STAN-M-7

REAL TIME INTERACTIVE
COMPUTER MUSIC SYNTHESIS

A DISSERTATION
SUBMITTED TO THE DEPARTMENT OF ELECTRICAL ENGINEERING
AND THE COMMITTEE ON GRADUATE STUDIES
OF STANFORD UNIVERSITY
IN PARTIAL FULFILLMENT OF THE REQUIREMENTS
| FOR THE DEGREE OF

DOCTOR OF PHILOSOPHY

by
F. Richard Moore

September, 1977

I certify that I.h'ave rgzd this thesis and that in my opinion fris fu!ly adeguate, in scope

and quality, asa disse#mson for the degree of Ductor of ’Phﬂosophy

. | Qmm & Qua’ﬁa

L \

(Principal Adv‘isor)

i

- 1 certify that I have Lad this thesis and that in my opinion itis fuuy adequau, in seapu

_ and quaiity,as ad on for the degmof Dmc.’?hilmphy.
(. . .
s . L (Musi:)

1 certify that 1 have/rad this thesis and that ir my opinim 13 is fully 369'-!“& in scope

s N

and quality, asa dissFrtanon for the degree of Doctor of Phxlusophy . l ’
|
. (Bell Laboratories)
.
Approved for the University Commiitee on Graduate Studies: . ‘ B

|

(Deari of Graduate Studies)

L

PREFACE AND ACKNOWLEDGEMENTS

Art is, by definition, artifice. A piano is as much a machine as an automabile except, of
course, for certain differences in their emissions. Even the sound of a'piano is the product
of human imagination; it does not imitate anything that occurs naturally, or the sound of
other inventions. With respect to modern history, the piano is a logical consequence of a
combination of the harpsichord with hammer-string instruments such as the clavichord and
the cimbalom. Early pianos did not sound like modern onei. though by the late nineteenth
century the piano had reached modern proportions both physically and sonically, as had
most of the "traditional” instruments. Only recently has the means of music begun to change
once again. The new instruments are electronic, and they are as interes:ing for the questions
they raise as for the sounds they pfoduce. It is now possible to "design” sound itself, and we
are faced with the problem of resolving such questions as what makes a sound musically
interesting, or how we distinguish the sound of a clarinet from that of a loudspéaker.
Computers act as tools for investigating such questions in ways never before possible,
because they give us the means to create virtually any sound that we can understand and

describe accurately. But that understanding is the crux.

Since computer music is both a new and 2 highly interdisciplinary field, it is difficult to
describe accurately to non-practitioners. We will often find ourselves Baving to take into
account, simultaneously, such diverse considerations as the mathematics of digital signal
processing, the psychology of hearing, the science of computers, the rigors of musical
composition, and the mysteries of aesthetics. We often have to leave behind what ean be
comfortably understood with little effort, perhaps too far sometimes. With this in mind I
have attempted to use the simplest possible descriptions consistent with accuracy, rather
than, perhaps, the fullest descriptions; in this way the content will hopefully be as accessible

as possible to non-specialist readers from the various constituent fields of computer music.

So many years have gone into the development of the ideas presented here that it seems

impossible to acknowledge all of the sources of support and encouragement which 1 have

iii

encountered. I would especially like to thank John Chowning and Loren Rush for their
companionship, and their leadership in creating the stimulating environment embodied in
the Center for Computer Research in Music and Acoustics (CCRMA) at Stanford.
Countless conversations with Andy Moorer, John Grey, and Leland Smith have provided a
rich source of technical and philasophical insight. Ted Panofsky and Jeff Rubin of the
Stanford Artificial Intelligence Project have been invaluable sources of engineering
‘information and aid. Interested fellow students who have contributed their time and
energies have included Doug Wilson, Collin Park, Christine Shadle, and Barbara Hoey.
Construction of the music synthesizer was speeded by the joint efforts of Michael McNabb,
Patte Wood, Paul Winecke, Kip Sheeline, and Rick Taube. Julius Smith was the first
person besides myself to build a synthesizer module, and has made many contributions to
the design of the amplitude envelope generator moduile. Robert Poor ahd Ken Shoemake
have been instrumental in realizing the connection between the synthesizer and the
computer with its associated software. Special thanks go to Christine Peutsch for correcting
my misspellings and reuniting my infinitives. Albert Cohen of the Department of Music
provided many useful criticisms of the sections of this thesis dealing with music history.
James B. Angell of the Electrical Engineering Department has provided not only the
support and encouragement of a good thesis advisor, but invaluable insights into the
process of achieving as well. Finally, I would like to thank Max V. Mathews of Bell
Telephone Laboratories, nat only for his encouragement over the past many years, not only
for having started the computer' music field in the first place, not only for demonstrating to

me how to get things done, but for his continued friendship as well.

F. Richard Moore
September 1977
Stanford, California

iv

- TABLE OF CONTENTS -

CHAPTER 1 - INTRODUCTION (1)
music, pitck, loudness, tone quality, spacial relationships.
A Brief Review of the Development of Electronic Music (3)
evolution of music, musique concrate, "pure” electronic music, analog synthesizers and
their limitations, decoding the keyboard.
Digital Music Synthesis (8)
computer music, MUSIC V, digital signal bandwidth.
Synthesis Methodology (13)
physical modelling, additive sjnzlusi:, subtractive synthesis, non-linear synthesis.
Three Ways to Make Brass-like Tones (21)
Risset’s brass tone model, cxdmple: of additive, subtractive, and non-linear brass tone
synthesis.
Real Time Music Synthesis (26)
real time software, the GROOVE system, real time hardware.
CHAPTER 2 - PROBLEM STATEMENT (29)
The "FM Lesson™ (29)
the oscillator algorithm, computing negative frequencies.
Synthesizer Design Specifications (31)
function, cbst. size, flexibilify, :.c{f-cxtmsibili:y, ease of modification, audio fidelity, real
time.
CHAPTER 3 - SYSTEM DESICN (34)
Overall System Description (34)
synthesizer, computer, interactive controls, loudspeahers.
The Synthesizer Control Unit (36) '
time-multiplexing, module intercommunication, control and signal memory format,
communication with the digital-to-cnalog conversion system, éommunicati«m with t)ue

control computer, operating speed.

K>

Constraints on Control Unit Design (42) .
the MV product, trading the number of modules against the time multiplexing factor.
Properties of Interconnection Schemes (44))
“input gatlze;"' vs. “output scatter” connection schemes, alternative solutions.
Programming the Control Unit (49)
signal memory address calculation, module speed, pipelining factors, control unit
schematic diagram. -
CHAPTER 4 - MODULE SETS (53)
Stream Processing (53)
differences between stream and block signal processing.
Module Sets and System Function (54)
general model for module functions.
Low Level Arithmetic and Memory Modules (55) A
arithmetic, delay, and stack processing, mathematical composition of functions.
The Semantics of Module Description (55)
naming conventions, arithmetic conventions.
Music Synthesizer Modules (61) .
@ module set for music synthesis.
Basic Method of Frequency Generation (61)
Jrequency, increment, phase generation.
How Large Should the Sine Table Be? (63)
truncation, rounding, énterpalation methods, signal-to-error noise ratio.
Frequency Precision (69)
scaling and ranging the frequency values.
Economizing Memory (70)
quarter-wave symmetry in the sine wave.
AM, FM, and Band-limited Pulse Modes (72)

extensions to the basic oscillator algorithm, multiple inputs and outputs.

vi

Calculating the Band-limited Pulse Waveform (76)
the “band-limiting” function, discontinuities in the mathematical functions, the
normalization problem. ‘

Nunterical Problems of the Cosecant (83)
“phase jitter” in the cosecant function generation, solutions to the normalization problem.

Description of a Useful Oscillator Module (87)
Jrequency as the time derivative of phase, alternative outputs, o:cillatar. module
description.

Control Function Ceneration (92)
aperiodic, slowly-changing functions for control of synthesis parameters.

Stored Control Funtions (92)
stored function method of control function generation, duration computations, making
attack and decay times independent of note duration. '

Piecewise Linear Control Functions (94)
specification of straight line segments, sufficiency of a small number of segments,
approximating smooth curves such as exponentials. :

Undersampled Control Functions (95)
using lower sampling rates for slowly varying functions.

The Amplitude and Control Function Module (96)
achieving memory economy with slope range selection, piano, organ, repeat, and threshold
modes of triggering, module description. o

CHAPTER 5 - CONCLUSIONS AND OBSERVATIONS (102)

description of the initial implementation of the synthesis system, other modules for music
synthesis, speech and block signal processing, filtering and reverberation modules,

conclusion.

BIBLIOGRAPHY (107)

vii

- LIST OF TABLES -
4-1 Worst-case Signal-to-Error Noise Ratios (SNGR) for the Truncating Oscillator. (66)

42 Worst-case Signal-to-Error Nolse Ratios (SN R) for the Rounding Oscillator. (67)
4-3 Worst-case Signal-to-Error Noise Ratios (SN R) for the Interpolating Oscillator. (68)

viii

11

1-3
1-4
1-5
1-6
1.7

31

3-2
3.3
3-4
35

8.7
4-1
4-2
4-3
4-4
4.5
4-6
.4-7
4-8
4-9

- LIST OF FICURES -

The MUSIC V unit generator notation. (10)

The PHYSICAL MODELLING SYNTHESIS method. (15)

The ADDITIVE SYNTHESIS instrument in MUSIC V notation. (16)

The SUBTRACTIVE SYNTHESIS instrument in MUSIC V notation. 69)
ADDITIVE SYNTHESIS INSTRUMENT for brass tone synthesis. (22)

- SUBTRACTIVE SYNTHESIS INSTRUMENT for brass tone synthesis. (24)

NON-LINEAR SYNTHESIS INSTRUMENT for brass tone synthesis. (25)

Block diagram of a real time interactive computer music facility. (35)

Block diagram of the real time digital hardware synthesizer. (37)

Block diagram of the physical construction of the hardware synthesizer. (38)
ADDRESS MAPS of the signal (M s) and control (M c) memories. (40)

Interconnection of two control units to achieve a more extensive synthesis capability. (45)
General solution fo the interconnection problem. (47) |

Synthesizer Control Unit. (51)

Block diagram of the hardware required for the table look-up oscillator. (62)

Block diagram of the table look-up oscillator running in AM mode. (73)

Block diagram of the table look-up oscillator running in FM mode. (75)

Spectral plot of a band-limited waveform. (77) . 4
Spectral plot of the positive-frequency portion of the "band-limiting” function. (79) -
Waveform plot of the "band-limiting” function. (81)

Waveform plots of the sine and cosine forms of the band-limited pulse waveform. (82)
Illustration of phase errors in the "band-limiting” function. (85)

Block diagrams of two schemes for realizing the "band-limiting” function. (86)

ix

"There is no excellent beauty that hath not soma strangeness in the proportion,”
CHAPTER 1 - INTRODUCTION

Music is "the science or art of ordering tones or sounds in succession, in ;:ombination,
and. 'in temporal relationships to produce a composition having unity and continuity.”
[Wel;ster’s New Collegiate Dictionary, 19731 Therefore, to produce music, it is necessary to
have a) a mean§ of generating sounds, b) 2 means of confrolling the synchrony and
succession of the generated sounds, and c) sufficient insight into human psychology to

understand what is meant by “unity and continuity” in a musical composition.

This ;A)resentation' is concerned with methods of satisfying the first two requirements,
the third is left as an exercise to musical investigations. The sound generation process has
been accomplished traditionally with such materials as wood, air-columns, and stretched
skrings, which can be tr;ade to vibrate in the audible range when excited appropriately by
striking, plucking, bowing, or with rushing air. Extensive experimentation has resulted in a
variety of sounds, obtained from .differen: materials, methods of excitation, and various
meaﬁs of amplifying and modifying the sounds produced by the vibrating substance. We
refer to the overall quality qf sound as its timbre, which concept may be broken down into

the following non-independent attributes:

PITCH, which is the sub Jective impression of the placement of a musical fone within
the audible range of frequencies. Generally, tones which resutt from rapid vibrations have a
higher pitch than tones which result from slower ones. Pitch is often taken to be a
sub jective attribute of a periodic vibration which is proportional to the logarithfn of i-ts

perceived fundamental frequency. It should be noted, however, that pitch is also affected by

1

other attributes of a sound than its frequency, such as its loudness in some cases (e.g., when
the tone is roughly sinusoidal in character), or when the distance between the tonal source

and the listener is changing (Doppler shift).

LOUDNESS, which is the subjective impression of the strength, or amplitude, of a
sound. Loudness is clearly affected by the particular freﬁuency components of a sound, since
the ear is not equally sensitive to all frequencies in the audible range, and by the distance
between the sound source and the listener. Loudness can also be affected by the duration of
a steady tone, for example, due to the phenomena of auditory fatigue and forward and

backward masking.

TONE QUALITY — Nearly every sound which occurs in nature, including musical
sounds, is composed of a combination of vibrations at several frequencies, amplitudes, and
phases, all of which change in a characteristic way throughout its duration. It is this
characteristic temporal evolution of the spectral content of a sound which is responsible for
its overall subjective tonal quality (including, really, its pitch and loudness). Recent
invutigation§ have focused precisely on this evolutionary microstructure of mu.sical sounds,
since it has been found that the classical model of “relative harmonic strength” (due to

Helmholtz) is an inadequate description of tone quality.

SPATIAL RELATIONSHIPS, which refer to the perceived directionality, distance,
and trajectory of a sound source in the "acoustic space” surrounding the listener. The
human auditory mechanism is constructed in such a way as to be sensitive to these aspects
of a sound (probably because it is necessary to know whether the dinosaur or automobile
one is hearing poses any d;nger or not). The radiation pattern of instruments, acoustic

enclosures, and relative position of instrument and listener all play a part in the perception

2

of musical sound.
A Brief Review of the Developinent of Electronic Music

The evolution of music since the sixteenth century has generally been towards
controﬁing each of these sub jective aspects of sound more precisely, and more extensively,
thereby enriching the musical language with new possible utmraﬁces. It is not that
composers of earlier times were unaware of most or all of the sub jective properties of sound,
but simply that they facked the technological tools to contrel them in a very precise way.
New technblogic_al developments of the past, however, often found their way into musical
instrumentation rather quickly. Thus the pianoforte, with its greater range of controllable
loudnesses, foun;‘l favor among musicians over fhe earlier keyboard instruments (it is
interesting to note that the earlier instruments were not replaced by the piano, since music
written for the harpsichord still sounds most convincing when played on the harpsichord,
etc.). New instruments such as the Wagner tuba extended the useful pitch range of the
brasses, and organs with ever-expanded timbral and spatiﬂ capabilities were constructed.
The nineteenth century was a time of great technological innovation, and musical language
expanded along with the capabilities of new instruments. A kind of practical limit seemed
to be achieved in the monster-music produc:ioqs around the turn of the twentieth centuryv
(Stravinsky's Le Sacre du Printemps calls for a variegated orchestra of over 120 musicians,
the works of Mahler, Wagner and Strauss reached gargantuan proportions, both in physical
size and length), and a new interest in more practicable works developed, with great
attention paid to the details of structure and organization, perhaps more than ever before

{Baulez).

Although several new musical instruments were developed during the past 100 years,

3

only a few have found general acceptance {such as Adolp:h Sax’s contribution to the
woodwinds), and even then more by so-called “pop” musicians than by “serious™ musicians.
The schism in music between "pop” and "serious™ modes of expression was exacerbated by
the fact that while the "pop” musicians were searching out new means for traditional kinds
of expressions, the “serious” composers were creating new kinds of expressions — utterances
based on the ability to differentiate among phonemes in a new, or at least radically changed,
musical language (Webern). Inevitably, the music of the past-Schinberg era became .
intelligible to a declining portion of the population, and there ensued a possibility that
“serious” music might be in danger of extinction, as with any other highly specialized field:
concert music was often as unintelligible to most concert-goers as was Latin to congregations

in the Renaissance.

The development of mass communication technology around the middle part of this
century allowed many people to become familiar with the new sonic art/science in the form
of recordings audited through a device capable of producing an enormous variety. of
sounds: the loudspeaker. At first, the electronic media were viewed simply as a means of
dispersing information such as news and music to a wide audience who could choose from
an available program menu. But soon thereafter some musicians took note of the new -
medium as a potential boon to the sonic art/science, and so-called electronic music was born
shortly after the advance of the tape and wire recording techniques of the late 1940%.
Proponents of musique concréite in France found that the requirements of a musical
language could be satisfied through manipulation of tape recordings of natural sounds —
the pitch, loudness, spectrum, and spatial aspects of a bird song could be manipulated by
varying the tape speed, volume level, filtering, and loudspeaker placement of its tape
recording. Synchronization and succession of the obtained sounds were manipula;ed by the
painstaking processes of tape splicing and mixing. And though the techniques were

4

technologically primitive by today’s standards, compositions of great unity and continuity
(Varese: Poeme électronique) were achieved through the application of sufficient patience. In
Germany, a school of “pure” electronic music dispensed with the microphone altogether
(analogous to the idea of producing photographic images without a cameri) and used a
more analytic approach: it was known that music could theoretically be constructed out of
electronically generated “elemental” sounds, such as pure sinuscidal oscillations, and "white
noise,” which contains all audible frequencies in equal proportions. But even though the
sound source was fundamentally different, the same picayune procedures were necessary to

control a composition: dozens, hundreds, or thousands of bits of magnetic tape had to be

spliced together in order to create a satisfyingly complex whole.

Regardless of the means, an essential result of the early electronic music attempts was
the development of a new point of view r@ding the loudspeaker: it could be treated not
only as a reproducer of musical sounds, but as the original source, as a new kind of
generalized musical instrument. And it became obvious that. he who controlled the
loudspeaker had access to a vast universe of sonic possibilities, which, happily, included
many of the traditional ones as well. So the problem.of how to control musical sound
became a question of how to control the loudspeaker. Ob jections were (and are still!) raised
to this approach to music, often based on the fear of "replacement” of something more
desirable’ with something less desirable, even though this seems both historically and
rationally improbable. More important seems to be the new potential for musical expression
and understanding, and the opportunity to "humanize technology,” rather than "dehumanize

music.”

