CENTER FOR COMPUTER RESEARCH IN MUSIC AND ACOUSTICS
DECEMBER 1990

Department of Music
Report No. STAN-M-69

MODELING MUSIC NOTATION:
A THREE-DIMENSIONAL APPROACH

Glendon Ross Diener

CCRMA
DEPARTMENT OF MUSIC
Stanford University
Stanford, California 94305

A DISSERTATION
SUBMITTED TO THE DEPARTMENT OF MUSIC
AND THE COMMITTEE ON GRADUATE STUDIES
OF STANFORD UNIVERSITY
IN PARTIAL FULFILLMENT OF THE REQUIREMENTS
FOR THE DEGREE OF
DOCTOR OF PHILOSOPHY

© copyright 1991 by Glendon Ross Diener
All Rights Reserved

Abstract

This dissertation introduces a model for computer-assisted composition. The model
describes a music notation system embedded in a visual programming environment.
To the system, the images and conventions of particular notational styles take the
form of data encapsulated as object specifications in an object-oriented programming
language. Objects in the system display a specifiable graphics image. They are
characterized as much by this image as they are by their state and behavior.

The model describes a consistent visual metaphor in which two-dimensional musi-
cal scores are seen as three-dimensional constructs made of piles of objects. Equivalent
to tree structures, these piles specify hierarchical relationships defining temporal or-
dering among their component objects. Manipulation of these piles is equivalent to
manipulation of their temporal ordering.

The model is claimed to be an excellent basis for conveniently expressing a variety
of notational styles. A software system, dubbed Nutation, has been developed as an
existence proof of this claim. Nutation is capable of running data sets defining a

variety of notational styles, including a working subset of common music notation.

iv

To the memory of my father

Acknowledgements

I would like to thank my advisors, Drs. Chowning, Mathews, Smith, and Dannenberg,
for the interest they have shown in my work, and for giving generously of their time,
their wisdom, and their enthusiasm.

This work benefited enormously from the help of my wife, Marcia Derr, in matters
both technical and editorial, and in helping me see it through to the end.

Thanks to all my colleagues at CCRMA for making the last four and a half years
an exciting and stimulating educational experience. In particular, I would like to
thank David Jaffe, Doug Keislar, David Mellinger, and Atau Tanaka for their many
helpful suggestions.

I would like to gratefully acknowledge the Social Sciences and Humanities Research

Council of Canada for their support of my research at Stanford University.

vi

Contents

Abstract

Acknowledgements

Introduction

1

Notation, Composition, and Computers

1.1
1.2
1.3
14
1.5
1.6

Introduction

Notation

Composition

Computers v i it i e e e e e e e e e

A Computerized Notation System for Composition

..........

Summary

.................................

Three-Dimensional, Transparent Glyphs

21
2.2
2.3
24
2.5
2.6
2.7
2.8

Introduction
Models
Three-dimensional, Transparent Glyphs

Hierarchies.
Structural Organization Versus Graphic Generality
Glyphsas Objects.
Glyph Sets e

Summary e e e

vil

v

vi

-~ Ot W W W

3 The TTree

3.1 Imtroduction
3.2 DesignGoals
33 Trees.
3.4 Structural Levels
35 TTrees
3.6 TTrees and Grammars
3.7 Message Channeling
3.8 The TTree as Declarative Description
3.9 TTree Traversal
3.10 Playing TTrees
3.11 Summary

4 User Interface Design

4.1
4.2
4.3
44
4.5
4.6
4.7
4.8

Introduction
Scope of the Discussion
Conceptual Integrity
Direct Manipulation
Windows
Grouping
Clipping

Summary

5 An Implementation of the 3TG Model

5.1
5.2
9.3
5.4

5.5

Introduction

The System

5.4.1 The Programming Language . .
5.4.2 The User Interface

Three Glyph Sets

..................

..................

..................

..................

..................

..................

.................

5.5.1 Piano-Roll Notation

.................

27
27
28
29
32
32
36
38
41
42
46
53

55
55
55
56
57
59
61
63
66

552 Common MusicNotation. 86

5.5.3 Okinawan Notation o v v v ... 99

5.6 Summary e e e e e 105
Conclusion 107
6.1 Contributions e e e e e e e e e 107
6.2 Directions for Further Research 108
Bibliography 110

ix

List of Figures

0.1 The logical flow of thetext. 2
2.1 Fiveglyphs 18
2.2 Three glyphs superimposed to show their transparency 18
2.3 Two views of ascore fragment 19
3.1 An ordered tree and its corresponding binary tree 30
3.2 Ancestorlinks 31
3.3 Ordered tree versus binary tree 33
34 ATTree o i i e e 34
3.5 A partially complete school fugue form represented as a TTree.. . . . 35
3.6 The sampling algorithm 49
3.7 A TTree demonstrating message-blocking. 51
4.1 ClLppIng« . vt e e e 63
4.2 Clippingtosuppressdetail 64
4.3 Two views of an FM instrument 65
4.4 Two views of a structure-defining “phrase” glyph 66
5.1 Nutation’sglyph windows. 73
52 Clipping..« o i e e e 75
5.3 Theraisedview.. 76
54 Apalletwindow. 77
5.5 Trays. e e e e e e 78
56 Abrowserwindow. e 80

