cambridge, MA: MIT
Press, 1989b, p. 263.

Mead, C. A. VLSI and the Foundations of Computation. In Mason, R. E. A. (ed),
Information Processing 83. Elsevier Science Publishers B. V. (North-Holland), 1983, p.
271.

MIDI Manufacturers Association, MIDI Musical Instrument Digital Interface
Specification 1.0. North Hollywood, CA: International MIDI Association, 1987.

NeXT, System Reference Manual. Menlo Park, CA: NeXT Inc., 1989.

Puckette, M. Interprocess Communication and Timing in Real-time Computer Music
Performance. In Berg, P. (ed), International Computer Music Conference at Royal
Conservatory, The Hague, Netherlands. San Francisco, CA: Computer Music Association,
1986, pp. 43-46.

Puckette, M. The Patcher. In Barlow, C., Lischka, C. and Pannes, M. (eds), International
Computer Music Conference at GIMIK, Cologne, West Germany. San Francisco, CA:
Computer Music Association, 1988.

Rubine, D. and McAvinney, P. Programmable Finger-tracking Instrument Controllers.
Computer Music Journal, 14(1):26-41, 1990.

Vercoe, B. and Puckette, M. Synthetic Rehearsal: Training the Synthetic Performer. In
Truax, B. (ed), International Computer Music Conference at Simon Fraser University. San
Francisco, CA: Computer Music Association, 1985, p. 275.

Chapter 2

Background and Terminology

This chapter presents a brief introduction to the concepts and terminology of object-
oriented programming. Then, the concepts of modeling and simulation are defined as a
basis for thinking about real-time music performance. In the final section, an overview of
the issues involved in real-time systems is presented.

In this thesis, Smalltalk classes and methods are used to define objects and algorithms
[Goldberg and Robson, 1983]. Class names appear in the Helvetica bold font. Instance
variable names, method names, and Smalltalk code appear in the Helvetica font. Parameters
are shown in the Helvetica underline font. The syntax for defining class hierarchies is a list
of class names each followed by a pair of parenthesis containing instance variable names.
A class name that occurs indented below another indicates a subclass.

Object-Oriented Programming

Object-oriented programming evolved from the programming language Simula which
used objects and messages for defining simulations [Nygaard and Dahl, 1966]. The object
and message paradigm provides the primary features of data abstraction, encapsulation and
inheritance. The data abstraction provided by the object model and the message passing
paradigm is important because it allows software to closely reflect real world situations. In
addition, abstraction helps manage complexity because details can be hidden below high
level semantic interfaces. Application openness and extensibility are fundamentally
supported by object-oriented languages through inheritance and encapsulation. These
features facilitate rapid prototyping and provide the ability to adapt systems to incorporate

Background and Terminology

new technology and new requirements.

The following section presents the terms and concepts of object-oriented programming in
general, and Smalltalk in particular. The material below was largely taken from the book
Smalltalk-80: The Language and its Implementation [Goldberg and Robson, 1983].

Terminology

An object represents something that exists in the real world and consists of private data and
a set of operations that can access that data. The data is private to the object and can only
be manipulated by the object’s own operations. A message is a request for an object to
execute one of its operations. This operation is called a method and the command carried
by the message is called a selector. The receiver, the object that a message is sent to,
determines how to carry out the requested operation. The set of messages that an object
responds to is called its behavior. The behavior defines the object’s interface to the rest of
the objects in the system. The only way to interact with an object is through this interface.
Because the implementation of one object cannot depend on the internal details of other
objects, only on the messages that they respond to, the objects and messages can be used to
facilitate modular design of software.

A class describes the implementation of a set of objects that all represent the same kind of
component. The individual objects described by a class are called its instances. A class
describes the form of its instances’ private data and how they carry out their operations. An
object’s private properties are a set of instance variables that make up its private data and
a set of methods that describe how to carry out its operations. Subclasses of existing classes
can be defined that inherit the instance variables and methods of the superclass. A subclass
can define a new method with the same selector as a method in a superclass. This is called
method overriding. In addition, a subclass may define new messages that its instances will
respond to that will not be understood by instances of the superclasses. An abstract class
is a class that has no instances but is the root of a hierarchy of classes that share basic
semantics. A concrete Class is a class that has actual instances.

Models and Simulation

A model can be defined as “a small representation of a planned or existing object”
[Webster, 1979]. In the computer science field, a computational model can be defined as
a computer representation of a planned or existing object. Models of physical objects like
buildings or automobiles are generally smaller and abstracted from the real objects.
Similarly, computer models are also abstracted and omit some of the detail while still
maintaining the basic properties of the modeled object.

The word simulate means “to act or look like” [Webster, 1979]. Computer simulations
generally model situations that change over time and often have actions or events that must

10

Real-Time Systems

be synchronized with some notion of time. A model can be implemented on a computer to
simulate the behavior of the modeled system over time. Computer simulations provide a
framework in which to understand the simulated situation.

Sometimes the notion of time is itself simulated. There are a number of ways to represent
the actions of simulated objects with respect to real or simulated time. In one approach, a
clock runs and at each tick of the clock, all objects are given the opportunity to take any
desired action. Alternatively, the clock can be moved forward according to the time that
the next event will take place. In this case, the system is driven by the next discrete action
or event scheduled to occur. The implementation of a simulation using this approach
depends on maintaining a queue of events (managed by a scheduler) that are ordered in
time. When an event is completed, the next event is taken from the queue and the clock is
moved to the event’s time. This type of simulation is called event driven. In event driven
simulations, a collection of independent objects exist, each with a set of tasks to do, and
each needing to coordinate its activity’s times with other objects in the simulated situation.

Real-Time Systems

A great deal of engineering research has focussed on understanding the nature of real-time
systems. Real-time systems consist of a system that is being controlled, and a system that
controls it. The controlled system has an environment in which the computer software of
the controlling system interacts with the controlled system. Real-time systems are different
from other computer software systems in that the correctness of the system depends not
only on the logical result of the computation, but also on the system’s fimeliness—the time
that the results are produced [Stankovic and Ramamritham, 1988]. Real-time systems are
used extensively in the world for such things as airplane flight control, manufacturing
process control, and robotics. Thus, real-time systems clearly must be fast and predictable,
reliable and adaptive to their environment.

Real-time systems such as those listed above are often referred to as hard real-time
systems. They are characterized as having catastrophic consequences if the logical or
timing constraints of the system are not absolutely met. Applications in music performance
are not hard as there are not catastrophic implications of errors such as playing a note
slightly early or late. Musicians are rarely fired for such small imperfections. (There are,
however, mistakes that may be catastrophic to a musician’s career, such as a misplaced
cymbal crash in the middle of a pianissimo aria!) In addition, real-time music performance
systems may be thought of as firm in that it is important that events happen on time but the
penalty for not being precisely on time is not enormous. Real-time music performance
systems have some flexibility in timing because, according to psychoacousticians, onsets
of musical notes that are separated by as much as 30 ms. are perceived by the audience as
simultaneous [Rasch, 1978]. Many other aspects of the performance other than note onsets
have even more relaxed timing constraints. These are considered soft constraints.
Criticalness is the measure of how critical an operation is and how urgent is it that it happen

1

Background and Terminology

at a precise time. Many aspects of hard real-time systems have a very high degree of
criticalness. Because of this, hard real-time systems are much more difficult to design,
simulate, and implement than real-time music performance systems. The work presented
in this thesis does not address the timing demands placed on hard real-time systems. Only
the timing constraints required to perform compositions of the complexity of a symphony
in real-time are addresses in this thesis.

Real-time systems have explicit timing constraints attached to tasks that the system must
accomplish. Some form of priority scheduling is used for the task, where the time
constraint and criticalness are mapped into a single factor, namely the priority. Highly
critical tasks typically occur at a lower frequency, thus reducing the contention for
computing resources and insuring timeliness. Some real-time systems are periodic in that
they perform tasks at regular intervals. Music performance systems are instead aperiodic
because notes and interactive inputs do not necessarily happen at regular intervals.

Real-time systems can be static or dynamic. In static systems all events are known before
runtime and early or static binding is used to precompute all values. Such systems are
inflexible at runtime and do not respond to feedback or interactive input but have very low
runtime overhead, making it easier to insure timing correctness. A static real-time music
performance system would be one in which a score is compiled into precise synthesis
parameters and the precise time that they are to be sent before the performance begins.
Such a performance would be virtually the same as playing an the audio tape performances
of non-real-time music because it would be identical every time. Dynamic systems have
greater runtime overhead, but are more flexible at runtime because they use late or dynamic
binding. A dynamic real-time music performance system is responsive to interactive input
from a user and may also create new events during the performance, but such an approach
may make it difficult to achieve the timing constraints.

An interesting property of real-time systems is that you can trade timeliness for quality.
That is, if the system’s response to an input can be delayed, the time can be used to compute
a more accurate value for the input or to process the input more completely. In
implementation terms this trade-off is shown in responsiveness. Therefore, in order to
maintain both responsiveness and timeliness, the system must be optimized to begin the
computation of the synthesis parameters at a time that precedes the time that the update is
to be made by the amount of time the computation takes.

State-of-the-art software engineering methodologies, and object-oriented software
engineering in particular, have introduced features such as modularity, abstract data types,
and message passing. These features are being widely used for building complex, non-real-
time applications that are maintainable and extensible over projected long lifetimes. These
features are often perceived by researchers in real-time systems as being in conflict with
real-time requirements. This thesis presents a real-time system that uses an object-oriented
paradigm providing modularity and abstraction, while still providing the level of timeliness
required by real-time music performance.