A significant attempt to improve the means for controlling the loudspeaker came in

the form of the analog music synthesizer (e.g, the BUCHLA, the MOOG — named after

S

their designers -~ and the ARP, the SYNTHI, etc.). These ingenious musical instruments
are based on the concept of voltage control of electronic devices, such as oscillators, filters,
.and amplifiers. Control voltages can be generated by musical keyboards, knobs, switches
and dials, or by the oscillators and amplifiers themselves in some cases, so that it is possible
to "play” these electronic devices in real time like any other musical instrument. It is also
possible to achieve a kind of “programmed” control of musical events through the use of
sequencers (a discrete voltage stepping circuit), and other techniques borrowed from analog
computer technology. 'fhe poéular success of analog synthesizers is well-known — Walter
Carlos’ Switched-On Bach sold more Eopies than any other classical disc in recording

history. What is perhaps less well known is their limitations.

A fundamental limitation of analog music synthesizers is accuracy. For example, the
human ear can detect frequency differences of about 5 parts per 1000 when the frequency
of a pure tone is slowly varied about an average value [Zwicker, Flottorp, and Stevéns,
1957), and sudden changes in frequency as much as 30 times smaller than this can be
detected [Rakowski, 19711 If two corﬁplex tones are played simultaneously and electrically
mixed togetﬁer (i.e, if their waveforms are added in a reverberationless environment) then
the slightest mistuning gives rise to audible beats. Also, to have a voltage-controlled
oscillator with a musically useful frequency range such as the range of fundamental
frequencies of a piano, both the signals and the responses to them have to be accurate to
within 0.05Z or so over a range of more than 7 octaves. Sucﬁ accuracy is possible with
analog circuits, but not at the cost-effective level for musical instruments. Another difficulty
is stability. Recent voltage controlled oscillators are very well regulated by electronic
instrumentation standards, but still the ear is quite sensitive to the discrepancies caused by
frequency drift, for example. These accuracy and stability constraints also make it very

difficult to repeat anything exactly, which for a performance instrument is perhaps less |

important than being out of tune, but the creation of electronic music on tape makes
repeatability highly desirable, as does the study of sound qualities.

These limitations have a strong effect on the musical applications of analog music
synthesizers. As a real time performance device, it is fairly difficult to manage due to the
problem of interconnecting the various voltage controlled modules so as to achieve differént
sound qualities, called "patching™ — analogous to setting the Ategistration of stops on an
organ, but with infinitely many more stops. Clever crossbar swifching techniques have been
developed which both eliminate patch cords and make it fairly easy to change from one
paich to another, but even with practice it could take 5 to 10 seconds to repatch a

moderate-sized synthéiza. This is often rather inconvenient, musically.

. Another interesting problem is the one of decoding the information generated by a
piano-like keyboard. Synthesizer patches usually tend to simulate a small ,collection. of
different sounds which are available at any one time. To control this small collection of
"instruments” with a keyboard implies the ability to associate each key being depressed with -
each available instrument. This problem has been attacked through the use of multiple
keyboards (again analogous to organ technique), a limited and expensive solution.
"Polyphonic™ keyboards have been built, and as long as they are used to control more than
one voice of the same tonal quality (as on the organ) they 3ré fine. But consider even two
musical voices of differing tone qualitie§ connected to a single keyboard. If a single note is
depressed, shodld one or the other or both voices sound? This problem iS somewhat
alleviated with real time computer processing of the keyboard information, but no general
solution has been found to date. It seems very likely that new types of real time performance
devices will become desirable to take full advantage of the synthesizer’s potential as a

musical instrument. But it would be of questionable value to sever the connection with

7

present performance technique -- thousands of musicians are already quite adept at the
piano-like keyboard, for example. Many concem[.:orary musicians are leery of the prejudices
associated with the kqboa@, fearing that the ingrained patterns every keyboard performer
has so painstakingly acquired will limit his imagination to clickés which he has already
learned. It seems fairly clear, however, that the ability to use the keyboard in both old and

“new ways will be forthcoming when the meaning of each key can be programmed in a

general way.

The problem of controlling many different sounds and of repatching are most notably
solved by multichannel tape recording techniques, and it has been as a non-real time studio
instrument rather than a performance instrument that the analog music synthesizer has
made its mark on the direction of new music. All of the traditional tape manipulation
techniques may be combined with the flexibility of the synthesizer, which is powerful

enough to obviate the need for excessive post-processing.
Digital Music Synthesis

The analog music synthesizer presents a powerful though limited means of controlling
a loudspeaker, since the loudspeaker can produce many sounds which the analog synthesizer
cannot, such as human speech. Digital computers, however, 'ax;e capable of controlling the
loudspeaker with precisely the accuracy, stability, and repeatability that are lacking in the

analog music synthesizer.

Computers have been used for digital sound processing since the early 1960’s. A great
deal of research has been done on computer speech processing and generation, and volumes

on the digital processing of audio signals now abound. Computer music has also been

8

researched for a similar amount of time, but much less thoroughly, due to the comparatively
limited number of people capable of doing such research (in the past) and the accessability
of computer systems sophisticated enough to allow such research. -~ essentially the same
hardware is required as for digital speech processing, but signal bandwidths are
considerﬁbly greater for music. The first computer music sound synthesis programs were
written by Max V. Mathews at Bell Laboratories in the early 1960's. (This was by no means
the first application of computers to music, however: Lejaren !-iiller had programmed a
computer to compose music as early as 1955. cf. L.A. Hiller's The llliac Suite for String
Quartet, published in 1957) Mathew's programs have remained the basis for most computer
music programs to this day; in particular the MUSIC V i)rogram [Mathews et al., 1969] was

coded in FORTRAN IV and was thus exportable to nearly any computer of sufficient size.

In MUSIC V parlance, the user writes a “score,” analogous to the traditional musical
score, except that in this score it is also necessary: to specify all of the acoustic properties of
each “instrument” employed. Two fundamental -concepts of MUSIC V are the unit
generator, and the stored function. The unit genemorv is a computer algorithm which
simulates the signal processing or producing properties of an imaginary electronic device.
For example, the "oscillator” unit generator (see Figure 1-1) is an imaginary device with
three inputs, one controlling frequency, one controlling amplitude, and one controlling the
waveform being generate;i. The output of the oscillator unit generator is a digital
representation of the specified waveform at the specified frequency and amplitude. An
importaht computational expediency is the storage of exactly one period of any waveform to
be produced as a table of amplitude values, typically 512 numbers long. This stored
function may then be referenced by any unit generator which requires it, and the process of
computing many successive values of sin(t), for example, is replaced by the much faster

table look-up procedure. Thus the oscillator unit generator can produce any periodic

8

FIGURE 1-1: The MUSIC V unit generator notation: the symbol for the oscillator unit
generator is shown at the top. It represents a computer algorithm for producing a
digital signal, Y, which has an amplitude A, a frequency determined by I, and a
waveform F. A typical MUSIC V instrument is shown below (in this case, the
instrument produces " a frequency-modulated waveform). The small circles
represent “inputs” to the instrument, which are supplied as numerical values in the
MUSIC V "score." The frequency of the upper left hand oscillator in this instrument
is set so that it produces exactly one period of its waveform during the duration of
one note; it thereby controls the amplitude envelope of the generated sound.

18

waveform at the rate and amplitude specified at its inputs. These inputs may be constants,
or they may themselves be functions which change over time. For example, to produce a
vibrato, the frequency input may be the sum of a constant and a slowly-varying, low

amplitude sinusoid.

Other unit generators have been designed to perform other signal processing tasks,
such as amplitude envelope generation, filtering, and reverberation. The user of the
program “designs” instruments by combining unit generators in a graphical language similar
to electrical circuit notation, and it is the specification of this “circuit of unit generators”
which is typed as an instrument definition in the score. The stored functions must also be
specified, which is typically accomplished by typing the speciﬁcatioﬁs of either a sum of
sinusoids (additive waveform synthesis) or the specification of a piecewise-ﬁnear waveform
(e.g., for the amplitude envelope). Since any signal processing algorithm method may be
picg.ainmed, the unit generators available depend only on. the imagination and

sophistication of the user.

"Notes™ are then “played” on these instruments as specified in the rest of the score.
Each time an instrument is "played,” all of the "note parameters” of that instfurﬁent must be
given; a single instrumental note might typically require .values for the starting time,
duration, frequency, amplimdé, attack time, decay time, vibrato rate, vibrato deviation, and
sound quality, to list only a few. It is evident that the traditional composer has relied on the
perf(;rmer to "supply values” for most of these aspects of a tone. The MUSIC V kind of
score requires the user to be both composer and performer, since he must specify everything

in advance of the audition of the sound.

The advantages of the MUSIC V-type of direct digital synthesis include the ability to

1

produce virtually any sound which can come from a lm_:dspeaker. l':'urthermore, the
"synthesis model” can be described in terms of a circuit composed of predefined or specially
designed unit generators. The program takes as much time as it needs to perform the
calculations necessary for each sample of the musical waveform, and since there is no

intrinsic limit on this amount of time, any reasonably efficient algorithm may be employed.

Therein lies a rub, however. If the amount of time needed to calculate each sample
exceeds the sampling period of :he'output waveform, the program cannot run in real time,
i.e, it requires more time to calculate the sound than it takes to hear jit. This problem is
solved in the MUSIC V context by storing the samples as they are calculated in some form
of bulk computer memory such as magnetic tape or disc, and playing them back in real time
after they all have been calculated. The well-known Nyquist sampling theorem states that in
order to accurately represent a waveform containing frequenc;y components up to f Hz.
it is necessary to represent that waveform by at least 2f samples for each second. So in
order to cover the audible range of frequencies up to, say, 20,000 Hz, the music pr‘;gram
must calculate at least 40,000 numbers for each second of sound. For stereophonic or
quadraphonic sound, of course, the minimum sampling rate is multiplied by the number of

channels, since the sound emanating from each channel is presumably different.

Further, the precision with which each sample is calculated is responsible for the ‘
overall ;ignal-m-noise ratio of the resultant sound, due to quantizing effects. This factor
can also affect the useful "dynamic range,” or overall available range of usable loudness
levels, of the music. Assuming that the samples are represented in the computer to N binary
digits of precision, and that the "quantization noise” can be characterized by a random
signal whose amplitude is not greater than &+ 1/2 of the least significant bit, then the

theoretical signal-to-noise ratio is approximately equal to 6N dB. Standard, professional

12

quality audio equiphent operates with signal-to-noise ratios of about 60 to 70 dB,, so in
order to avoid intrbducing additional noise due to quantization effects, 12 or more bits
typically have beenf‘ chosen to represent each waveform sample. Combining this measure
with the sampling r{ate restriction given above, we can see that the total bandwidth of the
digital music signal ﬁnas a lower bound of approximately:

| 12 eNf,, _bits/second
where: |
cis 4he number of audio channels,

N xJ the number of bits per sample, and

ij is the maximum frequency of any component contained in the signal

wavaorm.

For a fypicai stereophonic. disc recording with a frequency bandwidth of about 15
kHz, then, a digit#l signal bandwidth of about 7 x 10% bits per second ﬁould be required
to generate such a Loungi in real time. Assuming sequential processing of each sample value
(i.e, that the computer is not a parallel machine), each value would have to be calculated
and output within: 1/60,000 second, = 16 ps. Whether a high speed digital computer can

perform the necesslary calculations within this amount of time depends on the calculation
methodology, whici'l in turn depends on the sy.nthesis algorithm used, though in fact 16 us is
gener:jxlly not enbu%h. Since these algorithms are crucial to the calculation requiiements of
computer music, WL shall review them now. | |
.
Synthesis MethMLlogy
i
Most of thJ current syﬁthesis methods fall into one or more of the following four

13

categories.

PHYSICAL MODELLING -~ In order to synthesize the so.und of a traditional
musical instrument, it is possible to write down a description of that instrument in terms of
the mathematical equations describing its physical operation (see Figure 1-2). Such a
physical-mathematical-acoustical description can then be modified and improved until a
satisfactory match between the physical instrument and the mathematical "model” is
obtained, as determined by listening to the sounds produced by the model and comparing
them to those of the original instrument [Ruiz ,1969). This method is limited because it is
essentially independent of the psychoacoustic characteristics of the musical sound - it is
difficult to see intuitively how to modify such a mathematical model to extend the sonic
capabilities of an instrument, for example. Also, the solution éf a sufficiently complicated set
of differential equations often requires a great deal of computation time, and it is not
usually evident how to speed.such computations without harming the model. This method
may be characterized as an expensive means to achieve excellent imitation of a real musical
instrument, which is typically not the main objective of users of computer music programs

- hence it will not be considered further.

ADDITIVE SYNTHESIS (see Figure 1-3) — Rather than examine the 'properties of
the musical instruments themselves, most computer music research to date has examined the
soun& itself, in an attempt to discover what is perceptually important about a particular
waveform as heard by a listener in a musical context. With Fourier's theorem as a starting
point, the additive synthesis model views any and all sound as a collection of sinusoidal
"building blocks,” each of which varies in frequency, amp\itudel and phase over time in
some characteristic way. Thus if we can both determine the structure of a sound and

reassemble a new sound composed of synthetic components of the same description, then we

14

" The WAVE EQUATION for an ideal stfing:
3%y /3 = T/pS « 3%y/32°
with general solution:

y= gl(x -at) + g,(x +at)
is modified to include the effects of non-ideal characteristics of real strings:

Ny/3 =T /S + 3%y/3x% - ER?/p + 3%/ - b+ dy/3t » by + 3y /08
(ideal string) (stif fness) (friction & damping)

where:

S is the cross-sectional area of the string in cmz,

T is the string tension in dynes,

p is the string density in gr/ cm”,

E is Young’s modugus of elasticity in dynes/ em? for string material, ‘
I is the moment of inertia of the cross-section about a plane going through the center

of the string and perpendicular to the direction in which the string vibrates, in cma,
R = [/8, the radius of gyration of the cross section, in em, .
b ; is a positive cctnstam. accounting for heat dissipation, and

bs is a positive constant accounting {or sound radiation.

The above differential equation is converted into a difference equation and solved for a
given set of boundary conditions at times 0, At, 24¢, .., yielding a digital waveform
resembling that of the physical instrument with sampling rate 1/At.

FIGURE 1-2: The PHYSICAL MODELLING synthesis method illustrated for string
tone synthesis [after P, M. Ruiz: A Technique for Simulating the Vibrations of
Strings with Digital Computer, Master's thesls, Department of Muslc,
University of |lllinols, 1969]: The physical system of the Instrument Is
mathematically modelled first as a differential equation, then converted into a
difference equation. The difference equation is then solved as a function of- time
- on a digital computer. The calculations usually require considerable computer
time, but the correct mathematical model can produce excellent sonic results.

\

i 15

FIGURE 1-3: The ADDITIVE synthesis instrument in MUSIC V notation: Each of the
small circles represents an input for controlling either the amplitude or frequency of
a sinusoidal waveform. These inputs are generally functions of time which describe
the amplitude and frequency fluctuations of each sinusoidal component during a
single note played on the instrument. The instrument is analogous to a generalized
version of the Fourier series in the sense that the amplitudes and frequencies are
not necessarily constants, nor are the frequencies necessarily harmonically related
to one another, '

16

can verify the efficaicy of this synthesis model in general. This analysis-based synthesis has
been accomplished &n certain cases with impressive results (see below), and it seems that
additive synthesis isi‘ the most powerfully general synthesis algorithm available. For example,
Moorer [Moorer, 1575] was able to extract the frequency and amplitude characteristics
(phase was discardL:d due to its apparent unimportance) of ‘components of single rotes
played on .various &nusical, instruments. Tones resynthesized from the data obtafned from
this analysis proved to be musically indistinguishable from their original counterpa-.rts. (This
criterion deserves J special remark: it is not true that in every case the resynthesized tone
was absolutely indistinguishable from the original tone, but simply that the difference was
judged to be music;ally immaterial, i.e., smaller than the difference between two consecutive
tones played by a sidlled performer on the same instrument which are as nearly identical as
possible. Thus musical indistinguishability is not absolute, but Is often a more appropriate
criterion in studies Ef this type.)
i

Following Moorer’s work, psychoacoustic investigations of Grey ([Grey, 1975]
demonstrated that{the component descriptions obtained from Moorer’s analysis could be
grossly simplified \Llithout sacrificing much, if any, of the tone quality of the original sound.
Thus he was able \;to reduce the size of the necessary descri;;tion by a factor of 100 or more
by discarding wh:lt seemed to be perceptually irrelevant in the description obtained from
the analysis. Thef amount of complexity involved in additive synthesis is difficult to
characterize becauLe it varies so widely, but generally it is quite complicated if high quality
tones are desired. brﬁy was able to adequately mimic the sounds of several standard music.al
instruments using '12 to 16 components, each described by piecewise-{inear functions of time
for frequency ana amplitude variations consi;e.ting of 5 to 7 line segments each. The
production of anf single 'compoﬁent is of course a simple task, but with several complex

|
tones sounding at once the sheer bulk of the computation involved soon becomes quite

17

hefty. In computer terms, this type of synthesis procedure wog.ld be most easily carried out
by a highly parallel, distributed computing system, with each computing element having
rather simple calculating capabilities and a modest amount of memory. The typical, large
scale modern computer facility is based on a serial-instruction, centralized processor with
vast amounts of compuiational power and memory which can simulate, ¢ la Turing
machine, the properties of the former, but at a much slower operating speed. T‘hus‘ the
additive synthesis scheme is unlikely to run in real time on typical computers. Special
hardware, such as a large array of rather simple, inexpensive microprocessors controllefl by

a central computer could provide an ideal environment for additive synthesis.

SUBTRACTIVE SYNTHESIS (see Figure 1-4) ~— Additive synthesis is not
particularly well suited to analog music synthesizers due to the inherent lack of precision |
with which they can control individual components of a.sound. The additive synthesis
model more than any other requires the precision inherent in digital synthesis.- Waveform
synthesis is often accomplished in analog synthesizers by starting with a complex waveform
(thus assuring a harmonic relationship between individual components, for exarﬁple), and
then modifying this waveform with filters whose characteristics may vary in time
Subtractive synthesis is also the general appro;ch used in most speech synthesis‘ research.
The excitation waveform might be harmonic, inharmonic, or a noise source, and the’
time-variant filters allow a fﬁirly fine dégree of contral of the spectrum of the resultant
sound. Here the problem becomes one of specifying the filters to be used, and we are usually
concerned with the computational complexity of the filtering system Vand the choice of an

excitation function with desirable characteristics.

Unfortunately, specifying filters involves some rather formidable mathematical

analysis and the criticism has been advanced that filter descriptions, unlike component

18

1 filter

FIGURE 1-4: The ;SUBTRACTIVE synthesis instrument in MUSIC V notation: A
complex waveform (in this case a sawtooth wave which is presumably
band-limited) containing several harmonics Is fed Into a unit generator which
performs the digitépl filtering operation, thereby modifying the spectrum of the
- complex waveform; The inputs for the filter control its the width and position of
its passband. Seve[ral filtering units may be used in tandem to achieve the desired

spectral response. All inputs may be time-varying.

19

descriptions, have no particular perceptual meaning, and h.erice we gain little intuitive
insight into the nature of musical sound modelled in this way. Nor can we experiment easily
with new sounds due to the mathematically capricious behavior of filter coefficients. The
complexity of the calculation depends almost totally on the complexity of the filter, and is
probably about the same as, or slightly less than, that of additive synthesis for comparable
quality. A model of the computational process would include a complex waveform source
driving either a complex signal processing machine, or a series of simpler, identical
machines representing the decomposed filter. It is interesting to note that the overall delay
introduced by this series of simultaneously-operating machines (this is a so-called pipelined
computational structure) is immaterial to real time operation of the system as long as the
total delay is p;erceptually unimportant (less than, say, 100 M). Thus the speed of 'the
calculation is limited c;nly by the speed of the slowest computing element in the serial path.
A high speed, time multiplexed second order filter stage such as the one built by H. Alles at
Bell Laboratories provides the ideal environment for subtractive synthesis. The only
essential disadvantages of subtractive synthesis are its unintuitive nature and the

assumption that the excitation function which provides correct results may be easily found.

NONLINEAR SYNTHESIS — Synthesis models which do not fall into any of the
above categories are generally nonlinear in nature. One of the most powerful nonlinear
synthesis methods was first introduced by Chowning when he described complex waveform
synthesis based on frequency modulation techniques [Chowning, 1973). Since then, many
other similar techniques have been uncovered, some of which are described by Moorer
{Moorer, 1975] These tend to be the most efficient methods — that is why they are chosen
= and they seem -to lie somewhere in between additive and subtractive synthesis as to their
“intuitiveness.” They make various assumptions about the nature of the sound being

synthesized, and they tend to require fewer but more sophisticated steps than the other

28

methods. For example, the band-limited pulse waveform promises to become useful in
con junction with additive and subtractive synthesis as well as in its own right. It is simply

obtained from a trigonometric identity relating the sum of a finite number of angles:

Sy B. 8. B
fg) = ‘;’n‘n(v + kB) = sin{0 + (n-1) :2-} sin(22-) ese(-2—)

If we set O to 2rf;t and 8 to 2rf,t then this relation allows us to assemble a
waveform with a finite number (n) of equally spaced (fz) components positioned starting at
any frequency (f), all with unity amplitude, with a fairly small, fixed amount of
computation independent of 7. In subtractive synthesis, such a waveform allows an
economic method of gaining flexibility in the excitation function, while in additive synthesis
it could easily represent a portion iof a spectrum. The calculation does involve some
sophistication due to the presence of the discontinuous cosecant function, and normalizing
the output an‘wpﬁ:u{kle presents added difficulty. Other nonlinear éechnique-s allow similar
control over the placement and number of frequency components, along with a rough
~ control over their relative amplitudes in some cases, and 2 similar amount of calculation is
usually required, though its nature will vary depending on the method. A set of fast,
complex microprocessors with high speed arithmetic ability would provide a suitable
environment for most nonlinear methods. It is here that the requirements are changing and

growing most rapidly.

Three Ways to Make Brass-like Tones
|
As an examkale of the conceptual difference between these synthesis methods, consider
. a brass-like tone +s modelied by each one. Risset discovered and then verified by means of

|
additive synthesis that a brass-like tone is one in which the frequency components are

a

FIGURE 1-5: ADDITIVE synthesis instrument for brass tone synthesis with
fundamental frequency f: The top row of unit generators produce amplitude
" envelopes for each of the harmonics of the note. The amplitudes are arranged so
" that the higher frequencies attain full amplitude after lower frequency components.
Thus as the overall amplitude increases more high frequency energy is incorporated
in the tone, causing it to have a brass-like character (see text).

roughly harmonic, and the bandwidth is proportional to the amplitude envelope of the
sound (Risset and Mathews, 1969]. The details and location of the spectrum will determine
the exact timbre, but just this much specification is sufficient to insure an unmistakable
brass-like character. Risset defined a set of piecewise linear amplitude functions composed
of 3 segments, an attack, steady state, and decay portion; he then varied the slopes of the
attacks so that higher frequency compon'ents became audible after lower ones (see Figure
1-5). This sum of harmonically-related sinusoids with this set of amplitude characteristics
produced a waveform which obeyed the brass-tone hypothesis given above, and it does
indeed sound brass-like. Somewhere between 10 and 20 components seem to be necessary
before additional improvement cannot be obtained, typical for most additive synthesis

results to date.

An equivalent application of Risset’s brass tone hypothesis to subfr#tive synthesis
results in a complex waveform, such as a band-limited pulse or sawtooth waveform, fed
into a lowpass filter whose cutoff frequency is made proportional to the amplitude envelope
of the desired note (see Figure 1-8). The output of the filter, which abeys Risset’s hypothesis
and thus sounds brass-like, can be implemented with voltage controlled equipment in an
analog synthesizer, since the sources and interconnections are available and the details of
the amplitude envelope and excitation waveform are not too critical.

In nonlinear synthesis (seé Figure 1-7), the brass tone can be accomplished with, for
example, frequendy modulation: |

)= 40 sinf 0, + %ﬁ’- sin(@t)}
where: \
A(#) is the amplitude enveiope function,

, is the carrier frequency (= 277f),

23

low-pass
=1 filter

FIGURE 1-6: SUBTRACTIVE synthesis Instrument for brass tone synthesis with
fundamental frequency f: The same envelope function is used to control both the
overall amplitude of the note and the cutoff frequency of a low-pass filter which
has a complex wave input. Thus higher frequency components of the output
gradually become more prominent as the amplitude is increased during the note, and

it sounds brass-like.

24

‘)
FIGURE 1-7: NONLINEAR synthesis Instrument for brass tone synthesis with
fundamental frequdncy f: Setting the modulating frequency equal to the carrier
frequency produces a harmonic spectrum whose bandwidth is proportional to. the
amplitude of the modulating wave. In this instrument the same function is used to
control both the joverall amplitude and the frequency deviation, causing the
bandwidth to increase with amplitude, producing a brass-like sound.

Auw is the peak frequency deviation, and

W _ isthe modulating frequency.

The quantity Am/wm is called the "modulation index” and more or less directly
controls the bandwidth of the frequency modulated signal (though not its amplitude —
which must be sepﬁrately controlled via 4(t), as shown in the equation) and the values of
W, and W_ affect the placerﬁent and spacing of the frequency components. By setting &, =
0, we can obtain a harmonic spectrum with fundamental @, and if the modulation index
is controlled through variation of A as a function of time, namely A(t), then the spectrum

of the waveform would obey Risset's hypothesis, and the tone also would sound brass-like.
Real Time Music Synthesis

Real time synthesis has-been hampered in th; past by the inability to perform all of
the needed calculations for a given set of notes by any of the available synthesis methods
within ene sampling period of the musical waveform. A very high speed general purpose
computer and a great deal of clever programming h.as allowed a l_imitea amount of real time
synthesis with software [Saunders, 1974 But unless computers become several orders of
magnitude faster than they are, special hardware must be used to achieve more than a tiny
digital synthesis cipability in real time. The computation scheme of the digital synthesizer
must fit the algorithms involved rather exactly, making it difficult to include even modest
amounts of generality in the form of microprocessors and simil;r flexible, low-level devicgs.
The specialized hardware tends to the rapidly varying characteristics of the sound, such as
its waveshape,v while a slower, more flexible general purpose computer controls the slowly
varying characteristics such as overall loudness, channel placement, etc. The approximate
dividing line between the operating time scales of the synthesizer andl computer is the fastest

26

speed of human actién, to which the computer must be able to respond, such as depressing
a key, or twisting ai knob. It seems that most manual human actions can be adequately
described by time functions which sample these actions between 100 and 200 times per
second (Mathews and Moore, 1970]. Thus anything that changes more often than once
every, say, 10 ms. is ‘in the province of the synthesizer, while more slowly varying quantities
are handled by the éomputer, unless there is a special reason to do otherwise. Basically, the
sounds are generate& by the synthesizer hardware, and the corﬁputer controls the synchrony

and succession of the generated sounds.

The GROOVYE system developed at Bell Laboratories was, among other things, an
attempt to study the properties of these slowly-varying functions (GROOVE is a dedicated
digital computer controlling a medium-sized analog music synthesizer via a bank of
digital-to~analog converters). Experience with it tends to confirm that the division of labor
should occur at about 10 ms. As a real time system, GROOV'E- has also indicated the
importance of the interactive user environment, including real time graphics displays-and
conveniently mounted knobs and switches, and the acoustic condition of the room in which

the interaction takes place.

‘ Smah-scale, specialized attempts to construct digital real time music synthesis
hardware have succeeded in the past [Appleton, 1975), but the first really large scale
énempt to build a powerful all-digital music synthesizer is the System§ Concq.:zts' design by
P. Samson. It is a stream machine in concept, processing a continuous stream of samples
much as the analog synthesizer runs continuously, and it embodies the virtual capabilities of
up to 256 “"generators” Qnd 128 "modifiers” which together can perform any of the known
synthesis algorithms, as well as a fair amount of 'reall time signal processing. It includes a

sizable amount of random-access memory for -holding function descriptions and for

27

perforfning reverberation algorithms. Because of its complexity and speed, thougﬁ, the
Systems Concepts synthesizer will be extremely difficult to modify, should the desire to do so

arise, and it is quite expensive (approximately $80,000).

It is the author’s thesis that the desire to modify any music synthesis hardware will
indeed arise, and soon, and repeatedly thereafter. Therefore let us next consider the
properties of a digital music synthesis system which has modifiability as a central

specification.

28

CHAPTER 2 - PROBLEM STATEMENT
The "FM Lesson”

Music is inherently a highly parallel process, even at the intranote level where
individual components behave in an independent manner. Coupled with the fact that it is
easier to modify small, simple machines than to change large, complex ones, the parallel
nature of music suggests that a device designed for its production could benefit from
modularity. Rather than conceive of the music synthesis system as an integrated, fixed, and
highly optimized processor it is useful to consider it as a collection of simple devices, each of
whose function could be easily changed without affecting the operation of any other part of
the system. Such’ ﬂe}:ibility is gained at the price of a‘ certain aﬁonnt of optimality in the
operation of the device for any one algorithm. But the function of such a device as a
musical sound synthesizer is ill-defined at best, if only because it cannot be completely
specified. The different synthesis methods described earliex; each have slightly different
computational requirements, so no one device can operate optimally for all three. Even if it -
could, it is very likely that new synthesis algorithms will be developed. For example, the
earliest versions of music synthesis programs such as MUSIC V contained an oscillator

algorithm as follows:

Oi«F[Si]xAi;

si+1*(si’1i)m°dl“

where:
O, is the ith output sample,
Al is the i‘h amplitude control value,

k increment value (frequency control value),

I, is the if
Si is a cumulative sum of increments,

F{k] is the k* value stared in array F (F might typically
contain values for sin x), and

L is the length of table F.

This algorithm works by stepping periodically (due to the modulus operation)
through a table of stored values. The step size (I.) can be varied to allow differing output _
periods to be obtained. Thus if L values of one period of sizn x were stored in the F array,
- this algorithm would generate a sampled sinuscid with a controllable frequency and
amplitude. (T he.frequency of the output waveform is equal to PL/L, where p is the
sampling rate) Since computer time is often at a premium, and because of the bulk of
computation involved, it is usually necessary to implement this algorithm in the most
efficient possible way on a given machine. In particular the modulus operation (a mod 8), in
order to avoid a time-consuming division, was often implemented by subtracting 8 from «

if o exceeded §:
amodfBu=IFa<f THEN a ELSEa - 8

Because the increment value was typically positive and small compared to L in the

38

above algorithm, thks‘ implementﬁion worked quickly and well. It was in fact the fastest
method, given thé stated assumptions. But the introduction of frequency modulation as a
sound synthesis technique changed one important assumption: the I, were still typically
small compared to Jl.., but they were no longer necessarily positive. In other words, the
oscillatoxf might be asked to generate a negative frequency during frequency modulation
(this occurs whenever the peak frequency deviation exceeds the .carrier frequency, Aw >
(oc). It was a simple matter to change the vae to allow for negative increments, but tixe
point is that it was necessary to do so to take advanzag.e of a major breakthrough in
nonlinear synthesis technique. To change 2 hardwired device would not have been so easy,

if it had been possible at all.

Synthesizer Design Specifications
\

New synthesis procedures, and modifications and improvements to old ones, are being
discovered at an increasingly rapid rate as computer music research progresses. It seems
fair]y certain that the fixed, large scale synthesizer design has enough advantages to insure
its utility for a long time to come. But it also seems likely that there will soon exist syhthesls
methodology incofhp;tible with its capabilities. Furthermore, its complexity is achieved at
fairly high cost, which makes it unlikely that such a machine will become available as a
performing instrument. A less expensive, portable, and flexible device will be useful for
both music performance and as a research tool, even if the total capacity ot; the smaller
machine is less. The desirable properties of the modular synthesizeir may be surﬁmarized as

follows:

FUNCTION - the music synthesizer should provide a reasonably powerful

capability in two realms: as a musical performance instrument, and as a tool for research. As

3

a musical instrument, the hardware synthesizer runs under.control of a small, portable
digital computer system (such as a PDP11/34 with a floppy disc memory) and a set of real
time controls such as knobs and keyboards. As a research toal, a more powerful computer
would probably be needed for control, because of the desire to connect the digital signal
output of the synthesizer back into the computer, which is not the case during typical
performance situations. In either situation a set of modules would be available out of which
the exact configuration of the machine would be selected. Multiple synthesizers should be
allowed to operate together intercommunicatively in order not to limit the overall capability

of the device.

COST - a research machine design (protatype) usually costs more than a design
intended primarily for mass production. It seems that a fair price objective would be a
replication cost on the order of the price of a concert grand piano. This price would not-
include the cost of the control computer system, but neither is such a system restricted to
service the hardware synthesizer. Some properties of the control computer system are likely

to make it intrinsically more expensive than the synthesizer.

SIZE - again the controlling computer system presents more of a physical size
problem than the synthesizer. Since the synthesizer shouldn’t cost more than a grand piano,

it shouldn’t be harder to move either!

FLEXIBILITY - the device should be capable of performing all known synthesis
algorithms in a reasonably efficient manner. It is not necessary that they all be performable
at once, however, since the device is to be easily modifiable. The synthesizer should place as

little restriction as possible on its own applications.

SELF-EXTENSIBILITY -- an extremely useful property of a modular system would
be no absolute restrictions on size or complexity, le, it should be possible to keep adding

modules to perform arbitrarily complex synthesis procedures.

\
EASE OF MODIFICATION -- the device should be as easily modifiable as possible
in keeping with other requirements, such as speed. Module design should be as simple so

that new modules may be developed easily.

\
AUDIO FIDELITY - the device should be in keeping with current professional
audio standards in order to take full advantage of the precision afforded by digital

!
representation and processing of audio signals.

REAL TIME — the device should be able to perform in real time, but if this is not
. | ’ 5
possible, it should degrade in performance speed in such a way that it remains useful as a

non-real time signal generator and processor.

It is possible to satisfy all of these criteria with the hardware synthesizer described in
the remainder of this thesis. It should be noted, however, that the development of the-
synthesizer is only one portion of the complete music generating system, which also includes
a controlling computer with requisite software, and a set of real time interacti\-'e control

-,

devices with which the user may “perform” on the system.
I

CHAPTER 3 - SYSTEM DESICN
Overall System Description

An overall view of a real time interactive computer music synthesis system which
meets the design criteria stated in Chapter 2 is shown in Figure 8~1. The system may be

subdivided into the following subsystems:

SYNTHESIZER -~ a real time digital sound synthesizer capable of generating sounds
by any known synthesis method under computer control,

COMPUTER — a real time digital computer subsystem ;vith its associated software,
bulk memory, and peripheral devices which provides the control data for the synthesizer
hardware, | |

INTERACTIVE CONTROLS — a set of interactive controls which can be
manipulated in real time by the user of the system to achieve a musical performance
capabiiity. and

LOUDSPEAKERS -- an audio playback facility and environment in which the
interactive portion of the system is imbedded, including some standard electronic music

facilities, such as tape recorders, mixers, etc.

All of the above facilities exist as part of the GROOVE system, for examéle. except
for the digital synthesizer. It is not known at this time whether the GROOVE software will
work as optimally for a digital synthesizer as it does for an analog synthesizer. Certainly
some changes will be required to take full advantage of the capabilities of digital synthesis
procedures, but these considerations are relegated to future investigations. We now turn to

the properties of the digital sound synthesizer,

34

disc

' I memory

(real'time inputs) computer (control s!gna!s)
) o A
oct rm;r hardware
perte | synthesizer
audio -
, <
(sound) - eloctronics (audio signals)

- FIGURE 3-1: Block diagram of a real time Interactive computer music facility: The
performer generates Input. information to the computer by manipulating real time
input devices (sucH as knobs, keyboards, switches, etc.). The computer makes a
record of the actions of the performer for later reference, combines the inputs
currently being generated by the performer with previous inputs, and generates
control signals which are fed to the digital hardware sound synthesizer. The
synthesizer produces a digital waveform which can be either fed back to the
computer or output through a digital-to-analog converter to the audio electronics
and loudspeakers (or both). Loudspeakers produce the sound being generated
which can be heard by the performer in real time.