12

Real-Time Systems

References

Goldberg, A. and Robson, D. Smalitalk-80: The Language and its Implementation.
Reading, MA: Addison-Wesley, 1983.

Dahl, O. J. and Nygaard, K. Simula—an Algol-Based Simulation Language.
Communications of the ACM, 9(9):671-678, 1966.

Rasch, R. A. The perception of simultaneous notes such as in polyphonic music. Acustica,
40(1):21-33, 1978.

Stankovic, J. A., and Ramamritham, K. Tutorial: Hard Real-Time Systems. Washington,
D.C.: Computer Society Press of the IEEE, 1988, pp. 1-11.

Webster, Webster's New World Dictionary of the American Language. New York, NY:
Warner Books, 1979.

13

14

Background and Terminology

Chapter 3

Music Performance Model

The first section in this chapter presents an overview of the real world orchestra in a
concert performance. The overall dynamics of the orchestra performance are described.
The orchestra is then decomposed into components, each of which is analyzed. The final
section presents a model of the live orchestra that defines objects that are one-to-one with
each of the real world entities. This model is the basis of a simulation system called ZED
that implements the model.

Orchestra Performance Analysis

A live orchestra consists of a group of musicians, called performers, that are coordinated
by a conductor. Each performer has one or more pages of printed music called a part and
an instrument used to generate sound. The conductor has a score consisting of pages of
printed music and contains all of the parts.

Conductor and Performers

The conductor is a human that oversees the performance and has some means of
communicating to the performers. The conductor can affect the performers’ interpretation
of their respective parts, control the balance of the ensemble, and coordinate the group
dynamics and tempo. A performer is a human who reads a part, interprets the symbols in
the part, and generates appropriate inputs for a musical instrument based on those symbols.
In addition, the performer accepts and interprets input from a conductor and adjusts the
performance accordingly. The performer’s interpretation of the symbols in the part is a

15

Music Performance Model

result of training and taste, the style of the composition, the conductor’s input in rehearsal,
the conductor’s gestures during the performance, and the balance of the ensemble as heard
by the conductor (which is affected by such things as the acoustics of the concert hall.) The
performer’s interpretation may vary slightly in different performances.

Instruments

A musical instrument is an acoustical device that responds to gestural inputs from a
performer by generating an acoustic audio signal that reflects those inputs—the type of
gestural input that an instrument responds to varies dramatically across instrument families.
For example, string instruments are bowed or plucked, wind instruments are blown, and
percussion instruments are struck. Performers develop skills that are specific to their
particular instrument, as one would not generate musical sound by blowing on a triangle or
plucking a flute.

Score and Parts

A score is the printed representation of a composer’s musical ideas. A score consists of a
collection of parts, one for each performer. Each part consists of a collection time ordered
symbols, called notes, that describe to performers in a high-level, abstract representation,
how the music should sound. The symbols in the parts are basically instrument
independent—they are the same for all instruments. A part may also contain symbols that
are specific to an instrument such as pedal markings for piano and bowings for string
instruments.

In addition to notes, the parts contain interpretation symbols defining how the notes are to
be interpreted. Examples of interpretation symbols are tempo, dynamics, meter, and key.
The score may also contain additional annotations and cues for the conductor specifying
information that is to be communicated to the performers during the performance.

Performance Dynamics

An orchestra performance can be viewed as a real-time control system where the devices
being controlled are acoustical musical instruments and the system controlling the
instruments is a collection of human beings. The score and parts provide the definition of
the composition that is to be played. There is a high degree of concurrency in a live
orchestra performance. The performers play their instruments simultaneously while a
conductor conducts them. Each performer provides direct control over their instrument
with physical gestures. The conductor provides indirect control over the entire ensemble
by communicating information to the performers with physical gestures that cause them to
change the input to their instrument.

A diagram showing the components involved in a live orchestra performance are shown in
FIGURE 3.1. The orchestra has two types of feedback loops. The performers listen to the

16

Orchestra Performance Mode

Performer

Instrument

FIGURE3.1 Orchestra performance dynamics.

Each performer receives visual input from a ﬂrinted part and the conductor receives visulal input from the printed
score. Each performer provides outputs to their instrument based on the part and visual input from the
conductor. The acoustic output of the instruments provides auditory feedback for the performers and the
conductor. The black drop shadows indicate that the performance has multiple performers, each with one part
and one instrument.

sound they are generating and that of the other performers. They continuously adjust their
sound by changing the volume, intonation, and other properties. The conductor listens to
the sound as well and, through physical gestures, indicates adjustments to the performers
for such ensemble properties as balance, dynamics, and tempo. The performer/instrument
feedback loop has a very short time constant because the performer can immediately
respond to the sound. The conductor/performer/instrument feedback loop has a longer time
constant because the conductor does not have direct control over the instruments. The
conductor reacts to the sound with a physical gesture that is communicated to the
performers. The performers see the gestures, interpret them, and adjust their sound
accordingly.

Orchestra Performance Mode

A model of orchestra performance can be defined that has objects representing the
conductor, performers, instruments, score, and parts. There are, of course, many aspects of

17

Music Performance Model

In{aut
Controller

Performer Instrument

FIGURE3.2 Orchestra performance model dynamics.

The abstracted components are shown. Communication is done among the objects in the model via messages.
Feedback is provided indirectly via a human user with an input controller device. The user listens to the
performance and can affect the performance. The conductor object receives interactive control inputs from the
user and carries out the user's wishes by sending messages to other objects.

the live performance that cannot currently be modeled with a computer such as human
hearing and music understanding. Although it is possible to extract some types of
information from acoustical signals in real-time, this is a very hard problem, particularly
for polyphonic music, and is currently unsolved. In addition, it is not currently possible to
build computer models of human vision that can read printed music and understand
physical gestures of a human conductor. Therefore, we will define a simplified model of
the orchestra as shown in FIGURE 3.2.

Because a human auditory model cannot be directly implemented, the models for the
conductor and performers are deaf. This eliminates the two feedback loops of the live
orchestra. The performance model instead relies on a human user to provide an auditory
feedback loop to the system. The user listens to the performance and interactively affects
the performance via one or more input controller devices. The input controllers translate
the user’s physical gestures into control information that is transmitted to the conductor.
The conductor then passes the information on to one or more performers. The basic
dynamics of the performance are not substantially changed because the one feedback loop
can simulate the two of the live orchestra. This is because the user is given two types of
control: directlow level control of the synthesis parameters provided by the performer; and
high-level indirect control similar to that of the live conductor.

18

Orchestra Performance Mode

The human user plays another important role in the simulation by providing the musical
spontaneity and expressiveness to the performance. It is not currently possible to
completely model human musical creativity and expressiveness. Artificial intelligence
techniques such as rule based systems could be used to model human performers more
closely [Frydén and Sundberg, 1984]. The ZED system defined in this thesis is designed
to allow such techniques to be incorporated into the system.

Conductor and Performer Objects

The conductor and performers are represented with objects that have methods that mimic
some simple behaviors of their human counterparts. The conductor object has a score
object and each performer object has a part object and an instrument object. Human
performers read a part of music by transforming the visual image of symbols on the page
into a mental representation. Conductor and performer objects emulate this behavior with
methods that read a score file from a computer disk and build an internal digital music
representation of the composition. The score file is read before the performance, thus
removing the need for disk I/O during the performance. This is somewhat analogous to a
human conductor and performers memorizing their respective score and parts so that they
do not require the printed music during the performance.

There is typically only one conductor object in a performance. The conductor object is
responsible for coordinating the performance. The conductor communicates with
performer objects through message passing. At the time that a note is to be played or some
other event is to happen, the conductor object cues the performer object by sending a
message to the appropriate performer object. The conductor object also acts on behalf of
the human user during the performance. When control inputs are received from the user,
the conductor object interprets them and may send a message to one or more performer
objects, or may act on the input itself.

An alternative to having the conductor object send a message to the performer objects for
each note would be to use separate concurrent intercommunicating processes for the
conductor and performers. The performer processes would keep their own time instead of
waiting passively for the conductor’s next cue. The event driven model is used in ZED
instead of the process model because of its conceptual simplicity and because its
implementation is substantially more efficient. The only artifact of the event driven model
is that the conductor cues every note, whereas in the live orchestra, the conductor only cues
each note during brief rubato sections. Otherwise, the live conductor typically only cues
the performers on the beats because it would not be physically possible to cue every note.

The primary task of performers is to map the abstract score data (in their part) into inputs
for their instrument. When the performer object receives a message from the conductor to
play a note, the performer object interprets the note in the context defined by the
interpretation symbols in the part, score, and other information from the conductor. This
interpretation is similar to the interpretation done by human performers. Performer objects,

19

Music Performance Model

like human performers in the live orchestra, must have specific knowledge of their
particular instrument so that appropriate inputs can be computed. ZED uses a number of
different types of performers, each of which is specialized for a particular synthesis
instrument. The use of specialized performer classes for different instruments is analogous
to the live orchestra where, for example, a musician trained only on trumpet is generally
not proficient on timpani.