The Synthesizer Control Unit

The real time digital music synthesizer hardware -~ from now on simply "synthesizer
unless otherwise indicated — is shown in block diagram form in Figure 3-2. It is
_ conceptually divided into a control unit, and a set of functional modules. These modules
may be thought of (for the moment) as devices which perform functions analogous to the
unit generators of MUSIC V, such as oscillators, filters, envelope generators, etc.
Information is supplied to the modules by an input bus connecting the control unit to all
module inputs in parallel; the information produced by the modules is likewise routed along
another bus back to the control unit. Physically, the modules are digital circuits wired on
circuit boards which are plugged into slots provided for them on a module mounting rack
(see Figure 3-3), in a manner analogoﬁs to the plug-compatible units found in analog
synthesizers. In the current implementation provision is made for up to 8 module inputs

and 8 module outputs to be routed through a single control unit.

The control unit performs two basic functions. One is time-multiplexing the
operation of each module connected to the system so that its function is replicated several
times for each outpuf waveform sample. Thus a single module represents several "virtual”
devices which perform the function of that module: in the current implementation the
oscillator module provides the equivalent of up to 32 oscillators, etc. No special requirements
are made on the design of the modules themselves, except that if a given module requires
memory in order to perform its function (e.g, a filter may have to "remember” one or mare

- previous output vg!ues), then the module must contain a separate memory for each of its
virtual functions. Small random access memories can be used instead of memory registers in

this case, and present no particular problem to the module designer.

35

control signals
(from computer),

module input bus
] y ' '
control | timing & | module n module module
S unit - e 1 2 T m

T.

module output bus

 FIGURE 3-2: Block diagram of the real time digital hardware synthesizer: The user
selects a set of modules according to the synthesis algorithm he wants to employ.
Each module performs some function such as oscillation, filtering, etc. They are
plugged into the synthesizer, which can accommodate up to m modules at once
(m=8 in the current implementation). The control unit interchanges the signals
among the modules and time-multiplexes their operation, yielding v "virtual"
occurrences of each function (v=32 in the current implementation). The computer
supplies information| to the control unit specifying how the signals are to be
interchanged, and the exact function of each virtual occurrence of the modules.
The computer also supplies real time signals to the synthesizer via one of the
module output connections (i.e., the computer "impersonates" a module producing
signals in real time). One module drives the digital-to-analog converter system,
which generates the analog signals which are fed to the audio electronics.

37

power supply

control panel

(switches, displays, etc.)

control unit

/ cee
/

(module card)

FIGURE 3-3: Block diagram of the physical construction of the hardware
synthesizer: The hardware synthesizer is constructed in such a way as to facilitate
“plugging and unplugging module cards. Provision is made for seme modules to .
occupy more than one circuit card. : - ‘

The control “unit also provides the means by which these virtual devices can
intercommunicate, ie, it allows the 8 x 32 = 256 possible virtual unit generators to be
“"patched” together to form “instruments” in the MUSIC V sense. In addition, the control
unit is used to supply "control” information to each of the 256 possible virtual functions,

which may be used to determine the exact function to be performed, for example.

In order to accomplish the sighal interchange and time multiplexing functions, the
control unit contair};s two high speed, random access memories, a signal memory, M, and a
control memory, M. Each memory is 8 x 32 = 256 words long, the signal memory words
containing 20 bits of information, and the control memory words containing 18 bitS each.
The format of these memories is shown in Figure 3-4: ea.ch.word of signal mgméry M,
holds the signal output of a particular virtual function. The modules are serviced in a
round-robin fashion corresponding to the address format of Mg: first the output of module
0 is stored in M s[@]. then the output of module 1 is stored in Ms[l]. etc, up. to Ms[7]; then
the next outpu.t of module 0 is stored in M_{8], module I's next output goes into M s{9) etc.
This approach allows the value of the address used for M ¢ to be thought of as an 8 bit
quantity which is divided into two fields: the least significant 3 bits correspond to the
number of the module whose output is stored at this address, a value between 0 and 7, and
the most sighificaht 5 bits correspond to the "virtual occurence numbef," a value between 0
and 31, specifyin'gi which of the 32 possible virtual functions represented by this module has
its output stored at this address. Thus M, rr;ay also be interpreted as a 2-dimensional array
indexed by quantities M, a module number between 0 and 7, and V, a virtual occurence

number between 0 and 31. The absolute address in M s is then given by:
[

|
A = [8(V-+]) » M) mod 256

33

SIGNAL AND CONTROL MEMORY ADDRESS MAPS

CONTENTS OF M

(current signa! output
of virtual occurrence V-1

CONTENTS OF M_:

(current input source
plus control bits for

of module virtual occurrencs Y
of module M}

ADDRESS V y e~ 20 bits «5 b+|«3 be|eee 10 b
% 97 7 output of 1@v3l “Vin | Tin |CB for NBVE

1 B 1 output of MIV3I Vin | Hin |CB for NIVE

2 2} 2 output of N2val| “Vin | Tin |CB for M2VE

3 D 3 output of H3val Vin | Hin |CB for

74 B [output of MAV3l)| Vin | Hin for

1Y g 5 output of MSV3l Vin | Hin |CB for 1GVE

[B 4 output of MBY3l Vin | Tin |CB for 1GVE

7] 7 output of M7V Vin | Tin |CB for A7ve
-8 Y output of 1@vg Vin | Tin |CB for MBVL

) 1 T output of MLVE Vin | Tin |CB for MIVI
g 1 2 output of N&Ve Vin | Tin |CB for N2Vl
253 31 5 output of MSV3Q Vin | Min |CB for M5V31|
755 <3 E— Sutput of TV3d Vin | Fin |CB for ﬁsvzh
T STt ST AV Vi | | g e vl

FIGURE 3-4: ADDRESS MAPS of the signal (M,) and control (M_) memories: In

the normal use of the machine the first 5 bits of the 8-bit memory address may
be Interpreted as the virtual occurrence number, and the last 3 bits as the
module number with which a memory location is associated. Thus the 20-bit
word located at Ms[‘w] is the current signal output value for module 2, virtual

occurrence 0 (all counting starts from 0). The location of a signal output in M_

may be modified by the details of a particular module’s operation, such as
pipelining (see text). The 18-bit word located at Mc[m] is interpreted as

follows: the first 8 bits specify which of the 256 locations In M, contains the

signal to be used as the input for module 2, virtual occurrence 1; the last 10
bits specify control information for module 2, virtual occurrence 1.

48

where A is the absolute address in M, of the output signal associated with medule M,
virtual occurence V (the +1 factor comes from the fact that the output of a module occurs

one module service period after the module receives an input).
!

Each 18-bit word of control memory M o May be interpreted as follows: M c[A]’ where
A=8V+M, mnt;ins an 8 bit address Y, and an 10 bit control byte X. The Y address
specifies which of t.ihe-256 possible signals stored in M, is to be connected logically to the
input of virtual fur;ction A as a signal input via the module input bus. Thus the input of
each virtual function may be connected to the output of any other virtual function (an
“input gather® tech;tique as opposed to an 'oﬁtput scatter” technique), making it possible to
“patch” the virtual‘ functions together without making any specié.l physical connections in
the synthesizer. Th; 10 bit control byte X is fed directly to the associated virtual function as
input. The méanin% of these bits is determined entirely by the module; they are typicaily
used to specify scaie factors, or operation codes for selecting a subfunction for a particular
module, etc. Thus Lhe function of any par:iﬁular module is not fixed, since each of the 32
virtual occurrences:' may select among a theoretical maximum of 210 . 1024 possible

I
operations.

One of the modules is the output collector, which drives the digital-to-analog
conversion (DAC) ‘systcm. This module can use its control byte to determine such things as
signal amplitude sEaling or channel placement (any number of audio channels .is possible
~ without affecting the sampling rate of the output waveform). A real time input (RTI)
module is connected via an interface to the control compute.r so that the computer can
supply control signals to the synthesizer as if it were a module. The control computer

communicates diréctly with M, as well as controlling the running mode of the synthesizer.

41

The computer may be optionally connected to the output colle_ctor module via an interface,
so that it may read signal information from the synthesizer, allowing the synthesizer to be
used as a high speed, though not necessarily real time, signal processing device and
calculating aid to the computer. The running modes of the synthesizer include "free” run,
where the synthesizer processes data independently of computer timing (the normal “stream”
mode), and single sample mode, where the synthesizer steps through each of the 256 virtual
functions just once, producing a sihgle sample of the output waveform. The run mode may
be set either by the computer or manually on the synthesizer control panel. Modules
normally perform their operations within one module service period (about 1 ps), during
which time the control unit services all 8 modules exactly once. Since there are 32 virtual
functions to be performed by each module, it takes 32 module service periods or about 32
us, to step through all 256 virtual operations, yielding an output waveform sampling rate on
the order of 32 kHz. This sampling rate provides a usable audio bandwidth of about 14
kHz, which is quite sufficient for most computer music applications. In fact, if the standard
oscillator algorithm given in Chapter 2 is used, and the operation speed of the synthesizer is

ad justed to yield an output sampling rate of 32,768 = 216

Hz, then by virtue of the fact
that the length of the stored table is chosen to be a power of 2 (typically 512 or 2048), the
oscillator increment value is readable directly in Hz., possibly scaled by a power of 2. This
consideration leads to a clock rate of 2°* = 16,777,216 Hz, which is a reasonable choice for
high-speed Schottky logic, and results in a computational convenience saving a great deal of

software calculation by eliminating the need to calculate increments for the oscillator

frequencies. It also yields a module service period conveniently equal to 953,67 ns.
Constraints on Control Unit Design

The maximum values of M and V are determined as follows. First, the MV product is

42

equal to the total number of virtual functions during a sample period of the output
waveform, At. For each virtual function to be performed, it is nécessary to store one module
output value and to read one module input value from M, Assuming that it takes f_
seconds to read information from Ms and t, seconds to write information in it, and that
these two operations are performed sequentially, we see that' the following constraint must

be satisfied:

AyMV 2t +t,
or,

MV s Qe +t)

It is convenient to choosé MYV as the largest power of 2 which satisfies ﬁhis constrﬁnt.
At is chosen to provide sufficient audio bandwidth in the output signil, and the minimum
values for ¢ and ¢ _ are determined by.available semiconductor memory technology.
Choosing At = 2—]5 second as discussed above, we find that currently available random

access semiconductar memories using standard TTL technology have the characteristic:
t +t, =100ns = 2723 second

Thus we have MV < 2 - 256. Choosing MV « 256 maximizes the ﬁumbef of virtual
functions available.} We.now have to decide on the M vs. V tradeoff, keeping in mind that
increasing M increases the amount of hardware that has to be built (medule input-output
connections), and li\creasing V increases the amount of hardware that does not have to be

built. Choosing M too small unduly restricts the number of simultaneously available

43

modules in the synthesizer, while choasing M too large both wastes ﬁardware and limits the
economy gained through time multiplexing the available functions. Setting M = 8 and V =
32 seems to be a reasonable compromise, and yields a module service period equal to A¢/V
= | ps. The other leading possibility was to choose M = V = 16, which would have doubled
the number of module connections (a significant portioﬁ of the cost of the synthesizer),
relaxed the module service period to 2 us, and yielded half the time multiplexing factor per
function. It was felt that since most synthesis algorithms seemed to require a large number
of simple functions that setting M = 8 wﬁs a better initial choice. It is clear, though, that the
basic architecture of the control unit can be used to service anywhere from 1 extremely
speedy module, multiplexed by a factor of MV = V times, or MV = M slow modules which
are not time multiplexed at all The latter case may become more interesting .as
microprocessors become both more inexpensive and powerful enough to accomplish useful

signal processing calculations within At seconds.
Properties of Interconnection Schemes

Two important prope?ties of the control unit iarchit.ecture are that it makes no
particular assumption about the internal operation of any module, and that multiple control
units may be easily interconnected via module input~output (I/O) connections, satisfying the
self—extensibiiity design criterion and allowing a synthesis capability of arbitrary size to be
“assembled.” Ass;sming that one module I/O pair is used to interconnect each control unit to
each of two other control units then N control units provide 7N module I/O connections.
Any given control unit can easily exchange 32 signals directly with ad jacently~-connected
control units (see Figure 3-5); other interconnection schemes are possible if this is
insufficient, with the total number of possible modules being traded against the constriction

of the intercommunication of control units.

34

mi7] | mi7 mil} | mi0

[mo7] [mo7

LEGEND: =

CUN - control unit N, ‘
miN - module input register N,
mN - module N,

moN - module output register N.

"FIGURE 3-5: Interconnection of two control units to achieve a more extensive
synthesis capability: Two independent synthesizers may intercommunicate if one or
“more module input registers on one control unit are connected to module output’
register(s) on the other control unit. This figure shows a possible way of
interconnecting two control units which allows two-way communication of up to
32 different signals from each synthesizer. Any input which is sele¢ted for module -
7 on one machine appears as the output of module 7 on.the other. Other
possibilities include one-way communication, or, more than two control units may
be Interconnected 1(.'.ee text). - Of course, the computer must supply control
information to all synthesizers,

45

This particulat; control unit architecture was chosen because of its conceptual
simplicity and ease of implementation, though several other data-interchanging and
time-multiplexing schemes are possible. We might consider the function of the control unit
from a more general viewpoint in order to see which subset of a more general capability

seems most desirable.

The present control unit does not allow inputs to a particular module to come from
more than one place at once: a single "input-gather” scheme, and outputs are placed in
fixed locations in the signal-interchange memory. A more general scheme would allow any
combinaﬁon of, say, j module outputs to be connected to any comi:inanon of, say, i module
inputs. For full generality‘ this would require.ixj connection points, with ;he property that if
more than one module output is connected to a single input, then these signals are combined
in some appropriate way (usually they would be added together). Since these ixj connection
points are all either on or off (connected or disconnected), there are 2 possible states in
the interconnection matrix (see Figure 3-6). In the present system, { = § = 256, and clearly
the number of possible states would be rather large if a fully general interconnection scheme

is chosen.

The way in which this general interconnection problem is solved dépends on the
types of interconnections which are expected to be commonly used. A typical scheme is
simply to restrict the interconnections so that one module dutput may be selected by any
number of module inputs (“input gathering”), or one module output may be directed to
multiple module inputs ("output scattering”). Either of these schemes correspond to allowing
either only one connection per row or per column in the interconnection matrix, respectively.

The choice here is between letting the addresses in the control memory M ¢ Fepresent where

45

from j module outputs
1 |

Interconnection point

I 11 1
L S a— > |
| o & & & > to | module inputs
—g—0 o &
"input gather"

Ld v ‘
Yy
? "ou‘.tput scéttér“

.

ST

1y
}

2

signal combination with input gather

FIGURE 3-6: General solution to the interconnection problem for j module outputs
and i module inputs Is shown at the top: Any signal coming Into the switching matrix
can be connected to any comibination of lines leaving the matrix; if more than two
signals leave on the same line, they are “combined" (e.g., added) first. "input
gathering" (left middle) allows multiple fan-out connections, while “output
scattering” (right middle) facilitates fan-in connections. Using “input gathering"
requires signal combination to be performed by the module functions (bottom).

47

the input for a particular virtual function comes from (out o{ a fixed menu éf choices) or
where its output is to be placed (into a fixed set of input slots). In either of these cases the
number of possible interconnection states is reduced to either £ log, j or J log, i depending
on whether input-gather or output-scatter is used. Two problems arise with the output
scatter technique, however: two outputs may be directed tqwards the same input, iequiring
that some special combining operation such as addition be performed, and a single output
~may not be connected to several inputs in any convenient way. The latter problem is clearly
not present with the input-gather techniqhe, and the problem of combining several outputs
can be handled by circuitry external to the signal interchanging mechanism. Since the ways
in which musical signals are combined often requires sometfting other than simple addition
(such as weighted sums, multiplication, etc.) it is clear that input-gathering is the preferable -
technique for most cases. The only syntﬁesis technique for which a large number of
. additions must rodtinely be performed is additive synthesis, and this can still be

accomplished via module functions.

Several other solutions to this interconnection problem exist, usually involving
considerably more hardwarel than tﬁe present synthesizer design. For example, the Systems |
Concepts synthesizer contains two so-called “sum” memories to allow for both input and
output addressing simultaneously: any of the 392 signal sources can direct its output signal
to any of 64 "sum” memory locations, where it is added to the signals already accumulated
there since the last sample was output by the synthesizer. Any of these 392 processes can
also “read” the contents of any of these memory locations as well, so 6¢ perfectly general

interconnection paths are available in this machine.

The only other simple scheme for interconnection known to the author at present has

been suggested by P. DiGiunnio of LR.CAAM. in Paris: a number of fast modules are

48

connected to a single; two-way data bus. A control unit for the bus is also connected directly
to every module; the control unit can cause any module to either accept data from the bus
and begin prmesiné, or to output 2 previously calculated piece of data onto the bus. The
control unit contains a list of sequencing commands of the form:
Move output of module A to input of module B

Thus each module can be activated whenever it is needed; In fact, virtually any function
mixture can be obtained in this manner. Hawever, it is difficult to take advantage of
parallel operation of“ the modules, since this would make the programming of the control

unit dependent on the module timing.
|
Programming the Control Unit

The advantages of the control unit design presented here are its economy and
simplicity. It allows the modules to operate more slowly than a sequential operation scheme
such as the one ‘presented above by operating all modules simultaneously - most
high-speed operations are quarantiried in the control unit. It is conceptually simple and easy
to program, and érovides the basic interconnection capability needed for all synthesis
schemes. Its main disadvantage is that it requires the number of virtual occurrences of each
module per sample“period to be constant (32), but this can be partially offset by the use of

modules with more than one function, which will be fully discussed below.

Since the control unit makes no assumption about an.y module’s internal operation, it
is possible for the modules to use the capabilities of the control unit to the fullest extent. For
instance, if a module function cannot be performed within a module service period, two
solutions are possible. One is simply to perform t-he operation in whatever tin;e it takes, not

producing a valid output every module service period. If 2 periods are required, then the

43

module simply operates as if it had a time multiplexing factor of 16 instead of 32, with the
result that only half the signals supplied to M_ by the module would be valid. In general
the operation speed of a module should be a power of 2 times the module service period so

that fixed locations in M s will contain valid data. For such a module,
A = [8S(V + 1) » M] mod 256

where A is the absolute address of the output of the Vth virtual occurence of module M,

which requires S module service periods per operation (1 § 5 32, S a power of 2).

Another possible approach is to pipeline the module, so that a new output is
produced every module service operétion, but that output is associated with the inputs

received by the module P + 1 module service operations ago, 0 s P < 31. Then

As[8(V +1+P)]+M}mod256

This technique, where applicable, does not reduce the number of virtual operations
available, though it does increase the complexity of the module design somewhat. It is
expected that both slower-operating and pipelined modules will be employed to implement

functions which cannot be performed entirely within one module service period.

The general formula relating the address A in signal memory M, of the output of

module M, virtual occurence V, with operation speed S and pipeline factor P can be stated:

A =[8S(V +1+P)+M]mod 256

(W4 ‘HIND Qw." \2 LL-ddu-+0 | £-€ 3dN9I4 LINM TI041INOD ﬂwNHmmIPZ\G

14" 018 3903 °904) $NOTT SUILSION L)

J L
| — w
CSUIASLOIN OU ¥O4 (°1°V) ST WAD A4 h — -
_—r e T e ! evlil,ﬁv
S wo2 8120 m . [} 1 r 1 [-1 - .z N
oo 2w e e[——— _ L——— 71 ® ¥ITJTINIAT "BNOIS - <S>
i I | I 1 J L I] o
oumd moas s wa utevon™ L LS L LS L LI LI L] = HlYd ONOIS 3AIM LIS N - (N)

ovwsuwoon L ML LML UL e

R

(L*+<2>=¢3>) LI X {LN2YIOU»[<Z>]ISU :@=SS :8 d3Lsans
C@ >IN Lo N2> LIS INZY IIUN t1=8S Y dILsens

[| DY 91208 ')
» =
»-
’ ’ ’ » ’ s : ’ : Jom
. . .
. P .
» » » » » 3 » "> "> .
. . e
B 0 . 4,809
» »

JinA”I ~k h]

IR D)

it

pu— ’ pooe g [.
Gug e »
»

. »ar
()
»
T3

T ALY ONITAMMS B9Z '2C 303 SN @2°611 A¥3N3 3NOA) dALS JIsva

Figure 3-7 shows a detailed block @i;gram of the synthesizer control unit as currently
implemented. A 9 bit counter is used to control the M, and M, memories, and to provide
timing and control signals to the moduies. The least significant bit of the counter (<SS’>)
determines which of 2 basic substeps is executed. On the first substep, the module inputs
are supplied with information read from M, and the control byte portion of M, While this
is being done, M, is also updated with information supplied by the control computer.
During the second sﬁbstep, information is written from the module output into M,, while
addressing and control information from M is being read. Representative control signals
are shown, as well as representative TTL part numbers for each of the integrated circuits

used in the control uqit’s fabrication.

CHAPTER 4 - MODULE SETS

The function of the hardware synthesizer is determined by the set of modules which
are connected, and by information supplied from the control computer. It is necessary for
~ the software in the control computer to be compatible with any particular ;et of modules,
but no great difﬁcuﬁy is presented in making the control software general enough to handle
most module functions. The partitioning of the synthesizer into control unit and functional
modules makes it straightforward to design the control software to accept information about
1) the position of any module (slot 0 through 7) inputs and outputs, 2) its operation speed
(i.e., whether it prokuces a valid output every module service period, and/or whether the
output is delayed due to pipelining), and 3) what control bits are accepted by the module,

for multifunction or multimode madules.
Stream Processing

One of the most important assumptions which has been made in the design of this
synthesizer is that it is intended to be used as a “stream processor.” Much specialized"
hardware for digital signal processing has been constructed around the "block processing”
idea in which a "block® of digital samples is placed into a the memory of the special
hardware. This data is then processed as rapidly as possible -according to some fixed,
programmed algorithm of which the Fast Fourier Transform (FFT) is a common example..
If the algorithm can be executed quickly enough for a given size of data block, then real

time operation is made possible.

In a “stream” processor everything happens on a sample-by-sample basis, and it is

uncommon to operate on 2 large amount of darta at any one time. In fact, the only time a

§3

large number of samples is held in the synthesizer's memory is when a sizable delay is
required for such operations as fikering or reverberation. Th'e timing of the “stream”
processor is also totally independently of the computer to which it is attached; data is sent to
the synthesizer at the actual moment when it is desired to change a parameter, such as the
frequency of an oscillator. The oscillator affected will then produce that frequency
continuously until it is set to another value by the computer. It is difficult to characterize
the bandwidth of the data channel from the computer to the synthesizer because of its time -
varying requirements, but the worst case occurs when the computer has to update (i.e,
change) every parameter in the synthesizer at a particular instant in time. Fortunately this

occurs only infrequently, tﬁpically during the initial setup of the synthesizer at the

beginning of a real time run.
Module Sets and System Function

There is absolutely nothing about the architecture of tﬁe synthesizer which resfricts
its use to music. The control unit makes no assumptions about the internal workings of any
module (other than .general speed}, or the types of data it accepts or produ?es. The 20-bit
input and output data may represent a 2's complement fractional values,v floating point
numbers, or sets of binary-coded characters. Also, modules need not be ~— in fact they are
typically not — independent of each other. In principle, a single-input module can perform
any realizable function on that input:

9 « m(x,¢)
where: 9 is the output (signal) of the module,
x is the input (signal),
¢ is a (control) parameter, and

m is the (module) function.

Since the module is capable of making conditional decisions, a general formulation of
the effect of control ﬁarameter ¢ is as follows: .

ifceOtheny« mo(x) ,

ifc=1lthenyemyx),

ifc-jthenyc—mj(x).
or, more compactly: 5

9 e mc(x)

If ¢ is a k-bit number, then any of 2¥ different functions may be specified to
determine how x is ;mapped into y. For example, mo(x) may be :iv;. %, and m ‘(x) may be cos
x. Such functions could be implemented using straightforward table look-up techniques.
Simple digital arith‘metfc circuitry allows the implementation of such functions as m(z) - -x,
or m(x) = x*. If the module contains memory, such functions as m(x) = x ; Ghe unit
sample time delay éaperition), m(x) = x,_, (an arbitrary time delay of d samples), or m(x)

= (x_ +x _)i2 (a simple averaging low-pass filter) may be implemented.
Low Level Arithmetic and Memory Modules

Memory on an arithmetic module can be arranged for use as a stack, which allows the
computation of results which require more than one operand, such as the product of two
numbers. A stack is a LIFO (last-input-first-output) list; items are "pushed” onto the top of

a stack as if it were a pile of pancakes, where only the top pancake is available at any °

§S

particular time. Items can be "popped” from the top of the stack (removed). revealing the
item lying "underneath.” Typically, the top two items on a stack are combined with a binary
(i.e., two-operand) arithmetic operation, such as addition, the stack is "popped,” and the top
item on the stack is replaced with the sum of the previous two top items on the list. Modules
can "push” values onto such a stack (the output, §, produced by this operation is usually not
defined), while other functions can combine the input value with the top item on the stack
in a number of ways. This provides a quite general ‘calculating capability using a

single-input module.

Since the control parameter in the current implementation is specified with ten binary
ciigits, there are 1024 possible functions specifiable for any module, and each of the 32
virtual oécurrences of this module may chqose independently from this size menu (not all
1024 functions are riecessarily ciefined). The choices must be consistent with the way the
module memory operates, since some memory may be assigned uniquely to each virtual
~ occurrence (such as a delay memoary for a digital filter), while other memory can be shared

among all 32 virtual occurrences of the module (such as a stack).

Finally, the input to any virtual occurrence of a module may come from the output of
any virtual occurrence of any module, so module functions may be composed (in the
mathematical sense) to create new ones. For example, if m(x) = xz, then clearly selecting the
output of this function as the input to another virtual occurrence of the module with the
same function results in m(m(x)) = m(x‘?) -t Using a stack memory we can define module
functions such as:

m (x) = (undefined), (push x onto stack S),
m (x) = x + T,(add x to T, the Top item on S, pop S,
and replace T with the new sum), '

S6

m_(x) = xT, (multiply x by T, pop S,
and replace T with the new product), and
m (s) = sin %, (look up sin x, and replace T

with the new value).

We can then iicadc:ulate the function 4 sin with the sequence: m ‘(A), mx(m‘(O)),.
meaning that Qe first execute m (%) with x set to 4, then ex@m m (x) with x set'to 6, and
finally execute m x(:c) with x set to the output of the previous function. With one additional
function for computihg a sum-of-previous inputs:

mg(x) =x +3, _,mod 2P,
in which the output is the sum of the current input and the pievious output (this ﬁmction
does not use the stack memory), and p is determined by the wordlength of the register used
to perform the addition (the modulus operation is obtained by ignoring the overflow from
the addition), we could perform the following sequence: |
m(4), m(mg(w), m (D), :mx(m‘(m(m (m (ma(w IN))

This says first to push 4 onto stack S, then to perform mg on the operand W and to
push the result onto S, etc. The result of all of these operations will be a frequency
modulated waveform with amplitude 4, carrier fréquency proportional to @, , modulating
frequency proportional to @, , and modulation index Awla)m. as the reader may wish to
verify. A repertory of just 5 module functions is required (namely i, +, x, ®, and 4), and 10

operations, or virtual occurrences, of which 32 are available from any one module.

A stack is not needed to perform multiple-operand operations if two or more modules
cooperate in generating a result. If two modules intercommunicate with each other, addition
or multiplication can be performed directly (ie, without a stack). The output of one -

cooperating module could be the sum of the inputs to both, for example, leaving the other

§7

output either unused, or defined to have some v;lid. simu]taneous meaning. We could
arrange to have both the sum and product of two values at once. A dual-input, dual output
"supermodule” would receive a total of 20 bits of control input, allowing over one millioﬁ
supermodule functions to be specified. The control unit "sees” this supermodule simply as
two separate modules, each having its input and output serviced in the usual manner. Of
course supermodules would take up two or more of the eight available module slots, but, as

we shall see later, such extravagance can be well worth the price.

The use of low-level arithmetic and memory modules has two main properties: First,
a high degree of generality is obtained due to the arbitrary ordering and interaction
(through the stack) of up to 52 operations chosen from a possible repertory of 1024
functions. Second, almost any useful computation is likely to take a fairly farge number of
such fow-level steps (virtual occurrences). As usual, generality turns out to be the foe of

efficiency.

There is no absolute efficiency requiremeﬁg however, and even these rafher
inefficient but general low-~level modules may be quite useful in many applications. They
are simple to design and build (compared with somé of the high-level modules discussed
below), and they may provide a powerful tool for module design research. Also, a'low-level
‘module may be useful when imbedded in a set of higher-level modules such as oscillators or
filters for performing occasionally needed operations not availaﬁle from the other modules,
such as direct table look-up, a one or two sample delay, subtraction, logical operations such

as anding and oring, and so on.

\
The Semantics of Module Description

In order to discuss the operation of modules, we need to adopt a notation for
describing their input-output connections:

X J.[0:l9] refers to bits O through 19 of the j”' signal input for a module, with bit 0
being the most significant (leftmost) bi,

C).[O:S] refers no the 10 control bits associated with the j"‘ signal input,

YJ.[O:lQ] refers to the 20 bits of the f" signal output of a module,

Z[0:7] refers td the 8 bits of timing information supplied to every module specifying
the current modulei being processed, M[0:2), and the current virtual occurrence of that
module, V[0:4], where M[0:2]) = Z[5:7] and V[0:4] = Z[0:4], and .

- NO, N1, ... N7 and INO, INL, ... IN?, which are the 16 lines of decoded timing pulses
(see Figure 3-7). These are wired so that each module is serviced v)hen its own NO line is
pulsed, thus allowing the timing of each module to be independent of the slot into which it _

is plugged.

In addition to these 56 inpuﬁ-output connections, each module slot has the necessary
power and grounds, an output register clock (the 6utput registers are clocked by the module
- circuitry), and sevefal “tie” connections (there are a total of 120 connections available) to
allow for intermodule communication (at present, module slots 1 and 2, 3 and 4, and 5, 6,

and 7 are "tied” together with 36 connections).

Unless otherwise stated, it will be assumed that the sighals processed and
interchanged in the synthesizer are 2's complement, fixed point binary fractions, While 20
bits are provided in the signal paths, most signals will be presumed to be represented to 16

bits of precision, right-justified in the 20 bit field. This allows 4 bits to be used as "head

3

room” for overflow, which is often impqrtant in digital filter_ing and/or signal mixing. In
most cases, a module will simply ignore the 4 most signiﬁcani bits of its signal inéut and
output connections. |)

Armed with these conventions, we can now discuss the operation of sets of modules to
perform various' real time functions. Our main interest is in the configuration of the
machine as a music synthesizer. However, a brief description of the modules needed to
configure the machine for several other uses will also be discussed, including a
stream-oriented general real time signal processor and 2 speech synthesizer. The music

synthesizer configuration is discussed first, and in most detail.

€8

Music Synthesizer Modules

Ideally, a music synthesizer should be able to perform the additive, subtractive, and
nonlinear synthesis algorithms conveniently. The following set of modules will fit into a
single control unit synthesizer, and can perform these algorithms: 1) a dual input, dual
output, multifunction osclitator module, 2) a dual input, dual output, mukifunction envelope
function generator module, 8) a dual input, dual output digital filtering module, and 4) a
single input, single output reverberation module. The remaining module input slot is used
for an output collector module which collects, scales, and distributes signals to as many
channels of audio output as are available. The remaining module output slot is used to
interface to the control computer for the purpose of supplying real time control signals to
the rest of the modules (more than one output slot can be used for this éurpose if

available). Some of these modules will now be considered in detail.
Basic Method of Frequency Generation

Several means of frequency generation have been repoxlted in the signal processing
literature [Rabiner and Gold, 1975), including generation of sinusoids from difference
equations, complex arithmetic involving the number ¢ to an imaginary exponent, etc, but
the most economical method by far seems to be the table look-up method already described
in Chapter 2. The basic hardware elements required to implement this method are shown
in Figure 4-1. A number determining the frequency, called the increment, is repeatedly
added to a register (called the sum-of-increments, or phase register) at each clock pulse,
where the clock frequency is tiere taken to be equal to- th.e sampling rate. By a suitable
choice of register width and table length, the modulus -arithmetic is automatically performed

by ignoring the register overflow, and the contents of this register are used to address a

61

increment

(b)

- phase

register l

clock pulses

(k,)l

MEMORY
contalning

Zk waveform
samples

l

(digital output signal)

FIGURE 4-1: Block diagram of the hardware required for the table. look~-up
oscillator. At-each clock pulse (where the clock frequency is equal to the sampling
rate), the signed, b-bit increment is added to the sum-of-increments, or phase,
register. The uppermost k bits of this phase value are used to address a
random-access (possibly read-only) table memory containing samples of one period
of the waveform to be produced. Extensions to the basic method shown above
include rounding the k-bit address by the (k+1)st bit of the phase value, or
interpolating between adjacent table entries. The quality of the digital output signal
.is affected by slight errors due to the finite length of the table (called "phase
jitter") and amplitude quantization errars due to the finite wordiength of the table
entries. Measurements of the effects of these errors are given in tables 4-1, 4-2,
and 4-3 for three different table-addressing schemes: truncation, rounding, and
interpolation. -

waveform memory containing Zk samples of one period of the (periodic) waveform to be
generated. The exact method of forming the table address is important in determining the
quality of the digital output signal. The increment value is related to the frequency of the

output waveform by the formula [Mathews et al., 1968k

»

increment = (frequency) (table length)

(sampling rate)

which implies that

(increment) (sampling rate)
frequency = (table length)

We see that the increment represen:s' the size of the step taken through the table for
successive values of thé output waveform. If the increment is equal to i.o, each period of
the output wa‘veform will contain ‘exactly as many samples as there are in the table, yielding
a frequency equal to the sampling rate divided by the table length. Doubling the increment
doubles the frequency, and vice versa. However, most frequencies do not yieﬁ intéger
values for the increment, so normally one of three methods is used to handle such cases: the
truncation method, in which the integer part of the sum-of-increments is used directly to
address the table, the rounding method, in which the sum-of-increments is rounded to the
nearest integer, which 1s then used to address the table, or the interpolation method, in

which some fom; of interpolation between successive table values is formed.
How Large Should the Sine Table Be?
In order to determine how large to make the sinusoid table (i.e, how many entries -

and how much precision it need have) we can compare the signal quality for each of the

83

three methods given above, truncation, rounding, and interpolation, to the quality of an
"ideal” digital waveform. This signal is “ideal® in the sense that it is computed to the full
accuracy of a ".46 bit general purpose computer at each sample, so that both "phase jitter”
due to the finite length of the table and quantization noise are at minimum value;. Further,
it is assumed that these minimum values are well within the tolerance levels of acoustic
perception, ie, that the "ideal” digital waveform sounds as pure as the analog audio

equipment will allow.

The method for making the comparison is as follows: the addressing mode is chosen,
and the table length and width are set to selected values. Only table lengths which are
powers of two are considered because of their convenience in hardware implementation. A
computer program then simulates the operation of the'h;rdwére built to these specifications
and the computed waveform is compared against the “ideal" waveform. The percentage

root-mean-square amplitude of the error signal is determined according to:

k=1
2
"z,o i ideal(n) -/ mt(n) }

Percentage RMS error =) -

where:

fidea™ represents the a*® of & samples of the “ideal” waveform at times a7, n = 0,
1, .. (k-1), and T is the sampling period,
A “t(n) is the analogous waveform generated by the hardware simulator, and

¥ is a normalizing factor, = 100/.707 to yield RMS in percent.