Instrument Objects

An instrument object is used to represent the acoustic instrument played by a human
performer. The performer object computes inputs for the instrument object, and the
instrument object causes sound to be produced. The instrument object provides the
performer object with an abstraction of the physical interface that connects a workstation
to a synthesis device. After all, human performers needn’t understand the physics of an
acoustical instrument in order to be able to play it. Just as there are different types of
acoustical musical instruments in an orchestra, ZED has different types of synthesis devices
and interfaces, and different instrument classes for each of them. Therefore, specific
instrument classes are provided for each type of synthesis device.

Score and Part Objects

The printed score of the real world orchestra is represented in the model with a digital music
representation. A digital music representation called MUSE was designed specifically for
ZED to address the issues involved in real-time music performance. MUSE defines objects
for the score and parts. In addition, MUSE objects are defined that are one-to-one with the
symbols in a printed score. MUSE, like the common music notation used in printed scores
and parts, is device independent and separates the notes from the interpretation context.

MUSE notes have a pitch, time, duration, and an optional articulation symbol such as
accent, tenuto, or staccato. The properties of a note are represented relative to an
interpretation context that is the same as that used in a printed score and parts. This
interpretation context is the basis of the real-time interactive control. The interpretation
context consists of objects for tempo, dynamics, key, meter, and style. The note’s pitch is
relative to the key; the time is relative to the tempo; the duration is relative to the tempo and
the style; and the note’s articulation is relative to the dynamics, style, tempo, and meter.
The performer objects compute synthesis parameters for their particular instrument by
applying the interpretation objects to each note. The interpretation objects defined in a
performer’s part are local to that performer. The interpretation objects defined in the
conductor’s score are global and therefore affect all performer objects that do not have a
local interpretation defined.

20

Orchestra Performance Mode

References

Frydén, A. and Sundberg, J. Performance Rules for Melodies. Origin, Functions,
Purposes. In Buxton, W. (ed), International Computer Music Conference at IRCAM,
Paris, France. San Francisco, CA: Computer Music Association, 1984, pp. 221-224.

21

22

Music Performance Model

Chapter 4

ZED Architectural Design

This chapter describes the architectural design of an object-oriented simulation system
called ZED. ZED is an implementation of the orchestra model described in the previous
chapter. In the first section, an overview of the system is presented. Then, class designs
for each of the objects in the model are presented. The adaptability and extensibility of the
design is demonstrated with examples of how to incorporate new sound synthesis
hardware into the system.

System Overview

ZED is a real-time music performance system that simulates live music performance. ZED
was designed using an object-oriented design methodology. A diagram of the computer
workstation environment that ZED is implemented on is shown in FIGURE 4.1. A
computer workstation has connected to it, one or more input controllers and one or more
sound synthesis devices. The audio signals from the sound synthesis devices are mixed,
amplified, and are heard through a loud speaker. A human user interacts with the system
via the input controllers. The control inputs can be used to control aspects of the
performance including the tempo, dynamics, balance, note articulation, transposition, and
the starting and stopping of sequences.

Performance Definition

ZED performances are defined by three files: a score file, a configuration file, and a patch

23

ZED Architectural Design

DSP synthesizer
and DAC

performance
definition
files
MIDI synthesizer
and DAC

audio mixer
and amplifier

Stanford
Radio
Baton

FIGURE4.1 ZED real-time music performance workstation.

ZED uses the real-time inputs from the user to affect the performance by controlling the synthesizers in
different ways. The performance files define the score and how the performance is to be controlled. Two MIDI
input controllers are shown: the Stanford Radio Baton, and a MIDI keyboard. The two types of synthesizers
shown are MIDI and DSP. The user listens to the performance transmitted through the loudspeaker and
provides feedback to the system. The black drop shadows indicate multiple synthesis devices connected to
the same interface: more than one MIDI synthesizer connected to the same serial port or mote than one DSP
on a single bus interface board.

file. The score file contains score data for the composition that is to be performed. The
configuration file defines the orchestration of the composition, that is, what instrument is
to play each part and what performer is to play each instrument. The conductor and the
types of input controller objects are also defined in the configuration file. The patch file
contains a set of patches that define how the real-time inputs are to be interpreted and what
action the conductor object is to take when specific inputs are received. Patches may be
defined that affect the conductor or cause the conductor to send messages to one or more
performer objects.

24

Performance Definition

A given score can be performed in different ways: a different orchestration can be defined
for a score by changing the configuration file to reassign the parts to different performers
and instruments. In addition, a score with a particular orchestration can be performed in
different ways by using different patch files that define different real-time control actions.

Performance Object Design

FIGURE 4.2 shows an overview of the basic performance objects defined in the model.
The classes for the basic performance objects are subclasses of the abstract superclass
ZEDPerformanceObject. All performance objects have a name instance variable thatis used
to uniquely identify the object. The name is used in the configuration files for specifying
which instrument and part is associated with each performer object. The name is also used
in the patch file to specify real-time control messages to be sent to the object. The class
hierarchy is shown below. The instance variables in the Helvetica italic font indicate internal
instance variables that are not shown in the diagram.

Object ()
ZEDPerformanceObject (name)

Conductor (score performers inputControllers scheduler patches
interpretationContext currentEvents)

Performer (conductor part instrument
interpretationContext scheduleMessage)

Instrument ()

InputController (conductor)

Music Representation

An abstract digital music representation called MUSE is defined to represent the score and
parts. The nature of this representation is such that it provides a common abstraction for
musical ideas represented in a variety of different score file formats. Furthermore, the
representation provides an abstraction from the specifics of the particular synthesis
hardware that is to perform the composition. Thus, it is similar to the common music
notation used by Western composers to notate music. It provides a single abstract
representation that is, for the most part, independent of the particular instrument. FIGURE
4.3 shows how score files are converted to the MUSE representation, that is then converted
to device specific parameters by the performer objects. The generic representation
simplifies the overall system architecture because the performance objects all operate on
the same score objects regardless of the score file that the data came from.

Real-time Performance Overview

FIGURE 4.4 shows the ZED objects and the information flow through the system. The
performer objects map the abstract score data to device specific synthesis parameters called
packets. When real-time input is received during the performance, the conductor object

25

26

ZED Architectural Design

Performer
scheduler

Instrument

FIGURE 4.2 ZED performance objects.

The arrows are labeled with the corresponding instance variable name. The conductor has a scheduler that
enables the coordination of events. The conductor also has a set of patches that define what actions are to be
taken when real-fime control inputs are received. Double arrows indicate a collection of objects of the
specified type. Drop shadows indicate multiple instances of the class. An atrow between two objects with
drop shadows indicates that each source object has one destination object. The gray arrows indicate how
data enters and leaves the workstation.

The Conductor

MDI DSP
Performer Performer

MIDI DSP
Synthesizer 1 Synthesizer

FIGURE 4.3 ZED score file and device independence.

The diagram shows score file independence and device independence. Score files are converted to MUSE
objects by score readers and performer objects then convert the muse objects to packets for their particular
instrument.

acts on the input by sending messages to performer objects. These messages affect the
mapping of the score data to the synthesis parameters, thus changing the sound of the
performance.

The Conductor

The definition of the conductor class is shown below. The instance variable score for the
conductor is the entire score and the instance variable performers is a collection of all
performers, one for each part in the score. The instance variable inputControllers contains
input controller objects for real-time control, and is nil if the performance is not under real-
time control. The instance variable scheduler contains an instance of the class Scheduler.
The scheduler is used to manage events and coordinate the performance. The conductor
also has an instance variable patches that contains a collection of patch objects that define
how the real-time inputs affect the performance. The instance variables
interpretationContext and currentEvents are used during the performance to cache the global
interpretation context, and the events that are currently being played, respectively.

27

ZED Architectural Design

DSP \ MIDI
Performer \ Performer

DsP MIDI
Instrument Instrument

DsP MIDI
esizer Synthesizer

FIGURE 4.4 ZED objects and data flow.

The performer objects take the high-level score data from their parts and messages communicated from the
con(ﬁctor, and compute low level synthesis parameters for their particular sound synthesis device. Each
instrument object encapsulates an output device driver for the particular physical interface with the
workstation. Similarly, the input controller objects encapsulate an input device driver for the Fhi/sical interface
for the input controller device. The MIDI controller in the diagram represents any number of MIDI controllers
attached to the same MIDI serial port.

28

The Conductor

Object ()
ZEDPerformanceObject (name)
Conductor (score performers inputControllers scheduler patches
interpretationContext currentEvents)

Input Controllers

Input controller objects provide an interface between the input controller device and the
conductor object. The class InputController is an abstract class defining the basic semantics
for all controllers. One concrete subclass is defined for each rype of controller interface.
Each concrete input controller class encapsulates a software input device driver that
receives data from the controller device via the controller’s interface. For each subclass of
InputController a corresponding packet class is defined as a subclass of the abstract class
ZEDEvent. The packet class defines the object that is created by the input controller object
from the input data and is passed to the conductor. The class hierarchy for a system that
has only MIDI input controllers is shown below.

Object ()
ZEDPerformanceObject (name)
Conductor (score performers inputControllers scheduler patches
interpretationContext currentEvents)
InputController (conductor)
MIDIController (port)
ZEDEvent (time)
MIDIPacket (statusByte datal data2)

The class MIDIPacket defines objects that hold the data received from a MIDI interface.
These MIDI packet objects are sent to the conductor from MIDI controller objects. (The
same packet class is used by MIDI performers to send MIDI data to a MIDI instrument.)
There is one instance of a concrete input controller class for each physical interface. For
example, if MIDI input can be received through two separate serial ports on the
workstation, there is one instance for each port. Additional classes can be defined for other
types of serial input controllers, or for controllers that have bus interfaces. The data
abstraction capabilities of object-oriented languages allow the details of the particular
devices to be hidden from the conductor object, allowing the conductor object to operate
on all control data in the same way.

Input controllers are referenced in patches by their name. Input controllers also have an
instance variable containing the conductor object. When a control input is received, a
message is sent to the conductor with the data. In the case of MIDI controllers, the
controller has a port that identifies which physical serial port on the computer workstation
will receive the data.

A variety of different control devices can be used to control the performance. Control
devices are divided into two basic categories: triggers and continuous controllers. Triggers

29

ZED Architectural Design

are devices that send “down” and “up” events and include devices such as pedal and button
switches, or MIDI drums. Continuous control devices send continuous data values and
include volume pedals, modulation wheels, and sliders. An interesting property of the
Stanford Radio Baton is that it can provide both continuous control and trigger control.
Trigger devices are often used for initiating or terminating a note, or a repeated sequence
of notes. Continuous devices are most often used to dynamically update state variables in
the performance. For simplicity it is assumed that all controllers that generate voltages,
such as the Stanford Radio Baton, have their voltages converted to MIDI so that the data
enters the system through a standard MIDI interface.

Scheduling

The scheduler helps the conductor coordinate the performance by maintaining a list of
events ordered by the time that they are to be executed. ZED’s scheduler is a hybrid
scheduler that separately manages events whose time is statically bound, and those whose
time is bound during the performance. ZED’s scheduler also supports multiple time
references, allowing different parts of the score to be under independent real-time tempo
control. The complete hierarchy of classes that define ZED’s scheduler are shown below.

Object ()
QueueEvent (receiver selector parameter next)
QueueNode (time eventList next eventListTail)
Queue (nodelist currentNode tempo nextQueue)
QueueWithOffset (offset)
RepeatedQueue (numberOfRepeats counter queuel.ength)
ZEDScheduler (queuelist currentTime)

The class ZEDScheduler has an instance variable queueList which is a linked list of queues.
Each queue has a list of time ordered nodes that each have a list of all events that are to be
played at the node’s time. Each queue may have its own time reference. The scheduler
merges the queues at runtime, selecting the node with the earliest time by comparing the
next node of each of the queues. Each queue event in the node’s eventList has a receiver
object, a selector for the message, a parameter to the message, and a pointer to the next
event that occurs at the same time. The instance variable tempo on the class Queue allows
each queue to have a different time reference. The class QueueWithOffset is used to
instantiate sequences at various points in the performance. The class RepeatedQueue is
used to optimize repeated sequences.

A detailed discussion of real-time scheduling and ZED’s scheduler design can be found in
Appendix A, Real-Time Scheduling, on page 77.

Patching

The conductor’s instance variable patches contains a collection of patch objects. Patch

30

The Conductor

value

selection 4} [recejver perform: selector with

FIGURE 4.5 ZED patching overview.

Each input is sent to all patches. Each patch applies the associated filter and if the filter selects the input, a
value is extracted from the input. The message Is then sent to the receiver with the extracted value as the
parameter.

objects specify which control inputs are to be recognized by the conductor and what action
is to take place when a control input is received. The class definition for patches is shown
below.

Object ()
ZEDPerformanceObject (name)
Patch (inputController filter receiver selector valueSelector)

Patch objects inherit the instance variable name from the superclass
ZEDPerformanceObject. Each patch consists of: an inputController, containing the object
that receives the input from the controller device; a filter that selects inputs based on some
criterion; a receiver, defining the performance object that is to act on the input; a selector,
specifying the message that is sent to the object when an input is selected by the filter; and
a valueSelector, specifying a message that is sent to the input packet object that extracts a
value that is the parameter to the message specified by the selector. Each time a real-time
input is received, it is passed to all patches, effectively applying an “or” function across all
the patches. FIGURE 4.5 shows an overview of the patching mechanism.

31

ZED Architectural Design

Methods for selecting data are implemented on concrete subclasses of the abstract class
Filter, and are specified by the data filter selector. Methods for data extraction are
implemented by the input packet classes (i.e., MIDIPacket). These methods constitute a
library of reusable methods that can be extended with new methods to process the control
inputs in more sophisticated ways.

Filter Objects

In addition to an input packet class, a concrete filter class is defined for each type of input
controller. The complete class hierarchy for handling MIDI input controllers is shown
below.

Object ()
ZEDPerformanceObject (name)
InputController (conductor)
MiIDIController (port)
Patch (inputController filter receiver selector valueSelector)
Filter (dataFilterSelector parameters)
MIDiFilter (statusCode channels)
ZEDEvent (time)
MIDIPacket (statusByte data1 data2)

Filters inherit the instance variable name from the class ZEDPerformanceObject. Patches
reference filters by their name. The filter’s dataFilterSelector and parameters instance
variables specify a message (and its parameters) that is sent to the input packet object to
filter events based on the packet’s data.

All input packets are instances of a subclass of the class ZEDEvent. ZEDEvent provides an
instance variable for the time that the event is received. Control inputs received from a
MIDI controller are instances of the class MIDIPacket. All MIDI inputs have a status byte
defining the type of event that the filter selects. There are two basic types of MIDI inputs:
channel events and system events (shown in TABLE D.1, and TABLE D.2 in Appendix D).
The status byte of MIDI channel events has two parts, a code and a MIDI channel number.
MIDI channel events also have one or two data bytes (depending on the status code). MIDI
system events have a status byte that is a code and has no channel. MIDI system events
may have zero, one, or two data bytes. The same MIDI packet class is sufficient for
representing either type of MIDI input.

The statusCode instance variable for MIDI filters selects all input packets with the specified
status code. The instance variable channels specifies which MIDI channels events are
selected. The instance variable dataFilterSelector specifies a message that is sent to the input
packet object that will select or reject the packet (by returning true or false) based on the
data values and using the filter’s parameters. These methods may be arbitrarily complex,
but they are generally quite simple and select packets with specific status codes, channels,
and explicit values or ranges of values for datat and data2.

32

Performers

a
Conductor

a MIDI aDSP aDSP FM
Performer Performer . Performer

aMIDI aDSP aDSP
Instrument instrument Instrument

FIGURE 4.6 Performer and instrument interfaces.

Abstract MUSE notes are interpreted by each performer in their playNote: method. This method computes
instrument packets for the particular instrument. These packets are then sent to the device via the
playPacket: method.

Performers

The class Performer is an abstract class used to define performer objects. For each type of
synthesis device, a subclass of the class Performer is required to translate the abstract score
representation into specific synthesis parameters for the synthesis device being played. The
device specific synthesis parameters computed by the performer object are held by a packet
object. There is one packet class for each type of synthesis device interface and this packet
class can be shared with input controllers that use the same interface. For example, MIDI
synthesizers and MIDI controllers use the same packet class MIDIPacket. The packet class
defines the interface between the performer and the instrument and is somewhat analogous

to the instrument specific physical gestures that a live musician applies to an acoustic
instrument.

33

ZED Architectural Design

The class hierarchy shown below defines the basic classes for MIDI and DSP performers
and the corresponding packet classes.

Object ()
ZEDPerformanceObject (name)
Performer (conductor part instrument
interpretationContext scheduleMessage)
MIDIPerformer ()
DSPPerformer ()
ZEDEvent (time)
MIDIPacket (statusCode data1 data2)
DSPPacket (parameterValues)

There is one performer instance for each part in the score, and one instrument instance for
each performer. The instance variable part for each performer is the performer’s part from
the score. The instance variable instrument is an object that encapsulates the device that the
performer object is controlling. (The instance variable interpretationContext is used as a
cache during the performance and the instance variable scheduleMessage is used for
scheduling events.) The instance variable conductor is the conductor object that has the
performer object in its performers collection.

The primary function of the performer object is to compute device specific packets from
the score data for each note in the score in the context of the interpretation symbols. This
computation is done in a method called playNote: that is implemented by each performer
class. The playNote: method computes one or more packets and sends them to the
instrument object. Thus, the interface between the conductor and the performers is
homogeneous regardless of the type of synthesis instrument being played as shown in
FIGURE 4.6. FIGURE 4.7 shows the inputs and outputs of this method for MIDI performers.

Instruments

An instrument object represents a particular voice or timbre that is implemented on the
sound synthesis device. The class Instrument provides an abstraction of the physical
synthesis device and, like the class InputController, requires a subclass for each type of
synthesis device interface. The class hierarchy shown below defines the basic classes for
MIDI and DSP synthesis devices.

Object ()
ZEDPerformanceObject (name)
Instrument ()
MIDIlinstrument (port channel)
DSPinstrument (parameterAddresses)
ZEDEvent (time)
MIDIPacket (statusCode datal data2)
DSPPacket (parameterValues)

34

Performers

MUSE Note

Tonality
Method

Dynamics playNote:

MID! Note On

MID! Note Off

FIGURE 4.7 MIDIPerformer playNote: method.

The MIDI performer's method for playing a note is shown. The note is the parameter to the method and the
method uses the performer’s interpretation context. The interpretation context may be the global
interpretation context defined by the conductor, or may be defined locally by the performer object.