84

It is found that the RMS error depends on the relationship of the table length to the
frequency of the generated sinusoid. By trying several frequencies the "worst case” error can
be determined —- in most cases the worst case appears when the increment values are close
to but not equal to 1.0 . If the error signal itself is considered to be a noise added to the
"jdeal” waveform, and if the amplitude of this noise is compared with the overail amplitude
of the signal, we can infer a signal-to-error noise ratio (SN,R) and the results of such

calculations are shown in Tables 4-1, 4-2, and 4-3.

In Table 4-1 the SN ;R values are given in dB for the truncation method, and the
last value in each row indicates thé largest ratio achievable for a given table length.
Apparently adding more bits of precision does not increase this value because the error is
then principally due to the finite length of the table, resulting in instantaneous phase errors
in the test signal. Inspection of the table yields the rule that when the truncation method of
table look-up is used, if the table is 2* words long, then the signal can benefit from no
mo;'e than & bits per table entry (not including a sigﬁ bit), and the limiting SNGR is
approximately 6(k-2) dB. This makes intuitive sense from an information theoretic
viewpoint, since we would expect that J:"bi:s of information input cannot yield more than %
bits of information output. Similar results are shown for the rounding and interpolation
methods in Tables 4-2 and 4-3. It can be seen that rounding increases the SN R by about 6
dB compared to truncation for a given table size, since rounding allows the output signal to
benefit by one more bit of table precision. (Again, from the standpoint of information
theory, we “take account” of k + I bits of input, so we get k + I valid bits of output)
Interpolation greatly increases the output signal accuracy and is clearly of interest when
memory must be conserved. Interpolation requires additional arithmetic and memory
accesses, however, so it is intrinsically more time-consuming than either of the other

methods. The method of interpolation is as follows: if we take i and f to be the integer and

65

SIGNAL-TO-ERROR NOISE RATIOS (SNeR) FOR THE TRUNCATING OSCILLATOR

-

by waveform memory size .
(table entries are In dB)

MEMORY WORDLENGTH (in bits, not including the sign bit) -
MEMORY
LENGTH
(one period,
in words)
i

32 | 18.4 | 18.6
64 | 26.1 | 26.1 | 24.3

|

1287| 27.9 | 29.8 | 30.8 | 30.4
256 | 38.5 | 3¢.2 | 35.6 | 36.3 | 36.3
"§12 | 31.7 | 36.6 | 48.8 | 41.6 | 42.1 | 42.4

1024 | 32.8 | 37.7 | 42.7 | 46.1 | 47.7 | 48.2 | 48.4
70648 | 32.1 | 38.8 | 43.6 | 48.6 | 52.1 | 53.6 | 64.2 | 54.4
4896 | 32.1 | 38.8 | 43.9 | 49.6 | G4.6 | S8.1 | 59.7 | 68.2 | 60.4 |

Rule for truncating oscillator: if the table has 2 entries, then each entry optimally should be specified
to k bits of precision (not including the sign bit), and the SN R achievable will then be 6(k-2) dB.

Table 4-1: Worst Case Signal-to-Error Noise Ratios (SN eR) for the truncating

oscillator. If the truncating addressing scheme Is used with a waveform table containing
612 samples of one period of a sinusold, and each sample has 8 bits of magnitude, the
noise due to "phase jitter" and quantization errors will be 42,1 dB below the signal
level, according to this table (see text for an explanation of how these values are
calculated). No improvement is gained by adding more bits of precision to the table
~ beyond the last value in each row of the above table, since at this point virtually. all
the noise in the digital signal is due to the finite table length. Using this data it is
possible to design digital hardware or software with "optimum" waveform memory

sizes. .
66

SIGNAL-TO-ERROR NOISE RATIOS (SN eR) FOR THE ROUNDING OSCILLATOR

by waveform memory size
(table entries are in dB)

MEMORY WORDLENGTH (in bits, not including the sign bit) -
MEMORY
LENGTH
(one period,
in words)
i

32 | 22.7 | 23.4 | 23.5

B4 | 27.4 | 28.9 | 29.7 | 30.2

128 | 30.5 | 33.8 | 35.2 | 36.2 | 36.3

"Z56 | 31.6 | 36.7 | 39.9 | 41.7 | 42.1 | 42.3

612 | 32.1 | 37.7 | 48.5 | 45.9 | 47.6 | 48.2 | 48.3
1024 | 32.1 | 38.0 | 43.6 | 48.7 | 52.8 | 53.6 | S4.2 | 54.4

2048 | 32.1 | 38.0 | 43.9) 49.6 | S4.7 | 8.8 | 59.7 | 68.2 | 60.4

Rule for rounding oscillator: if the table has 2 entries, then each entry optimally should be specified
to k+1 bits of precision (not including the sign bit), and the SN R achievable will then be 6(k-1) dB.

Table 4-2: Worst Case Signal-to-Error Noise Ratios (SN eR) for the rounding

oscillator. If the rounding addressing scheme Is used with a waveform table containing
512 samples of one period of a sinusoid, and each sample has 8 bits of magnitude, the
noise due to "phase jitter" and quantization errors will be 47.6 dB below the signal
level, according to this table (see text for an explanation of how these values are
calculated). No improvement is gained by adding more bits of precision to the table
beyond the last value in each row of the above table, since at this point virtually all
the noise in the digital signal is due to the finite table length. Using this data it is
possible to design digital hardware or software with "optimum" waveform memory
sizes.

67

SIGNAL-TO-ERROR NOISE RATIOS (SN eR) FOR THE INTERPOLATING OSCILLATOR

- by waveform memory size
(table entries are in dB)

MEMORY WORDLENGTH (in bits, not including the sign bit) -

MEMORY
LENGTH
(one period,
in words)
i .
8 9 18 11 12 13 16 15 18 17 18
32 | 48.0
64 | 57.1 | 68.1 | 58.9
1287 | 62.5 | 67.5 | 78.1 | 71.1 | 71.3 |
256 | 6.3 | 61.5 | 68.9 | 73.7 | 79.5 | 82.3 | 83.4
612 | 6.5 | 61.6 | 68.8 73.3"_73.8 85.6 | 92.6 | 94.8 | 95.1
1024 | S6.1 | 61.7 | 68.4 | 73.9 | 0.2 | 5.8 | 92.3 | 98.7 |183.9 {195.9 |107.0
2048 | 56.0 | 61.9 | 68.8 | 74.1 | 80.2 | 86.8 | 92.4 | 98.4 |104.8 |119.2 |115.4

Rule for interpolating oscillator: if the table has 2* entries, then each entry optimally should be
specified to 2(k-1) bits of precision (not including the sign bit), and the SN R achievable will then be

6k dB.

Table 4-3: Worst Case Signal~-to-Error Noise Ratios (SN eR) for the interpolating

oscillator. If the interpolating addressing scheme Is used with a waveform table
containing 512 samples of one period of a sinusoid, and each sample has 8 bits of
magnitude, the noise due to “"phase jitter" and quantization errors will be §6.5 dB
below the signal level, according to this table (see text for an explanation of how
these values are calculated). No improvement is gained by adding more bits of
precision to the table beyond the last value in each row of the above table, since at
this point virtually all the noise in the digital signal is due to the finite table length.
Using this data it is possible to design digital hardware or software with "optimum"

waveform memory sizes.
68

fractional parts of the sum-of-increments register respectively, then interpolation involves
evaluation of either:
sin{ i+ f) = sintable(i) + f{ sintable(i+ 1) - sintable($)} (1)
or .
sin{ i + f) s sintable(i) + f costable(i) (2)
The second method is based on the fact that sin x = x for small x expressed in
radians. Unfortunately f is not expressed in radians, so this otherwise attractive method

does not compare favorably with method (1), which was used to compute Table 4-3.
Frequency Precision

Next, the precision of the increments has to be considered. In order to represent both
positive and negative frequencies (the lacter occur in frequency modulation synthesis of
complex audio waveforms) the increment must be a signed quantity of, say, m bits. If the
increment and sum registers each contain m bits, then the frequency range of the oscillator

2m:-1

from zero Hertz to the Nyquist frequency is simply divided into equal steps. For

example, a sampling rate of 2% = 32768 Hz. and an increment size of 16 bits (including

2% Hz. into 2

sign) divides the frequency range of 0 to equal steps, each 0.5 Hz in
width. This is sufficient accuracy to be psychoacoustically acceptable above about 200 Hz,
‘but this resolution becames increasingly intolerable at lower frequencies [Roederer; 1973).
For example, a smooth-sounding, slow portamento between about 50 to 100 Hz. would be
impossible, since the abrupt changes of 0.5 Hz are sufficiently large to be audible,

producing a kind of “graininess” in the sound of the changing frequency.

Two solutions to this problem are either to make both the increment and sum register

longer, or.to simply make the sum register more precise and allow the increment to be

63

arithmetically shifted to the left or right, thus making the range and frequency resdlution of
the oscillator variable. For each bit the increment is shifted to the right, the maximum
frequency achiev.able is halved and the frequency resolution is doubled in accuracy —
exactly the kind of relationship desired since frequency resolution is more of a problem at
low frequencies than at high. The increment-shifting scheme also minimizes the bit-width
of the required signal paths for controlling the oscillator with a time-varying increment
control signal. Alsg, it is possible to apply not only scaling to the frequency specification, but
ranging as well. Suppose we are shifting the 16-bit frequency value to the right by one bit.
Then we have an upper frequency limit of about 8 kHz instead of 16 kHz, and a
frequency resolution (minimum step size) of 0.25 Hz. instead of 0.5 Hz. If we provide a
mechanism for inverting bit I (the bit just to the right of the sign bit), then we can select
whether the frequencies will be those between 0 and 8 kHz, or those between 8 and 16
kHz. This is a typical application of the control bits which come in with the frequency
specification; if some are used to set the scale, then others can be used to set the range. (Note
that the range bits must be exclusive or-ed into the scaled frequency bits in order to give

proper results for 2’s complement numbers.)
Economizing Memory

Finally, it is possif;!e to take advantage of the quarter-wave sfmmetry of the sinusoid
to reduce the amount of table memory by a factor of four, with only a slight increase in the
amount of hardware needed to form the table address and to interpret the data read from
the table. By storing only the first quadrant of the waveform it is also possible to reduce the
width of the table by one bit since all of the values of the sine function in this quadrant are

positive. The details of this method are as follows.

78

Assume that we have available a W-word memory, where W = 2", typically 512 or
2048. Assume also that each word in this memory contains B bits of data (the optimum
number of bits may be determined from Tables 4-1, 4-2, or 4-3, according to the addressing
mode). We fill this memory with positive binary fractions representing the values of the

first quadrant of the sine function according to:
Memory[1] « 28 sin {(IR)2W) Y, 1=0,1,2,..,W-I

where each fractional value is truncated to B bits of precisi&.:n. For simplicity, let us assume
that the truncation method is used to address the table, Referring to Figure 4-1, we take the
uppermoit k bits of the phase. register with which to address the table. Since our
quarter-wave table is only one fourth as long as a full-wave table, we use the uppermost %
= n + 2 bits of the phase register. The most significant of these R bits (let us call it k0)
provides the sign of the output value (normally, zero for positive and one fox; negative), and
the second of these & bits (k1) determines whether we should negate the remaining = bits in
the address for the table (pote that k0 and k! together form a.quadrant number far our
sine function: 00, 01, 10, or 11). The low~order n bits are used‘ directly to address the table
if bit k1 is a zero; the 2's complement of these bits is used If bit k1 is equal to one, with one
exception: when the low-order n bits are all zero and bit k1 is a one (ie, the phase
corresponds to either 90° or 270° exactly), th.en 2's complementing the low;order bits will
result in an incorrect address of zera. Tﬁis particular case must be treated specially by
substituting the maximum address (all ones) for this value. This is acco.mplished in
hardware by simply oring the carry-out bit of the 2's complementer with the remaining n
bits. ‘It might seem that using a 1's complement rather than 2 2's complement here would
solve the problem, but unfortunately the more economical I's complement leads to a

“ distortion of the qutput waveform around the zero~crossing. The rounding operation may

n

be included in this 2's complementation, if it is used.

The value read from the memory at the calculated address is a positive fractional
value upon which we "superimpose” the sign bit by 2's complementing the B bits whenever
bit k0 is equal to one, and retaining B + 1 bits of the result (e, we retain the overflow bit),
resulting in a B + I result. Again 2’ compleménting is necessary to avoid generating" the
“illegal” fractional value -1.0. Thus a rounding oscillator with 2 512 word by 12 bit
quarter-wave table can achieve a worst case SN,R of about 60 dB, which compares
favorably to the noise level of high quality analog equipment. Tables 4-1, 4-2 and 4-3 can
be used to determine the SN R for smaller widths than the optimum as well, for it can be
seen that using a 512 word by 11 bit table (instead of 12 bits) has a very small effect on the

quality of the generated signal.

A quarter- or half-wave table may be used whenever the waveform to be generated
possesses the appropriate symmetry. The table look-up procedure provides the basic method
for sinusoid generation needed for music synthesis, and its implementation in hardware is

relatively straightforward. We can now consider its modifications and extensions.
AM, FM, and Band-limited Pulse Modes

For additive synthesis it is particularly useful to add a multiplier to control the
amplitude ;:f the generated waveform, thus allowing the generated waveform to be
amplitude modulated by another waveform. One mode of the dual-input oscillator module
is therefore the AM mode, in which one input controls the frequency and the other controls
the amplitude of a waveform (see Figure 4-2). The AM mode is useful for the control of

overall amplitude, for the generation of musical tremolo, and for spectral control, since

72

(AMPLITUDE) ~ (INCREMENT)

éq’— sum register

SIN
ROM

FIGURE 4-2: Block diagram of the hardware element interconnection for the table
- look-up oscillator running in AM (amplitude modulating) mode. (Modes are selected
" by setting appropriate control bits). The sinusoid generated is muitiplied by the
(possibly time-varying) value at the amplitude input. This allows general amplitude
control, tremolo, and frequency-domain convolution of the signal present at the
amplitude input with a sinusoid at the frequency specified by the increment,
analogous to the electronic music effect called “ring modulation."

multiplying two waveforms in the time domain produces another waveform with a spectrum
equal to the conwvolution of the spectra of the multiplied waveforms, analogous to the

electronic music effect called "ring modulation.”

Another simple and useful extension (the modes are selected for each virtual function
of the oscillator module by setting appropriate control bits) is to allow the frequency of the
generated sinusoid to be equal to that specified by the sum of the two input svignals. thereby
allowing frequency modulation (see Figure 4-3). This can be used to provide the musical
effects of vibrato and glissando, as well as the realization of the FM equation, repeated here
for convenience: |

f(t) = sin{ W+ %ﬁ- sin{ Wt)}
where: 0, is the carrier frequency (= 27f),
A is the peak frequency deviation, and

W, is the modulating frequency (= 27f). .

One input is used to determine f_, the carrier frequency, while the other is used to
4 ;upply the modulation signal (Af sin @t), which is the output of another virtual
oscillator function running in AM mode with a frequency of f, = and an amplitude of Aflf.
This FM procedure provides an efficient means to compute 2 rich variety of musicall&

useful waveforms (Chowning, 19731

A more complex circuit allows for the production of the so-called band-limited pulse
waveforms, which have a finite number of components, thus allowing spectrally rich
~ waveforms to be generated without foldover, which causes any frequency components
) higﬁer than the Nyquist fraqt;ency to appear “aliased” at allow_er. undesired, frequency. The

equation is repeated here for convenience:

74

(INCREMENT 1) " (INCREMENT 2)

(.|.)<—— sum register

FIGURE 4-3: Block diagram of the hardware element interconnection for the basic
table look-up oscillator, extended to allow frequency modulation (FM). (Control
bits are used to specify to the module whenever the FM mode is to be employed.)
if one of the Inputs Is constant and the other is sinusoidal, the FM equation
discussed in the text is realized, which may be used to produce the musical effects
of vibrato or glissando, as well as the generation of complex spectra.

3 ' B 8 B
5(6,n,8) = LZ sin(8 + kB) = sin{f + (n-1) 3 } sin(-n?-)ese(5)
Ay

-

A cosine form for this identity also exists:

n-l g
c(9,n,8) = :A-,-;co:(e + kB) = cos{f + (n-1) g} sin(%—q) esel g)

If we set & = 2nf)t and g = 2rf,t, we can use these relations to generate waveforms
with spectra consisting of exactly n equal-strength components, starting at ‘a frequency fl
and spaced at intervals of f, Hertz (Figure 4-4 shows a spectral plot for fy=1000Hz, f, =
500 Hz, and n = 6). We will generally be concerned only with the sine form, for reasons
discussed below. Clearly, if f 1" S5 » the waveform will be harmonic and is a band-limited
_ approximation to an impulse train with a period of Iif; second. If f, and Sy are not
integrally related the waveform will be inharmonic, and may be u;eful in the synthesis of
(among other things) percussive tones, such as bells and drums. We may choose any integer
~ value for n in the range

v-fI

Isns —— +1
f2
where ¥ is the Nyquist rate (equal to one-half the sampling rate).
Calculating the Band-limited Pulse Waveform

" The actual calculation of this waveform in digital hardware is complicated by the fact

~ that the amplitude of the waveform is a function of n and by the discontinuities present in

78

L] 2500 s$000

1 . .
amplitude (in dB) e " frequency (in Hertz) -

\

FIGURE 4-4: Spectral plot of a band-limited waveform (see text) with f1 = 1000
Hz, f2 = 600 Hz, and n = 6. Here f1 controls the frequency of the
lowest-frequency component, f2 controls the intercomponent spacing, and n is the
number of components. The "skirts" on each of the components In this plot are due
to the "windowing" effect assoclated with taking the discrete Fourier transform of
a finite number of samples of a waveform.

the cosecant function. In order to discuss the properties of this function let us first consider
just the last two terms, which we will call the "band-limiting™ function proper, since it is
responsibfe for the generation of the components in the resulting waveform, but not their
position on the frequenéy scale: |

sin ny
Bnx) s S

Written in this form, it is easy to see that

lim B(n,x)=n
z=0
since sin x = x for small x. In fact this limic is similar when x approaches any multiple of =,

that is

lim B(n,x)=zn
kT
where % is any integer and the sign of the limit depends on whether k and n are even or
odd (the relationship among k, », and the sign of the limit will be explained below). In
order to determine the spectrum of B(n, x) , we can reason “backwards” from S(8, n, 8) by
noting that the frequency denated by { f 1t (n-1) fof2} i; simply the mean frequency of the
spectrum producéd. By setting this mean frequency to zero (i.e, by multiplying B(a, 8/2) by
a constant, say, 1.0, instead of a sinusoid), we observe that the resulti‘ng spectrum still has n
components symmetrically spaced around zero Hertz with a spacing equal to 2x = Sy Hertz

(see Figure 4-5).