The concrete instrument classes MiDlinstrument and DSPInstrument encapsulate a software
output driver. The packet classes MIDIPacket and DSPPacket define the type of object that
is passed from the performer to the instrument. MIDI instruments have an instance variable
port that refers to which serial port on the workstation is to be used. The instance variable
channel refers to the channel of the instrument’s timbre on the MIDI synthesizer. Each DSP
instrument object has a set of parameterAddresses that are one-to-one with the DSP packet
object’s parameterValues. Each instrument class implements the method playPacket:. This
method is sent by the performer object to generate sound. The parameter to the method is
a packet object for the particular device. The playPacket: method moves the data to the
synthesis device’s hardware interface (a serial port or a DSP card on the workstation’s bus)
causing sound to be generated.

ZED Architectural Design

Performer Specialization

Each synthesis device implements a number of different timbres (or voices) that may have
different semantics as well as different control parameters. Some instrument voices are
percussive (not sustained). Other voices like those for wind instruments are sustained and
may have a variety of capabilities that percussive timbres do not have. Most notably,
sustained instruments need to be explicitly turned off. Some voices may control vibrato
and may change timbre parameters to create different types of note attacks. DSPs are the
most general synthesizers and can be used to implement a wide range of synthesis
algorithms. The synthesis parameters and continuous control capabilities may vary greatly
across these algorithms.

Specialized performer classes may be defined as subclasses of the basic synthesis device
performer class to take advantage of timbre parameters of the instrument voice. Each
performer subclass implements a playNote: method by computing data packets for the
particular instrument voice. One performer class can be implemented for families of
instrument voices that have similar control capabilities as shown below.

Object ()
ZEDPerformanceObject (name)
Performer (conductor part instrument
interpretationContext scheduleMessage)
MIDIPerformer ()
MIDIPercussionPerformer ()
MIDIWindPerformer ()
MIDIDX7Performer ()
MIDIDX7MyPatchPerformer ()
DSPPerformer ()
DSPWaveGuidePerformer ()
DSPAdditivePerformer ()
DSPFMPerformer ()

In the above class hierarchy, there are three subclasses of the generic class MIDIPerformer.
The class MIDIPercussionPerformer in the example is optimized to only send “note on”
packets whereas a MIDIWindPerformer sends “note off” packets and modulation (vibrato)
packets. The class MIDIDX7Performer is used for a specific MIDI synthesizer, namely the
Yamaha DX-7. Instances of this performer class access the specific timbre parameters
provided by the DX-7. The performer class MIDIDX7MyPatchPerformer controls the timbre
parameters for a specific DX-7 patch.

The methods for the specific DSP performer classes are related to the particular DSP
instrument library that defines the synthesis algorithms being used. In general, a performer
class is defined for each of the different synthesis techniques provided by the DSP
instrument library. It is likely that these classes may be refined and enhanced over time as
new synthesis techniques are developed. In the example, the playNote: method for the class

36

Performers

DSPFMPerformer implements plays accented notes by increasing the brightness.

Encapsulating DSP Instrument Libraries

This thesis does not address the problem of real-time music synthesis. Therefore, ZED
relies on existing technologies such as MIDI and DSP synthesis to create the performance.
The classes for DSP synthesis presented in the previous sections provide a framework for
developing DSP synthesis algorithms and encapsulating them with instrument objects. An
attractive alternative to developing synthesis algorithms is to encapsulate existing DSP
libraries such as those provided on the NeXT Computer [Smith et al., 1989]. To
accomplish this, a class called NeXTPerformer is defined as shown below.

Object ()
ZEDPerformanceObject (name)
Performer (conductor part instrument
interpretationContext scheduleMessage)
NeXTPerformer ()

Each NeXT performer object has an instrument that is an instance of the Music Kit class
“SynthInstrument.” The Music Kit class “Note” defines the input to the “SynthInstrument”
object. In the Music Kit, a note is played by the method “realizeNote:fromNoteReceiver:”
implemented on the “SynthInstrument” class. Therefore, the NeXT performer implements
the method playNote: to convert a MUSE note object to an instance of the Music Kit “Note”
class, which is passed as the parameter to the “realizeNote:fromNoteReceiver:” method.
FIGURE 4.8 shows how a note is played by an instances of the class NeXTPerformer. The
NeXT Music Kit takes care of the rest! The class NeXTPerformer could be further
subclassed to provide additional specialization for particular synthesis algorithms
implemented by patches in the Music Kit.

Incorporating Other Synthesis Technologies

Other synthesis technologies can be incorporated into ZED as well, such as the IPE
synthesis hardware [Wawrzynek et al., 1984; Wawrzynek, 1987]. The IPE synthesis
hardware has been used to implement physical models of musical instruments. A desirable
property of physical models is that the parameterization of the instrument maps closely to
intuitive parameters that correspond to physical gestures of live musicians. For example,
an IPE struck instrument (a percussion instrument) has parameters that describe the “type
of mallet,” “how hard to strike,” and “where to strike.” An IPE wind instrument has
parameters such as “how hard to blow” and “how breathy is the sound.” High level,
intuitive parameters make the synthesis models easier to use and understand by composers,
and also reduce the control bandwidth required to control the synthesis. The class hierarchy
below is an example of how the IPE hardware might be incorporated into ZED. The
hardware could be connected to the bus of the workstation and the IPEInstrument would
have a software driver that would memory map the coefficientValues into the corresponding

37

ZED Architectural Design

a
Conductor

a NeXT
Performer

a NeXT
Synthinstrument

FIGURE 4.8 Encapsulating the NeXT Music Kit instrument library.

The messages for lg)laying a note on a NeXT “Synthinstrument” are shown. The NeXTPerformer object
converts the MUSE note to a NeXT Music Kit “Note” and sends the NeXT Music Kit message
‘realizeNote:from:” to a NeXT “Synthinstrument.”

coefficientAddresses. The IPE performer classes would have methods that compute the
model coefficients from the abstract score data.

Object ()
ZEDPerformanceObject (name)
Performer (conductor part instrument
interpretationContext scheduleMessage)
IPEPerformer ()
IPEPercussionPerformer ()
IPEWindPerformer ()

38

Summary

Instrument ()
IPEInstrument (coefficientAddresses)
ZEDEvent (time)
IPEPacket (coefficientValues)

Summary

The ZED design defines objects that define methods for some of the simple behaviors of
each of the components in the live orchestra. A digital music representation is defined for
the score and parts that has the properties of the common music notation used by composers
for printed music. This music representation provides a basis for real-time control because
the note symbols and their interpretation are separated. Performer classes are defined that
map the abstract MUSE notes to packets that are specific to the corresponding instrument
class. ZED’s design relies on the object-oriented features of data abstraction, inheritance,
and encapsulation. The design’s extensibility facilitates the definition of specialized
performer classes that take advantage of specific sound synthesis algorithms. The
definition of performer and instrument classes to incorporate new sound synthesis
technologies is also facilitated. More sophisticated performer interpretations of MUSE
notes can be implemented by subclassing a performer class and overriding the playNote:
method.

Instrument classes hide the low level details of the synthesis hardware from the performers
(just as the details of the physics of an acoustic instrument are hidden from the live
performer). New synthesis devices can be incorporated into ZED by defining a new
instrument class with a playPacket: method for transmitting the data, and a corresponding
performer class with the method playNote:. Existing instrument libraries can also be used
by ZED by defining a performer object that provides an interface to the library.

References

Smith, J. O., Jaffe, D. A., and Boynton, L. Sound and Music on the NeXT Computer.
Preliminary Draft, Menlo Park, CA: NeXT Inc., 1989.

Wawrzynek, J. C. VLSI Concurrent Computation for Music Synthesis. Ph.D. Thesis,
Caltech Computer Science Technical Report, Caltech-CS-5247:TR:87, California Institute
of Technology, Pasadena, CA, 1987.

Wawrzynek, J. C., Lin, T. M., Mead, C. A, Liu, H., & Dyer, L. M. A VLSI Approach to
Sound Synthesis. In Buxton, W. (ed), International Computer Music Conference at
IRCAM, Paris, France. San Francisco, CA: Computer Music Association, 1984, pp. 53-64.

39

40

ZED Architectural Design

Chapter 5

MUSE: A Digital Music Representation

The orchestra performance model requires a digital music representation for representing
score data. Because there was no existing digital music representation that provided the
semantic power of the common music notation used by the live orchestra, a new
representation was invented to be used with ZED. We call our digital music
representation MUSE. The score file format for representing MUSE objects in ASCII files
can be found in §MUSE Score Files in Appendix B on page 89.

The first section in this chapter discusses the common music notation used by composers
for notating scores for live musicians. The key features are identified. Then, the MUSE
score representation is defined as a set of classes defining objects that represent the symbols
in common music notation. The extensibility of MUSE is highlighted to show how it can
be extended beyond common music notation symbols, providing the ability to define new
symbols that can be used to gain precise control over the expressiveness of the
performance.

Common Music Notation

A music notation is a system of written symbols, a language if you will, by which musical
ideas are represented and preserved for study and performance [Read, 1979; Rastall, 1982].
Common music notation is a notation that has evolved over the last few centuries for
notating Western music [Byrd, 1984]. Thus the notation acts as a set of instructions to
performers who create the sound of the music. A digital music representation could be
thought of as a digital encoding of the symbols of music notation by which musical ideas
are represented and preserved to be read and performed by computers.

41

MUSE: A Digital Music Representation

Lukas Foss [Foss, 1976] commented on the balance between music notation and
performance expressiveness in the following way: *. .. Performance also requires the
ability to ‘interpret’ while at the same time allowing the music to ‘speak for itself.”” This
statement applies to music performance by computers as well as by humans. That is, the
dynamic interpretation of a composition is an important component of performance. The
underlying representations of music must allow the performer flexibility during the live
performance while still conveying the composer’s intent. To this end, common music
notation (CMN) is a symbolic representation in which a graphical symbol represents a
musical concept rather than instructions on how to play the instrument (as in tablature
notations of the sixteenth century [Grout, 1973]). CMN support a separation between the
representation of notes and the interpretation of them. Composers communicate the
abstract ideas of the properties of the sound, and leave it up to the live performers and
conductor to carry out their ideas. CMN is basically instrument independent. A composer
can, however, also notate instrument specific information, such as bow markings for string
players or mallet choices for percussion players. If such a part were to be played on another
instrument these symbols would be ignored.

CMN has proven to be a powerful notation, allowing a variety of interpretations to be
applied to the same composition, thus making each performance dynamic and unique.
CMN is also flexible enough to allow composers to extend the vocabulary of symbols to
express twentieth century musical scores such as Boulez’s use of time-varying functions
for tempo [Stone, 1975] and others [Read, 1978; Smith, 1975].

MUSE Overview

There are four basic properties of CMN that are the basis of the MUSE representation:
high-level semantics; separation between the representation and the interpretation;
instrument independence; and extensibility allowing the symbol vocabulary to be expanded
to include instrument specific symbols, as well as symbols for non-Western and twentieth
century musical concepts. MUSE is based on our earlier work in music representations
[Dyer, 1986; Dyer, 1987]. MUSE’s semantics are designed to be sufficiently rich so as to
support the mapping of a variety of types of score files with different semantics to a single
generic MUSE score that can then be played on any ZED instrument.

A number of digital music representations have been defined for use in particular computer
music applications. Many of the representations for music synthesis applications are based
on note lists after those of Music V [Mathews, 1969a]. This representation has a list of
“notes,” each with the set of synthesis parameters required to realize the note. Notes
contain explicit frequencies, start time and end time, and timbre and envelope parameters.
This type of note list representation has the same flavor as the tablature representations of
the Renaissance in that they describe how to play the instrument rather than abstract
musical ideas.

42

MUSE Components

Music V’s note representation is a practical and efficient way to represent non-real-time
sound synthesis, but is inadequate for real-time performance. This is because the synthesis
parameters are statically bound before the performance, thus preventing dynamics
interpretation of the notes. Such note lists are therefore not well suited for interactive
control which requires that the sound parameters be computed during the performance right
before they are played.

MUSE Components

The primary symbols in a score are notes and rests, defining the initiation of sound and
silence, respectively. Each note may have more detailed information for the attack and
articulation, defining the complex envelope of the note. Articulation symbols may also
include instrument specific symbols such as bowing marks for string instruments and pedal
indications for piano.

Notes are interpreted by the performer in terms of an interpretation context that consists of
five interpretation symbols: tonality, tempo, meter, dynamics, and musical style. The
note’s frequency, time, complex envelope, and loudness are not known without this
interpretation information. Some interpretation symbols in a score are global in the sense
that they apply to all performers, and others are local in the sense that they apply to only
one performer or a small number of performers.

Numbers

All numeric values in a MUSE score, such as the time and duration of each note, are
represented as instances of a subclass of the abstract class Number. The class hierarchy for
numbers is shown below.

Object ()
Number ()
Smallinteger ()
Float ()
Fraction (numerator denominator)

A variety of different representations for numbers are supported because different score file
formats use different types of numbers. Smallinteger is typically used for representing time
in milliseconds or some other fractional part of a second. Some computer music systems
represent numbers with Float, but this is often problematic due to round off error. Score
file formats that are used in printing applications generally use some form of Fraction to
allow the precise representation of rhythmic values such as triplets and more complex
rhythms like 11:13, 15:17.

43

MUSE: A Digital Music Representation

MUSE Symbols

Each MUSE symbol is defined as a concrete subclass of the abstract class MUSESymbol,
shown below.

Object ()
MUSESymbol (time)

The class MUSESymbol defines the instance variable time that specifies when the symbol is
to take place measured from the beginning of the composition. The time is in units of beats
rather than physical time, and can be any number as described by the number class
hierarchy. The distinction between abstract time and physical time is important because it
allows the tempo to be under interactive control, thus changing the mapping of beats to
seconds.

Interpretation Symbols

The interpretation context holds a set of the interpretation symbols that define how notes
are interpreted: the tonality consisting of a key scale, a key note, and a tonal system; the
meter defines the metrical pulse; the tempo defines how beats are mapped to physical time;
the dynamics define how loud the notes are played; and the style defines the “feel” of the
composition,

The conductor object has an interpretation context that is global to all performer objects,
and changes to any of the interpretation symbols are communicated simultaneously to all
performers. In addition, each performer object may have their own interpretation context
that may be independent of the global context or may share some state with the global
context. The primary way of controlling a ZED performance is by updating the state of the
interpretation symbols based on real-time input, thus causing the performers to interpret
their notes differently.

The class InterpretationContext is defined below.

Object ()
MUSEObiject ()
InterpretationContext (tempo dynamics meter tonality style)

Interpretation symbols are sticky—when an interpretation symbol occurs in a score, its state
variables stay in effect until the next interpretation symbol of the same type occurs. Exactly
one interpretation symbol for each of the five types is in effect for each note in a
performer’s part.

The class hierarchy for interpretation symbols is shown below. Each interpretation symbol
object may have a name. Interpretation symbol objects can be referenced in configuration
files and patch files by their name. The subclasses of InterpretationSymbol are discussed
in the sections that follow.

44

MUSE Components

Object ()
MUSESymbol (time)
InterpretationSymbol (name)
Tempo (metronomeMarking)
Dynamics (level)
Tonality (keyNote tonalSystem)
Meter (beatsPerMeasure referenceBeat stressSelector)
Style (articulation)

Tempo

The tempo object controls the overall pace of the performance. The instance variable
metronomeMarking stores the instantaneous or current metronome marking as the number of
beats per minute. The tempo class implements the method secondsFor:. This method maps
a number of beats to physical time, as shown below.

secondsFor: beats
“Map the beats to seconds.”
beats * (60.0 / metronomeMarking)

Dynamics

The class Dynamics controls the overall volume of the performance. The instance variable
level stores the current dynamics level. The dynamics level is expressed as the percentage
of the maximum. This unitless value enables device independence, allowing each
performer object to compute their own dynamics relative to the maximum level for their
instrument.

Meter

The meter is the grouping of pulses or units within a single measure, or a frame of two or
more measures [Creston, 1961]. The GRIN computer music system [Mathews, 1976] used
a periodic amplitude function to represent primary and secondary accents for a particular
meter. MUSE defines a class and a set of methods that represents the simple and compound
meters of Western music (such as 4/4 and 6/8 respectively), and also arbitrary periodic
functions such as those used by GRIN.

The instance variables beatsPerMeasure and referenceBeat are used to denote the time
signature of the composition. The instance variable stressSelector is a selector specifying a
method on the class Meter. The method has one parameter, a beat number, and computes
the instantaneous stress for the parameter. The stress is also unitless and is expressed as a
percentage of the value of no stress. Thus, if there is no metric pulse, the method that
implements the stress selector returns the constant 1.0. These methods are used in the same
way that GRIN uses periodic functions for the amplitude. An example method for a
periodic meter for standard 4/4 time is shown below.

45

MUSE: A Digital Music Representation

fourFourStressForBeat: beat

“Return ‘
a primary accent on the first beat of every measure (beats 0,4,8 . . .);
a secondary accent on the third beat of every measure (beats 2,6,10. . .);
no accent otherwise.”

(beat \\ 4) == 0 ifTrue: [.5]

(beat \\ 4) == 2 ifTrue: [M.2]

7.0

Style

The style is generally notated in CMN with text, often Italian, such as allegro con moto,
marcato, minuet, swing, waltz, and adagio. In the absence of any specific articulation
symbol on a note, the style object provides the articulation and attack. The style may also
set the meter and tempo. For example, if the composition is in a marcato style, the default
articulation may be defined to reflect a slight accent on the beat and a slight separation
between notes, and a tempo of 120 beats per minute.

The way that live performers affect their performance to reflect these symbols is largely a
result of musical training and practices that have been handed down from teacher to student
over hundreds of years. A complete exploration and formalization of musical style and a
thorough investigation of possible computational models is note addressed this thesis.
Some systems have developed sophisticated simulations of musical style [Frydén and
Sundberg, 1984] and such algorithms could be incorporated into ZED through performer
subclassing. The basic MUSE style class could also be subclassed to hold more precise
information. For the purposes of this thesis, the style is defined simply as the default
articulation for each note and further expression is provided by the user who is controlling
the performance. The instance variable articulation contains an instance of the class
Articulation, as described in §Articulation on page 52.

Tonality

The tonality defines how the notes’ pitches are interpreted. The MUSE representation of
the tonality is based on a group theoretic representation of Western tonality [Balzano,
1982]. The approach is generalized to represent a wide variety of pitch representations
including non-twelve-tone scales, microtonal scales, and MIDI key numbers. The basis of
the representation is a group that defines the set of all possible pitches in a composition.
For the Western twelve-tone music, the group Cj, = {0, 1,2, 3,4,5,6,7, 8,9, 10, 11}
corresponds to the chromatic scale beginning on the note C. The note middle C is called
the origin of the tonal system. Each of the half steps are numbered as shown in FIGURE
5.1. Pitch sets are also (Eefined to represent scales. For example, the pitch set {3, 5, 7, 8,
10,0, 2} Eepresents an E” major scale because the half step 3 corresponds to E’, 5to F, 7 to
G, 8to A’, etc. A special pitch set, called the natural scale, is the set C7 = {0, 2,4, 5,7, 9,
11}. This natural scale describes the pitches in the C; group that are printed in common
music notation without accidentals and represent the white keys on the piano.