To allow for the amplitude dependence on », we can simply calculate the normalized

78

amplitude (in dB) . . : | * frequency (in Herﬁ) -

FIGURE 4-5: Spectral plot of the positive-frequency portion of the "band-limiting"
function sin(nx)csc(x), for n = 7 (the negative-frequency portion of the spectrum
is just the mirror-image of the positive-frequency part). Here x = 6.28ft, with f
set to 350 Hz. This causes the spacing between adjacent components to be spaced
symmetrically around zero Hz. at intervals of 2f = 700 Hz. Since n is odd, there is
a component at zero Hz., which can be seen by the right half of its skirt in the plot.

function

B(n, x)
n

Borm™ ¥ =
to ensure that the amplitude of S(8, n, B) never exceeds unity. B, . (n, x) is shown in
Figure 4-6 for values of n from 1 to 10. We pay particular attention to the points where x =
kr, for this is where the denominator of the function becomes zero. From this function we
can verify that the function at these points is always equal to plus or minus one, depending
on whether n and k are even or odd. For odd multiples of 7, Bmm(n, z} is always equal to
+1 when x is any multiple of r. If n is even, however, B, (n, ¥) is equal to +1 at all even
multiples of %, and -1 at all odd multiples of k. In order to avoid numerical problems in the
hardware calculation of our band-limiting function, we can give it the final definition:

+10 ' if x= kn withn .odd, or n even and k even

B (nzx)= { -10 if x = kn with n even and k odd
norm N .
n~l sin nx ¢sc x otherwise

where k& is any integer.

Graphs of both the sine and cosine forms of the band-limited pulse function thus
obtained are shown in Figure 4-7. Notice that the peak am.plitude of the sine form
decreases with increasiné n, which is due to the fact that the peaks of the sine functions in
the summation do not lie on top of each other. This could be remedied by using the cosine
form of the identity (this waveform is shown in the bottom half of Figure 4-7) but this is
deemed undesirable due to the transients associated with the onset of cosinusoids in digital
sound synthesis. (At t=0, the cosine waveform can, and often does, produce an audible
“*click” for almost any non-zero amplitude. This problem is less severe if the sine function is
used instead.) .

88

« n=]l » o-n-é-)

[
L J
L]

E
!llJ'l‘llIJlll‘lJll

« =3 5

«n=4 »

4-!!-5-"

+ n=16 »

I

time -

FIGURE 4-6: Waveform plot of the “"band-limiting" function sin(nx)esc(x), for
values of n from 1 through 10. Each tenth of a second, n is increased by one,
starting from one for the first 0.1 second. Each tenth of a second represents
exactly one full period of the function. The function shown has been normalized by

" dividing by n.

81

SINE form

L] l L v T T ' A 4 L T ‘ T T L T '

0.2% e.5 9.78]

j\/ww\

' - T
I v T————Y T L 2 14 T T [Y Y T I Y T T T 1
®

COSINE form

time -

FIGURE 4-7: Waveform plots of both the sine (top) and cosine (bottom) forms of
the band-limited pulse waveform for values of n from 1 through 10. Each tenth of
a second, n is increased by one, starting from one, as in the previous figure. Each
tenth of a second represents exactly one full period of the function. Here the
spacing between components is equal to the frequency of the lowest component,
resulting in a harmonic waveform. Notice that as n increases, the overall amplitude .
of these waveforms decrease slightly, but in different ways. In the sine form, both
the positive and negative peaks are reduced, while in the cosine form, only the
" negative-going portion of the waveform is reduced in amplitude.

82

The evaluation of B, . (n, x) presents no further mathematical problems. However,
if we consider the regions of the function where x is near some multiple of n, we observe
that csc x is quite large and sin nx is quite small, which can produce a numerical instability

due to roundoff error in the calculation, both in the multiplication of sine by cosecant and

in the calculation of the phase angles x and nx.
Numerical Problems of the Cosecant

To insure that the multiplication itself goes well, care must be taken to "match” the

values used for the sine and cosecant functions in the following way: set each value in the
cosecant table to the truncated reciprocal of the corresponding value actually used in the
sine table. This assures that the product sin x ¢s¢ x is no greater than 1.0 for any value of x
(except, of course, x = kr, where ¢sc x doesn't exist). By far the more serious problem is
phase jitter in the argv.iments of the sine and cosecant functions (phase jitter is caused by
the fact that the table look-up procedure cannot use an infinitg—leng:h table). Since the
cosecant function has infinite discontinuities at x = Zr, if the relationship between nx and x
is not exactly correct in the calculation of sin nx csc x, huge errors in the'calcu'lation can
result. For example, let us assume that an oscillator-increment value correspénds to 1.3, and
we wish to calculate sin nx cs:.; ¥ with n equal to 2. The sum-of-increments register for the
cosecant-generating function would be.set to the sequence:

013 26 39 52 65 78 9.1 104 117 130 ...,
while the sum-of-increments register for the sine-generating function (with an increment of
2x1.3) would be set to:
0 26 52 78 104 130 156 182 208 234 260 ...

in the same time span. Expressed in this way, the second sequence is just double the first, as

83

it should be. If a truncating address scheme is employed in the-table look-up procedures,
the corresponding table addresses would be given by the two sequences:
0123 5 67 9 101 13...and

025710131518 20 22 26 ...

It is clear that the second sequence is not always double the first, (even though the
average difference between successive values is still equal to 1.3 for the first sequence, and
2.6 for the second), and when the numbers correspond to values of the argumeni close to Rn,
the sin nx csc x product will be incorrect, causing a distortion of the waveform such as that -
shown in Figure 4-8. The same problem occurs if rounding is used, and, to a lesser extent,
when interéolatlon is used as well. Therefore it is not possible in general to calculate the
addresses for the sine and cosecant memories independently unless extreme accuracy is used.
If, however, we calculate the second sequence directly from the first sequence after the
truncation or rounding operation, the second sequence will always be exactly n times the
first, and the sin nx csc x product will be correct. Thus instead of using the hardware
elements interconnected as depicted in Figure 49 at the top, we must use them as shown in

the bottom half of Figure 4~9.

Finally, the problem of normalizing B(n, x) may be solved by noting that n is always

positive and can be reasbnably limited to some maximum value, say 256. Thus 'l

may be
calculated by table look-up as well using a small read-only memory. The values stored in

(n,). An alternative

this memory may then be muliplied by B(n, x), to get B,

procedure would be to simply scale B(n, x) by shifting it right flogzn] bits, where n is the
number of components being generated and [x] is the "ceiling” function of x, defined as x if
x has an integer value, and x + ! if ¥ has a non-zero fractional’ part. Such scaling would

insure that instantaneous values of the waveform would never exceed unity, though in a

84

l 1 1 1 |1 | L1 1.1 '

time »

FIGURE 4-8: lliustration of distortion due to phase errors in the “band-limiting"

function sin(nx)csc(x), here shown for n = 6. (The overall amplitude of the signal

has been reduced in this plot since the errors would otherwise produce samples out

of the =1.0 to +1.0 range.) As the value of x becomes close to any multiple of pi,.
amplitude errors result from the fact that the relation between nx and x is not

always exactly n (see discussion in the text). Since the cosecant function has a

very large slope around any multiple of pi, the resuiting distortion can be quite
severe. The lower plot shows a detail of the upper. :

(N*INCREMENT) (INCREMENT)

ée__ sum register éo_- sum register

Y _ ¥
SIN CsC
ROM ROM

(N) i (INCREMENT)

é<— sum register

y
SIN csc
ROM ROM

L__.(i);____

FIGURE 4-9: Block diagrams of two alternate interconnection schemes for realizing
the calculation of the "band-limiting" function sin(nx)csc(x). The top figure depicts
an incorrect realization which will lead to waveform distorion, while the bottom
figure depicts a scheme for ensuring the correct relation between the addresses to
the sin and csc tables, thus avoiding distortions such as those shown in Figure 4-8

(see discussion in text).
86

worst case, when n is one less than a power of 2, the amplitude could be as little as one half
of full scale. A third alternative would be not to normalize B(n, x) at all, and providing for
a special multiplication by a user-specified amplitude value. Such a multiplication operation

would indeed be "special” because the waveform operand will be larger than unity.

Description of a Useful Oscillator Module

We are now 'ready to functionally describe a useful oscillator module. It has two
inputs, two outputs, and three basic modes: AM, FM, and BLP (for band-limited pulse).
Using the notation developed at the beginning of this chapter, X ; and X2 are the two
inputs, and Y‘ and Y g are the two outputs. Following the convention of using 16-bit, 2's
- complement specifications for quantities such as frequency and amplitude, we assume that
the 16 bits are right-justified in the 20-bit field. Thus the first input is represented more

precisely as X [4:19] ; X 0:3] are unused bits.

In the AM mode, X] and X, are taken to be a frequency and an amplitude
specification, respectively. Let us then adopt the notion that frequency is the time derivative
of phase, i.e, if f{t) = sin 0, then

‘f,—? - F(onpe) = 2nf

We can then refer to the phase angle 6(¢) as the time integral from arbitrary time 0 to the

present time ¢ of the frequency, f

9(!}-2nfo‘fdt

In our oscillator, the time integral of the frequency input is exactly what is contained in the
sum;of-increments, or phase, register, except that this value is not permitted to grow
arbitrarily large due to the modulus arithmetic used. This modulus phase value, whiéh we
ivill refer to as JX 1 » could be useful if it were available as an alternative output of the
oscillator, since it has the shape of a ramp wave going from minus full scale to plus full
scale, and a frequency equal to the one specified by X g Ruis nor;-band-llmited, due to the
“instantaneous jump"” from plus to minus full scale, so it is not particularly useful as an
Audio waveform; however, it could be used to provide a frequency sweep if it were applied
to the frequency input of another oscillator, or perhaps to contrgl an amplitude rise during
an attack. Clearly it wm be most useful at low frequencies. This is precisely the kind of

secondary information available from the oscillator which makes a second output desirable.

In the normal AM mode, output Yz can be the amplitude-scaled sinusoid, X,
sin(SX |), while Y } an be set to J'X ;» the “modulus phase” waveform. In the F M mode of
operation, both X, and X, are taken to be frequencies, which are first added and then
integrated to get the phase for the sine table iook-up. Thus the useful alternative output in
this case could be J(X 1 * X,), the integral of the sum of the two inputs. In fact, just the
sum of the twé inputs could be useful, allowing the oscillator to operate as a mixer. This is
especially true since the two inputs are both scaled quantities. The product of the two inputs
is also a clear candidate for inclusion axﬁong alternative outputs, though this quantity is not
already calculated anywhere by the oscillator. It is useful enough, however, to consider

making it available in any case.

Finally, in the BLP mode, input X, is taken to be the fundamental frequency, and -
input X g s the frequency spacing for the n components to be generated. The quantity n

itself is supplied to the module via control bits. (As an alternative to providing the complete

83

BLP signal, the BLP mode could use X 1 3 the spacing frequency, and X 35 an amplitude.

The module could then provide X, x 3 (n, JX ,) as an output, which could in turn be

norm

multiplied by the remaining sine term by another oscillator running in AM mode.)

Thus a formal description of the oscillator module is:
X,[4:19] - input 1, always a frequency.
X, [4:19] - input 2, a frequency in FM or BLP modes, an amplitude
in AM mode.
c, 20 - (true for both inputs) a 2-bit scale selection quantity:
- 00 leaves the input unaltered, '
- 01 uithmeﬁélly shifts the input right 1 bit,
- 10 arithmetically shifts the input right 2 bits, and
- 11 arithmetically shifts the input right 3 bits.
When the inputs are frequencies, the following table

relates the scale factor, f ., and f.: '

Scale select fmax fain
03 16384 Hz. 1/2 Hz.
e 8182 Hz. 1/4 Hz.
18 4898 Hz. 1/8 Hz.
11 2848 Hz. 1716 Hz.

When then input is an amplitude, the scale factor simply
selects whether to divide it by l 2,4,0r8
C ! ,2[2:4] = (true for both inputs) three range selection bits which
are exclusive or-ed into bits 1;3 of the scaled input.
Thus if tr;e scale selection bits are 10, setting these three range bits to 110 will
allow frequencies from 12288 to 16384 Hz. to be generated
with 1/8 Hz. accuracy, etc.
C 1[5:6] - a,2-bit field selecting the main (Y 2) output:
.= 00 for AM (e, Y, = X sinSX),
- 01 for FM (ie, Y, = sinSIX, + X,)),

88

- 10 for BLP (X = frequency, X, = spacing,
n is supplied by control bits as shown below), and
- 11 is unused.
C 1[7:8] - a 2-bit field selecting the secondary (Y 1) output:
=~ 00 selects Y, = X, + X, as scaled above,
- Ol selects Y, - J'X‘ in AM or BLP modes,
and Y, - .I'(XI+ X,) in FM mode.
~ 10 selects Y, = X, % X, as scaled above, and
~ 11 is unused.
(o] 1[9] - is unused.

C,[5:9] - a 5-bit field used to specify n for the BLP mode.

Control Function Generation

All of the synthesis methods require control functions for describing such
time-varying parameters as the evolution of amplitude or a modulation iﬁdgx during a
note. Such control functions are typically aperiodic, and usﬁally describe changes which
occur over several milliseconds, or even seconds. Thus they tend to-provide the grass
characteristics of a note, such as its attack transient shape, its variation (if any) during a
pseudo-steady state, its decay, or how its bandwidth evolves. In additive synthesis such
functions are used to describe the variation in time of the frequency, amplitude, and

possibly the phase of each sinusoidal component of a particular sound.

Such functions might also be used to control a portamento between two pitches, or a
general increase in loudness (crescendo) lasting several seconds. It is of course ithpossible to
predict the exact shape of such functions, since the number of ways in which a crescendo
can be made is equal to the number of paths between two points. Fortunately it usually is
sufficient to define such shapes only approgimately, since most of the ways of travelling

from one point to another are equivalent, for all practical purposes.

Stored Control Functions

Several methods of generating control functions have been used in the practice of
computer music, but these methods tend to fall into one of two categories: the stored

function method & le MUSIC V, and the piecewise linear function methed & la GROOVE.

In the stored function method, the desired pattern of variation is stored as a list of

82

sample values in a table, just as a single period of a sinusoid is stored for use by the table
look-up oscillator. The overall duration of this function may be controlled by reading it
from the table at a variable rate in 2 manner analogous to the frequency control of the

oscillator, since:

duration (period) = (incnm(c;ag‘(.fgngl}:ig rate)
Thus we may “stretch” or “shrink” a function to fit any desired overall cﬁxration while
retaining its characteriﬁtic shape. This is not a general solution to the amplitude envelope
problem, however, since both the attack and decay times are typically independent of note
duration for many musical souﬁds. If, by doubling the duration of a note, we also double its
attack time, we will obtain a sound markedly different in quality. Mathews’ solution to this
| problem in the MUSIC V context (Mathews, 1969] was to treat the stored function in three
separate pﬁrtsl The first part was used to describe the attack transient, the secand described
the steady state, and the third described the shape of the decay. A special unit generator for
enveloping scanned the function at a variable rate during each of the three parts of a note
in such a way that the increments used during the attack and decay were independent of
the note duration. Thus we could specify an attack time of, say, 10 ms,, and a decay time of
75 ms.; the envelope generator would automatically calculate the steady state time according

to:
(steady state time) = (note duration) - (attack time) - (decay time)

The stored functions used in MUSIC V were typically 512 values long, which
afforded enough resolution to describe the detailed shapes of the control functions.

Disadvantages of this method include the large amount of memory needed to store

simultaﬁeously several different control functions, and the fact that as durations become
long the necessary increment values can become quite small, the representation of which can
cause numerical difficulties on many computers. Unfortunately, shortening the table length
aggravates the numerical difficulty, since the increment is directly proportional to the table

length in this case.
Piecewise Linear Control Functions

The second basic method of control function generation also uses a table, but a much
smaller one. It is based on the fact thar most useful control functions for music may be
approximated fairly 'weu by a small number of straight line segments drawn between the
major inflection points of the more complex envelope functions observed in data describing
musical instruments. For example, Grey showed in his investigation of musical timbre
(Grey, 1975] that the temporal vaﬁations in amplitude of the individual harmonics of many
* musical tones may be represented by piecewise linear functions with small numbers of line
segments, typically 5 to 7. Assuming that these functions always begin at zero value, to
represent an n-segment function requires the specificati_oﬁ of n points on a graph, ie, 2n
pairs‘ of.numbers\ Each number pair specifies an ordinate value ("height™), and an abscissa
value to the right of zero ("time"). If we plof these points on a graph, we have only to
"connect-the dots” to obtain the function. By substituting these piecewise linear functions for
amplitude and frequency curves obtained from the analysis of real tones played on standard
musical instruments, Grey was able to reduce the amount of data required to specify a
musical note by about two orders of magnitude. Furthermore, the sound of the data-reduced

notes was judged to be musically indistinguishable from the original tone.

Experiments in music synthesis with computers have indicated that the minor

84

fluctuations in such quantities as the amplitude énvelope of a tone are far less important
than their gross characteristics. Among the few instances where the straight line approach is
‘detectable is in the decay transient of notes where the decay time is long, i.e., greater than
abaut a half second. Most musical instruments which ring for such a long time, such as bells
or pianos, have an exponential decay curve. If this exponential is approximated by two
straight line segments, the difference is difficult to detect under most circumstances, and

three line segments usually become indistinguishable perceptually, unless the ringing lasts

for a very long time, as in the case of a loud bell or tam-~tam note.

Undersampled Control Functions

Since the control functions under consideration generally vary rather slowly in time
compared to the oscillations in the total waveform, some advantage coula be gained if it
were possible to deal with these control functions at a lower sampling rate than the
waveform itself. For example, if control values were generated at a 1000 Hz. rate, then a
new afnplitude value could be specified every millisecond, which would be sufficient
temporal resolution to describe most distinguishable tones. An unfortunate difficulty is
encountered if this function, effectively sampled at 1000 Hz, is multiplied By a waveform
sampled at a much higher frequency. Since the spectrum of any sampled waveform is
periodic in frequency with a period equal to the sampling .frequency. and since the sampling
frequency is itself a component in the spectrum of a sampled waveform, we would have
components at all integer multiples of 1000 Hz. in the spectrum of the control function
waveform. When we multiply this function by another waveform, we convolve the spectra of
the two waveforms, yielding a resultant waveform with many undesirable compénents in its
spectrum. Since many of these compone'nts wili be lower than the Nyquist frequency of

either waveform, they cannot be- removed by filtering either before or after

S5

digital-to-analog conversion.

Another way to describe this difficulty is in terms of the size of the steps between
sample values in an undersampled control function. For a given time rate of change in such
a function, the difference between successive sample values is inversely proportional to the
sampling frequency. Only if these successive differences are very small will the
discontinuous "jumps” in amplitude be inaudible, implying that the use of undersampled
control functions is possible only for ‘control functions which change extremely slowly.
Therefore it is generally necessary to sample the conirol functions at exactly the same
frequency as the rest of the waveform components, even though the control functions may

change only rather slowly in time.
The Amplitude and Control Function Module

Since it seems more likely that a large variety of functions with grossly different
shapes will be more useful in music synthesis than a small number of accurately defined
functions, the straight line segment approach to function generation vis.adopted here to
generate envelopes. The amplitude envelope and control funqion module has been designed
to allow the specificauoh of up to 32 piecewise linear functions, each consisting of up to 8
connected line segments. It has two inputs and two outputs; one input is usually a waveform
which is to be scaled by a control function such as an amplitude envelope, and the other
input specifies an overall amplitude (either input may be constant or time varying). One
output is normally the product of the two inputs mulkiplied by the selected control function,
the other output is the (uns;aléd) control function itself. Thus the main output is the
product of three quantities which may be thought of as a waveform, an envelope function,

and a volume control. Having the unscaled envelope function itself appear at the output

96

allows it to be used to control the amplitude of several waveforms at once, perhaps scaled
differently each time. Of course provision -must be made for specifying the shape of each of
the 32 functions, and a number of other module operations can be made available, such as

straight multiplication of the two inputs.

The functions are each defined as a set of 8 slope/target value pairs (the beginning
value of each function is assumed to be zero). Each sample of the defined function is
generated by adding the slope to the previous function value. As soon as the target value is
reached, the next slope/target values are used to generate the next straight line segment.
The target values are signed, 2's complement, 8-bit quantities, which allow the entire range
of positive and negative amplitudes-to be broken up into 256 possible target levels. The
slope is épecified as an 8-bit magnitude and a range selection bit. The sign of the slope is
derived froﬁ's the relation of the previous target value to the current target value. The
arithmetic internal to the module‘is- carried"out to 20 bits of (fractional) precision, and the
target value always is used to specify the 8 most significant bits of the fractional target level.
The range bit associated with each slope value determines whether it is added algebraically
.to the 8 leasf significant bits out of 20, or to the next higher 8 bits. Thus the minimum
specifiable slope value is an increment of 2% units of increase per sample. At a sampling
rate of 32,768 Hz, such 2 slope value would require 16 seconds to go from zero to full scale
(32 seconds from minus to plus full scale). The steepest possible slope value is equal to 274
2"6. making it possible to go from zero to full scale in approximately 8 samples, or 0.24 ms.
The entire set of 32 functions can be maintained in a random access memory mnsistiné of
only 256 words by 17 bits, where each slope/target pair is a 17 bit quantity, and each of the

32 functions requires 8 memory locations.

Of fundamental interest in amplitude envelope generation is the method of triggering

87

(i.e., "starting”) the envelopes under program control. The module providés for four specific
ways of controlling the manner in which any function is triggered, according to the control
bits, called the piano, organ, repeat, and threshold modes. The two input signals are each
signed, 2's complement 16-bit quantities, leaving the four high-order bits of each input
available for other uses. In the piano, organ, and repeat modes, the most significant bit of
the scale input is t;sed as a trigger bit and is normally controlled directly by the computer,

although any module could control this bi, if desired.

In the piano mode, the envelope is triggered by a zero-to~one transition of the trigger
bit. The entire envelope function is generated exactly once as specified, except that the final
target value is “held” continuously until a new.zero-to-one transition occurs in the trigger
bit. In case a zero-to-one transition occurs before the envelope function has been completely
generated, the function will be retriggered. This immediately resets the current slope and
target values to the first slopeftarget pair, causing t.he amplitude, from wherever it was in

the function, to head towards the initial target using the initial (attack) slope.

The organ mode differs from the piano mode only in that the fourth target value is
also held while the trigger bit stays on. As soon as the trigger bit makes a one-to-zero
transition, the rest of the envelope function is generated as in the piano mode, “sticking” on
the final target value until 2 new trigger is received. Retriggering is accomplished exactly as

in piano mode.

In repeat mode, the function does not "stick” at all: the function starts when a
zero-to-one transition occurs in the trigger bit, and repeats continuously as long as the
trigger bit remains equal to one. A one-to-zero trigger transition causes the function to

complete its current cycle and then to stop.

s

The threshold mode does not use the trigger bit per se, but rather derive's the trigger
from the scale input, which may receive its signal either from the computer or from any
module. Two control bits are used to specify one of four different threshold values; if the
scaling signal is greater than or equal to zero, one fourth, one half, or three fourths, the
function will be triggered (in a.ny of the piano, organ, or repeat modes, according to the
control bits). In the threshold mode, the main output is not usually scaled by the triggering

input.

A formal description of the amplitude envelope generafion module is as follows:
X,[4:19] - input 1, usually a waveform signal to be "enveloéed.'
X 2[4:19] - input 2, usually a scale factor (volume control).
Y, [4:19] - output 1, usually the unscalad envelope function.

Y, [4:19] - output 2, usually the scaled, enveloped, waveform.
X,[0] - input 2 trigger bit in piano, organ, or repeat modes.

C 1[0:2] - MODE selection bits:

- 000 PIANO mode

- 001 ORGAN mode

- 010 REPEAT mode

- 011 UPDATE function memory mode.

| In this mode.‘ the second control input is used to specify

an address into which a slope/target datum is to be written.
This 17-bit datum must be first applied to X ,[3:19),
and consists of an 8-bit target andla 9-bit slope value as
explained in the text above.

- 100 MULTIPLY mode (_Yz =X, *xX,)

- 101 (unused) .

- 110 (unused)

= 111 (unused)

C 1[3] - trigger source selection bit
- if 0 then bit 0 of input 2 Is used as trigger.

- if 1 then THRESHOLD mode using input 2 signal.

183

When the threshold mode is used, the following two control

bits select the threshold level (see below).

C 1[4:5] - threshold selection bits (in threshold mode only)
= 00 trigger if X ,[4:19] 20
- 01 trigger if X2[4:19] 2 1/4 full scale
- 10 trigger if X 2[4:19] 2 1/2 full scale
- 11 trigger if X2[4:19] 2 Y4 full scale
C 1[5:9] - unused
C,[0:7] ~ the address in the 256~word by 17-bit function
memory into which the datum applied to X 4[3:19] is to be written.

62[8:9] ~ unused

161

CHAPTER 5 - CONCLUSIONS AND OBSERVATIONS

An initial implementation of this 'real time interactive digital music synthesis system
became operational at the Center for Computer Research in Music and Acoustics
(CCRMA) at Stanford University during July, 1977. The synthesis hardware consists of a
complete control unit as described in chapter 3, and an output collector module with
provision for four audio channels, each serviced by a 16-bit digital-to-analog converter
(initially only a single channel with a 12-bit DAC was used for testing purposes). A module
for providing real time input data has been implemented which allows 32 time varying
parameters to be set individually at any time by the control computer. A dual input, dual
output oscillator module capable of generating up to 32 independent sinusoids in either AM
or FM mode was buil;; a simple arithmetic module for performing multiplication and
addition completed the initial.module set. A simple two wiy interface allows the controi
computer to send information both to the control unit’s control memory (“patches”) and to
the real time input. memory ("signals”) module. The computer miy afso receive the compﬁted
samples from the synthesizer for possible storage and/or further processing. This two way
dialog can be carried on either in real time ("run mode”), or on a locked-step,

sample-by-sample basis ("sample mode”).

The control computer in this case consists of a Digital Equipment Corporation (DEC)
PDP6, a medium scale, second-generation computer with 64k words of memory and a
typical instruction time of about 3 microseconds. Even with its fairly slow instruction time
(by 1977 standards), this computer has proven to be more than adecjuate to control fairly
complex real time synthesis tasks on the hardware synthesizer. Software has been written
which "performs” prepared.scores, .such as Bach chorals played on diverse instruments, and

for real time performance at 2 piano-like keyboard, again with provision for many choices

182

of sound quality. A great deal of future work on software is in the planning stages,
including the ability to combine prepared scores with real tirhe interactions at keyboards
and knob panels, and provision for “remembering” the gestures and actions of the
performer using the real time control devices for future playback and editing. Particularly
important is the software facility for allowing the real time program to participate as an aid
in the compositional process, thus providing for such features as automatic harmonization

in real time.

The keyboard itself need not be used in the traditional manner. By interposing a
computer between the keyboard and the sound prodﬁcing elements of the system, it is
possible to use the keyboard as a set of switches, each of which represents some "command”
to the synthesis system. The interpretation of these "commands” is left to the discretion of
the computer programmer, and is not at all Lmited simply to playing the notes
correspondiné to depressed keys. For example it may be desired that when the note "C" is
depressed on the keyboard, an entire phrase, melody, or composition is caused to sound.
The note "C sharp™ might inveke a different melody, or perhaps cause the first melody to
be transposed down by a constant 31 Hertz. The function to be performed ﬁay depend on a

set of keys, or perhaps on a time 'sequence of key depressions.

Other forms of input besides keyboards and knobs may be considered, such as control
of the computei- with specially constructed devices including two or three dimensional
" joysticks,” or special interfaces with traditional instruments, such as violins and voices. It
seems virtually certain that real time interactive computer music generation will have a
strong effect on the manner in which music is performed, and it is in this area that some of

the most fascinating future research topics lie.

183

Probably the most significant feature of this initial implementation is how well it
works even though the system is far from complete. Since the amﬁlitude envelope generator
was not among the first to be built, its function was temporarily imitated by a combination
of software in the control computer and an extremely simple arithmetic module. In other
words, even a fragment of this system is already musically interesting and useful.
Furthermore, the entire hardware implementation to this point took about six
"man-months” of labor, including the ordering of parts, the manual construction of all
circuits, the debugging of the hardware, and the development of skeletal software. The
indication certainly seems to be that the modular approach adopted here yields a strong
advantage by allowing the system to become operational one section at a time, and that the
construction of each section is simplified by a standard set of “rules” for module
construction (the oscillator module, for example, required approximately two weeks to design

and implement from start to finish).

The remaining items in the basic set for music synthesis include filtering and
reverberation modules. There is a vast literature on digital filter design from which
candidate filter architectures may be chosen (see, for example, Rabiner and Gold, 1975) and
no specific design will be discussed here. A suitable filter would be a straightforward
second-order stage which can be cascaded via the control unit to obtain higher-order filters
when needed. Full, 20-bit signal intercommunication paths might be used between the
stages of a cascaded filter to allow intermediate values to have a numerical range exceeding
the usual 16-~bit range of ~1.0 to +1.0 - ‘2'16. if necessary; A desirable property of the filter
design would be guaranteed stability for coefficients having magnitudes less than, say, 1.0,
thus allowing the bandwidth or center frequency of the filter to be controlled dynamically in‘

"a convenient way. Any filter requiring the specificatioﬁ of several coefficients could be

implemented using dual inputs to a module, where one input is the signal to be filtered, and

1e4

the other is used to set coefficients, as selected by control bits. Dual outputs provide the

necessary number of data paths for cascading many filters.

A reverberation module could consist of 2 basic all-pass stage [Schroeder and Logan,
1961] which can be cascaded in a manner analogous to the filter module. The main
problem in this case is one of providing enough memory within the module itself to allow
sufficient signal delays for usefully long reverberation times. At the 32,768 Hz. sampling
rate used in the synthesizer architecture, this amount of memory could easily bé as much as
16k words of 12 to 16 bits each. Current memory technology is just barely sufficient to allow
such a large on-module memory, but.it is very likely that this technology will improve
considerably within_the next few years. It may .be desirable to make the reverberation
facility a part of the output collector module, since the reverberation xs typically controlled
on a per-channel basis to achieve the illusory acoustic effects described by Chowning, et al.

[Chowning, 1971, and Chowning, Grey, Moorer, and Rush, 1975]. -

Further module ‘c'apabilities for music synthesis might include white noise and
random number generation, delay mexﬁories for spei:ial “phasing” effects, table look-up
memories for nonlinear transformations of waveforms, logarithmic conversion modules for
extensive multiplication or division operations, and so on. Clearly it is possible to conceive
of modules for other purposes than music production. Special' modules could be
implemented for speech synthesis and processing, such as vocoder and linear predictive
coding modules. "Block” processes such as determining the short time spectrum of a speech
or music signal in real time with the FFT algorithm could be implemented by modules
which include sufficient buffer memory to hold a "block” of samples. The implementation of
most of these functions within the architecture presented here is very straightforward, and‘

the passibilities for experimentation seem endless. As microprocessor technology continues to

185

improve, it seems likely that general purpose, programmable modules consisting of a fast,
simple microprocessor with a high-speed multiplier and some random access memory Qill
soon become feasible. | i

Finally, improvements in large scale integration and packaging techniques are likely
to allow the entire synthesizer to become more powerful, physically smaller, and less
expensive, making real time digital music synthesis available on a widespread basis for use
in the concert hall, in recording studios, educational institutions, and in the home. High
fidelity loudspeakers are already commonplace; low~cost digital music synthesizers are very
likely candidates for turning these loudspeakers into musical instruments of remarkable

interest and utility.

186

BIBLIOCRAPHY

Appleton, Jon, "A Simple Musical Language for the Dartmouth Digital Synthesizer." 2nd

Music Computation Conference, Urbana, lilinois, Nov. 7-8, 1975,

Chowning, John M. "The Synthesis of Complex Audio Spectra by Means of Frequency
Modulation,” Jour. of the Aud. Eng. Soc., v 21, n 7, pp. 526-634., 1973.

Chowning, John M., "The Simulation of Moving Sound Sources,” Jour. of the Aud. Eng.

Soc, v2,n 6, 1971,

Chowning, John M., Grey,] M., Moorer, JA, Rush, L., "Computer Simulation of Music
Instrument Tbnes in Reverberant Spaces,” CCRM A Technical Report STAN-M—I, Dept. of

Music, Stanford Univ., 1975,

Crey, John M., "An Exploration of Musical Timbre,” CCRMA Tecknical Report

STAN-M-2, De;SL of Music, Stanford Univ., (Ph.D. dissertation), 1975.

Mathews, M.V, with the collaboration of J.E. Miller, F.R. Moore, J.R. Pierce, and J.-C.

Risset, Tke Technology of Computer Music, MIT Press, 1969.

Mathews, M.V, Moore, F.R, and Risset, J.-C., "Computers and Future Music,” Science, v

183, pp. 263-268,, 1974.

Mathews, M.V, and Moore, F.R.,, "GROOVE ~ A Program to Compose, Store, and Edit

187

Functions of Time,” Comm. of the ACM, v 13, n 12, 1970.

Moore, F.R,, "Computer Controlled Analog Synthesizers,” Bell Laboratories Comp. Sci. Tech.

Rpt. 210, 1973.
. Moore, F.R., "Music—Film--Computers,” Filmmaker's Newsletter, v 4, n 6, 1971.

Moore, F.R., "Music and Computers,” Enciclopedia della Scienza ¢ della T echnica/ Mondadori,

Yearbook, pp. 490-498 (in Italian).,, 1971

Moorer, James A., “The Optimum Comb Method of Pitch Period Analysis of Continuous
Digitized Speech,” IEEE Trans. on Acous., Speech, and Sig. Proc, v ASSP-22, n 5, pp

330-338, 1974.

Moorer, James A, "On the Segmentation and Analysis of Continuous Musical Sound by
Digital Computer,” CCRM A Technical Report ST AN-~M-3, Dept. of Music, Stanford Univ.,

(Ph.D. dissertation), 1975.

Moorer, James A., "The Synthesis of Complex Audio Spectra by Means of Discrete
Summation Formulae,” CCRMA Technical Report STAN-M-5, Dept. of Music, Stanford

Univ., 1975.

Rabiner, L., and Gold, B., Theory and Application of Digital Signal Processing, Prentice

Hall, 1975..

Rakowski, A, "Pitch Discrimination at the Threshold of Hearing,” Proc. 7tk Int. Cong.

188

Acoust. Budapest, v 3, p. 373, 1971,

Risset, J.-C., and Mathews, M.V, "Analysis of Musical Instrument Tones,” Physics Today, v

22, n 2, pp 23-30,, 1969.

Roederer,).G., Introduction to the Physics and Psychophysics of Music, Springer-Verlag,

New York, 1973.

* Ruiz, P.M,, 4 Technique for Simulating the Vibrations of Strings with ¢ Digital Computer,

Master’s thesis, Department of Music, University of Illinois, 1969.

Schroeder, M.R,, and Logan, B.F., "Colorless Artificial Reverberation,” /. dudio Eng. Soc. v

9, n 192, july 1961.

Saunders, Steven E., "Real-Time FM Digital Music Synthesis,” Proc. of Music Computation

Conf. i1, Urbana, Illinois, 1974.

Zwicker, E., Flottorp, G., and Stevens, .S, "Critical Bandwidth in Loudness Summation,” J.

Acoust. Soc. Amer., v 29, p. 548., 1957.

189