46

MUSE Components

FIGURE 5.1 The group Cy, and natural scale C,.

,011,0/2,0]3,0(4,0]|50]6,0

FIGURE 5.2 Pitches in a C Major scale.

The pitches in a C Major scale are shown. Common enharmonics are shown as two representations for the
same piano key.

The first note in a pitch set is called the key note. The pitch set can be normalized by
subtracting the first note, the key note, from each of the pitches using modulo arithmetic.
Therefore, the E” major scale can be represented as the key note 3 and the pitch set {0, 2, 4,
5,7, 9, 11}, and all major scales can be represented with this pitch set and different key
notes. The MUSE pitch representation expresses the key note as a pitch relative to the
natural scale and the pitches in the score relative to a key scile. It also allows enharmonic
pitches—two different spellings of the same pitch such as E’ and D¥_—to be distinguished.
This is done by specifying an index into the natural scale and an offset in semitones.
FIGURE 5.2 shows how each note in a chromatic scale is represented when used as a key
note.

The MUSE classes representing the tonality are shown below.

47

MUSE: A Digital Music Representation

Object ()
MUSESymbol (time)
InterpretationSymbol (name)
Key (keyNote tonalSystem)
MUSEObiject ()
Pitch (step offset)
Scale (pitchSet)
TonalSystem (chromaticSize naturalScale keyScale tuning)

The class Pitch consists of a step within a scale and an offset representing a distance frorrt
the scale tone. FIGURE 5.3 shows two octaves of pitches represented in the key of E
major.

FIGURE5.3 Pitches expressed in El’ major.

The class TonalSystem has an instance variable chromaticSize that is the total number of
pitches in the tonal system (12 for Western twelve-tone music). The naturalScale defines
the pitches within the chromatic scale that have no accidentals—the C major scale for
Western music. The keyScale is a selection of pitches from the chromatic scale that defines
the pitches that are “in the key,” that is, the set of pitches that have an offset of zero. The
key scale is used to define tonality distinctions such as major and minor in Western music.
The tonality’s instance variable keyNote defines transposition. The key note is represented
as an instance of the class Pitch, defined in the key defined by the naturalScale. Notes in a
composition are represented as pitches with a step and offset relative to the key scale. The
tonal system’s tuning is used to map a pitch in the composition to a specific tuning for a
synthesis instrument.

The generality of this pitch representation is demonstrated by the number of common tonal
systems that can be represented. For example, the Bohlen-Pierce scale [Pierce et al., 1988],

48

MUSE Components

based on a thirteen pitch chromatic scale and nine pitch key scales, can be represented. The
pitches are tuned with an even tempering as described with the following equation:

pitch; = pitch;_; x13/3

TABLE 5.1 shows several examples of common tonal systems and how they could be
represented in the generic tonal system. TABLE 5.2 shows the pitch step and offset units
for each of the tonal systems. As an optimization, MUSE allows MIDI key numbers to be
represented with a single integer rather than an instance of the class Pitch with an offset of
zero. In addition, frequencies can be represented with a floating point number, or as a fixed
point number using an instance of the class Pitch.

During the performance, a tuning object is used to compute the pitch parameter for a
particular synthesizer such as a frequency for a DSP instrument or a key number for a MIDI
instrument. The instance variable tuning for the tonal system has a tuning object that is an
instance of one of the classes defined below.

Object ()
MUSEODbiject ()
Tuning (frequencies)

MIDITuning ()

FrequencyTuning ()

MUSEChromaticTuning ()

MUSEPythagoreanTuning (flatFregs doubleFlatFreqgs
sharpFregs doubleSharpFreqgs)

The instance variable frequencies holds an array of 128 frequencies that are cached to
increase runtime efficiency as frequency calculations may involve trigonometric functions,
nth roots, or other costly computations. The performer object’s playNote: method sends a
message to convert the MUSE pitch to a device specific pitch. Each tuning object
implements one method for each type of instrument pitch parameter. The methods for
MIDI and DSP synthesis are midiForPitch:inKey: and frequencyForPitch:inKey: respectively.
The frequency table may be initialized to values for any tuning system, including tempered
tuning and just tuning.

The class MIDITuning is used when the pitches in a score are MIDI key numbers. The class
FrequencyTuning is used when the pitches in the score are actual frequencies. The class
MUSEChromaticTuning is used when the pitches are MUSE pitches. None of these tunings
distinguish enharmonic pitches. The class MUSEPythagoreanTuning is used to demonstrate
the use of different tunings for enharmonic pitches. The frequencies instance variable for
MUSEPythagoreanTuning has only seven elements and holds the frequencies for the natural
scale from middle C. The instance variables flatFregs, doubleFlatFregs, sharpFreqgs, and
doubleSharpFregs hold the frequencies for the corresponding accidentals. In Pythagorean
intonation, a base frequency is assigned to a pitch. Then the circle of fifths is traversed and

49

50

MUSE: A Digital Music Representation

TABLE 5.1 Examples of Common Tonal Systems

Name chromaticSize naturalScale keyScale
Bohlen-Pierce 13 0,1,3,4,6,7,9,10, 12 0,1,3,4,6,7,9,10,12
Major 12 0,2,4,5,7,9,11 0,2,4,57,9,11
minor 12 0,2,4,5,7,9, 11 0,2,3,5,7,8,10
whole tone 12 0,2,4,5179,11 0,2,4,6,8,10
cents system 1200 0,100,200 . .. 1100 0,100,200 . .. 1100
Pentatonic” 12 0,2,4,5,7,9,11 0,2,5,7,9

MIDI 128 0...127 0...127

MiDIt 2,097,024 0...127 0...127

with pitch bend

Frequency* 2,000,000 0...20,000 0...20,000

* The pentatonic scale shown is based on the basic Chinese scale system. The pentatonic scale can
be transposed to each of the twelve lii pitches and a five-tone scale can be constructed in the proper
interval sequence. A discussion of representing pentatonic scales based on the Western twelve-tone
scale can be found in [Malm, 1977].

1 MIDI pitch bend values are represented in 14 bits (O . . . 16,383). The MIDI pitch bend for no
change is 8,192,. Half of the values cause the pitch to be raised and half cause it to be lowered.
ZED normalizes the values to the range -8,192 < value < 8,191.

} The typical frequency range is 0-20kHz. The representation shown is a fixed point representation
with a resolution of 0.01 Hz.

TABLE 5.2 Pitch Units for Common Tonal Systems

Name pitch step units pitch offset units example pitch

Major diatonic steps semitones C Major: Iil’ =(6,-1)
minor diatonic steps semitones ¢ minor: B”=(6,0)
whole tone whole tones semitones ¢ whole tone: B” = (5, 0)
cents semitones cents ¢ based: B’=(11, 0)
Pentatonic pentatonic steps <undefined> pentatonic: B”=(4,0)
MIDIT MIDI key number <undefined> (key number, 0)

MIDI with pitch bend MIDI key number pitch bend (key number, pitch bend)
Frequency* hertz 1/100th hertz 440.15 Hz = (440, 15)

T MIDI tonal systems have a key note that is a MIDI key number in the range 0 to 127. This key number
is added to the pitch to compute the absolute pitch. For example, transposition up a fifth is a key note of 7.
The key note for the frequency tonal system is a floating point number that is multiplied by the
pitch step frequency to compute the absolute frequency. For example, transposition up a fifth is 1.5.

MUSE Components

for each fifth, the frequency of the previous pitch is multiplied by 1.5 and then normalized
back into one octave. MUSE pitches with an offset of 0 use the instance variable
frequencies; an offset of 1 use sharpFrequencies; an offset of -1 use flatFrequencies; an offset
of 2 use doubleSharpFrequencies; and an offset of -2 use doubleFlatFrequencies. A complete
description of Pythagorean tuning can be found in [Helmholtz, 1885].

The implementation of the MUSE tonal system and pitch representations includes an
algebra that provides operations such as addition (transposition) and subtraction
(inversion). Because pitches are expressed relative to a key note and are mapped to
absolute pitches at runtime, an entire composition can be transposed changing only the key
note rather than all the pitches.

Discrete Symbols

Notes, rests, and cues are referred to as discrete symbols. Cues provide a means of
synchronizing a place in a score with a real-time input. The class definitions for discrete
symbols are shown in the class hierarchy below.! The classes Note, Rest, and Cue inherit
the instance variable time from the class MUSESymbol. Notes and rests have a duration that,
like the time, is in units of beats. In addition to a time and duration, notes have a pitch that
is an instance of the class Pitch defined in §7onality on page 46.

Obiject ()
MUSESymbol (time)
Cue ()
Note (duration pitch articulation)
Rest (duration)

If a score file (such as MIDI) represents notes with explicit “note on” and “note off” events,
MUSE’s score reader pairs the events and represents them with a single note object with a
time and duration. The “note on” occurs at the time of the note object and the “note off” is
dynamically created during the performance and is executed at the note’s time plus the
duration. The duration is an abstract duration, rather than the actual length of the note. The
actual length is described by the duty cycle [Mathews, 1969b] in the articulation of the note
(described in §Articulation on page 52). For example, two quarter notes in 4/4 time both
have a duration of one beat, but one may have an articulation of staccato and the other
tenuto, resulting in the actual lengths of the quarter notes being different. For monophonic
synthesis instruments, the actual length does not exceed the duration. For polyphonic
instruments like the piano, the actual length may exceed the duration by using the sustain
pedal.

In common music notation, notes and rests have a duration and the time of a note or rest is
implicit: each note or rest symbol begins when the previous one ends. Some score file

1. In many score files, such as MIDI score files, rests are not represented explicitly. In MIDI files rests are represented
implicitly when a “note off” event is not immediately followed by a “note on™ event, causing silence.

51

MUSE: A Digital Music Representation

formats such as MIDI use a delta time representation where each event has a time that is
the number of time units after the previous event. The absolute time for an event is the sum
of the delta times of all preceding events. The time and duration representation is
isomorphic to the delta time representation. The equation below shows how the time and
duration are computed from the delta time representation.

n
time, = ZdeltaTimei
i=1

duration,,,, = time,,, o= time, .o,

The time and duration representation can be mapped to delta time as well by sorting all
symbols based on their time, including the implicit “note off” events that occur at the time
of the “note on” event plus the duration. Then each symbol is given the delta time described
by the equation below.

deltaTime, = time,, —time,

Score files that use delta time representations are converted to time and duration by a
MUSE score reader when the score file is read. There are several reasons that time and
duration are used by MUSE instead of delta time. First of all, it is more efficient to
precompute the time of the symbol when the score file is read than it is at runtime.
Secondly, merging individual “note on” and “note off” events into a single note with a
duration makes it possible to interactively control the articulation and duty cycle of the
notes during the performance. (If the “note on” and “note off” events were not paired into
MUSE notes when the score is read, this would need to be done at runtime when the time
for the “note off” event is bound.)

Articulation

Symbols for articulation and attack include staccato (short), tenuto (full length and perhaps
slight empbhasis), legato (smooth and connected), and accent (heavy accent or little
decrescendo). These symbols often affect the duration and intensity, and effect the shape
of the onset and release of the note.

The complex amplitude of a sound is often referred to as the envelope and can be defined
by three segments: an attack, a sustain, and a decay [Mathews, 1969c]. In the simplest
case, the attack, sustain, and decay (ASD) segments are simple linear functions. In general,
however, each segment can be any function such that, when applied in sequence, they form
a continuous function.

ZED does not attempt to provide sample level control of the envelope and instead relies on
the real-time sound synthesis hardware for fine grain envelopes. (After all, humans cannot

52

MUSE Components

control acoustic instruments with the precision of 1/44056th of a second!) Real-time
synthesizers implement the detailed ASD envelopes to reduce the control bandwidth
required from the workstation. MIDI interfaces provide a maximum update rate of
approximately 1,300 to 2,000 updates per second, divided across all instruments being
controlled through the same MIDI interface.?

The maximum number of updates to DSP synthesis models is limited by the processor and
bus bandwidths of the workstation. This number can be affected by the throughput of the
operating system and can vary quite dramatically depending on such things as what other
processes are running and their priorities. Itis not practical to attempt to achieve maximum
control bandwidth to the DSP because the CPU on the workstation is better utilized for
interactive control. ZED therefore assumes that the necessary control bandwidth for DSP
instruments is approximately that of MIDI, namely it does not exceed a few thousand
updates per second.

MUSE provides two representations for articulation with subclasses of Articulation as
shown below.

Object ()
MUSEODbiject ()
Articulation ()
ASDArnticulation (attack sustain decay dutyCycle)
SymbolicArticulation (selector)

The class ASDAnticulation is used for score files that explicitly represent the envelope, such
as MIDI files.> The envelope is represented with instance variables for attack (key down
velocity for MIDI), sustain (continuous pressure values for MIDI), and decay (key up
velocity for MIDI). The attack and decay typically are scalar numbers. All values are
expressed as a percentage of the maximum value, thus maintaining device independence.

The sustain is an array of pairs, each with the time that a sustain update occurs and the
sustain value (normalized to a percentage of the maximum). The time is expressed as a
percentage of the note’s duration. Thus, the sustain times are scaled so that they fit in the
time specified by the dutyCycle of the note. The decay, also normalized, is sent at the time
of the note plus the duration scaled by the duty cycle.

A symbolic representation for articulation is defined by the class SymbolicArticulation. The
instance variable selector contains the selector of a method that dynamically computes the
envelope. Examples include accent, staccato, and tenuto. The message specified by the
selector is sent to the performer at runtime. Methods can be implemented to do most
anything and, because the envelope is dynamically computed, can take advantage of real-
time inputs.

2. The MIDI interface runs at 31,250 bits per second and MIDI updates are either two or three 8-bit bytes in length.

3. As a space optimization for note symbols that originated from MIDI files that do not have release velocities and
pressure values, the articulation instance variable can be the attack velocity rather than an ASD Articulation object.

53

MUSE: A Digital Music Representation

Representing Symbols with Messages

When symbols are encountered in a score file that do not correspond to any of the MUSE
symbols described thus far, MUSE represents the symbol with an instance of the class
Message. Messages are also used for device specific information in score files. Message
objects represent messages that are sent during the performance to a performer, an
instrument, the conductor, or any other named object. The class hierarchy is defined below.

Object ()
MUSESymbol (time)
Message (receiver selector parameters)

The instance variable receiver contains the object to which the message is sent. The
instance variable selector specifies what message is sent. The instance variable parameters
holds the parameters to the method or nil if there are none.

An example of a symbol that is represented as a message is a damper pedal indication on a
piano part. Performers who play instruments that use pedal indications implement the
method damperPedalDown: for their specific instrument. Performers playing instruments
that do not use a damper pedal needn’t implement the method, or may implement the
method to do some other task. Program changes in MIDI files are represented with the
message programChange:. (The MUSE messages for other MIDI events can be found in
TABLE D.2 and TABLE D.3 in Appendix D on page 120.) The MUSE score file format
(described in §MUSE Score Files in Appendix B on page 89) may include arbitrary
messages that are sent to any named object. The score language can be easily extended by
implementing methods on the performer, conductor, and other classes and referencing them
in a MUSE score.

Time-varying Functions

CMN scores often have symbols that represent time-varying functions. Examples of such
symbols are crescendo, accelerando, and rubato. Symbols of this type are also represented
with instances of the class Message. The methods that implement the message are
regenerative in the sense that the receiver performs the task and then reschedules the
message. Regenerative methods of this type can be used for a variety of purposes, such as
changing interpretation symbols such as dynamics and tempo over time. Regenerative
methods can also be defined to generate notes using random number generators, or to play
repetitive sequences. In addition, regenerative methods can be used to directly control
synthesis parameters that vary over time, such as vibrato and timbre changes.

An example of a method that will cause a crescendo from the current dynamics level to a
Jorte is shown below. The dynamics level will be increased by 0.05 four times per beat
until it reaches 0.95. (This is 95% of the maximum, assuming that the dynamics level is
normalized to be in the range 0.0 to 1.0.)

54

MUSE Components

Conductor method
crescendoToForte
| dynamics |
“Get current dynamics.”
dynamics := interpretationContext dynamics level.
“If already loud enough, terminate.”
dynamics >= 0.95 ifTrue: [*self].
“Set new dynamics level.”
interpretationContext dynamics level: dynamics + 0.05.
“Schedule next increment of the crescendo for 0.25 beats from now.”
self scheduleMessagein: 0.25
receiver: self
selector: #crescendoToForte
with: nil.

Organizing Symbols into Scores

Most digital music representations do not provide any structure beyond simple lists of low
level events. In developing MUSE, it was apparent that the representation, as well as
systems that use the representation such as ZED, would benefit from an abstraction
mechanism for capturing the inherent hierarchical structure found in many musical
compositions. MUSE provides hierarchical structures for assembling notes that are based
on techniques developed for VLSI CAD applications [Whitney, 1985].

Hierarchical composition begins with small building blocks called cells. Cells can act as
templates that can be instantiated and combined to create larger building blocks. These
larger building blocks can then be combined, and so on. In VLSI CAD, cells are composed
in rows and columns. For example, a cell that is a one bit adder can be replicated and
composed in a row to create a sixteen bit adder. When cells are instantiated, a variety of
transformations can be applied, such as spatial translation and rotation. At each level of the
hierarchy, higher-level semantics are defined by abstracting from the details of the
structures below. This hierarchical approach has been shown to aid in managing the
complexity of large networks of objects, making the understanding of such structures
tractable.

Composers often create motifs—melodies or phrases consisting of notes and rests—that are
used multiple times throughout a composition. Composers often transform the motif by
applying pitch inversion, transposition, or different tempi. In MUSE, the discrete symbols
for notes, rests, and messages are the cells. Cells can be composed in series by placing them
one after the other in time. The resulting melody or phrase is called a sequence. Cells can
also be composed in parallel, indicating that the symbols are to be played simultaneously.
This type of composition is used to create chords or harmony. The resulting structure is a
parallel sequence. Series and parallel sequences can then be hierarchically composed into
larger, more elaborate series and parallel structures. Such scores take on a free structure
where the leaves of the tree are notes, rests, and messages.

55

MUSE: A Digital Music Representation

MUSE supports a number of transformations on sequences. When sequences are
instantiated, they are translated in time. This means that all tim<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>