5.7 Theinspectorwindow., 81

5.8 A passage in piano-roll notation.. 0oL, 84
5.9 Staves. e e e e e e e e 87
5.10 Systems. e e e 89
5.11 LedgerLines e e 91
5.12 Accidentals. L. e 92
5.13 Beams. e e e e e e e e e 94
5.14 Simultaneous single-part staves. 95
5.15 Chords. e e 96
5.16 Multiple parts on the samestaff 1. 98
5.17 Multiple parts on the samestaff2. 100
5.18 The “staff” of Okinawan notation.. 101
5.19 The Okinawan notation framework. 103
5.20 The structure of an Okinawan “note”. 104
5.21 Asamisenornament. e e e e 104
5.22 A composition in Okinawan notation. 105

X1

Introduction

This dissertation is about music notation by computer. Most researchers in this area
have, to date, concentrated on music printing and, in particular, the music setting
problem. Their goal has been to transform instrumental gestures and hand-written
manuscripts into high-quality printed output with the aid of a computer. By contrast,
my research focuses on what will be called the compositional use of notation, and the
use of the computer itself as a tool in the compositional process.

For centuries, the tool par excellence for working out musical ideas in the visual
realm has been the pencil and manuscript paper. This dissertation uses contempo-
rary technology to offer an alternative. In this scenario, the computer is used as a
musical instrument: an instrument which is “played” through the direct, on-screen
manipulation of music notation.

The fundamental contribution of this dissertation is the three-dimensional, trans-
parent glyph(3TG) model of the notated score. This model has implications for both
the data structure and the user interface of music notation programs. Much of the
dissertation is concerned with developing these implications.

Chapter 1 is entitled “Notation, Composition, and Computers”, and discusses
what these three entities have to do with each other. The compositional use of
notation is defined, and its relation to other research is explored. Chapter 2 contains
the core ideas of the dissertation, for it is here that the 3TG model is introduced.
The next two chapters are devoted to working out the implications of the model. In
Chapter 3, an underlying data structure suggested by the model, called the TTree,
is presented, while Chapter 4 discusses implications of the model for a hypothetical

user interface. Chapter 5 describes an actual computer implementation based upon

the model. Finally, Chapter 6 summarizes the contributions of the dissertation and
describes opportunities for further research. The logical flow of the text, then, has

the following organization:

L 1. Defining the problem]

2. A solution: The 3TG model

/\

[3. Data structure implications 4. User interface implications]

\/

[5. An implementation_of the 3TG model

[6.Conclusion |

Figure 0.1: The logical flow of the text.

Much of the work on the TTree data structure was developed in [Die85]. Portions
of the material in this dissertation originally appeared in [Die88], [Die89a], [Die89b],
and [Die90].

CHAPTER 1. NOTATION, COMPOSITION, AND COMPUTERS 4

visual symbolic expression, or music notation system, forms an integral part of their
musical world.

Civilizations have been writing down music for at least 3700 years, and even a
cursory account of the development of music notation could easily fill many volumes.!
Throughout this long history, the only constant has been that of change itself. An
examination of this history would reveal that music notation not only reflects changes
in musical style, but also serves as a driving force behind the evolution of the very

music being notated. In the words of Lewis Rowell:

The history of musical scripts is at once a testament to human inven-
tiveness and a demonstration of music’s essential fragility. Each advance
in our ability to notate music has had enormous consequences for the tra-
dition we seek to represent; notation has been a destabilizing influence

upon musical style. [Row82, page 35]

This evolutionary process, of course, is still going on, and today’s computerized
music notation programs are simply another step in the procession. Whether or not
this step turns out to be a significant one may well depend on how developers of
music notation software view their task. If their only goal is to automate the chores
of music copying and printing, then their products, while they may eventually put a
whole profession out of business (if they have not already done so), are unlikely to have
any appreciable effect on the evolution of either notation or the music being notated.
Computer technology, however, gives both developers and end users an enormous
potential to experiment with original, unusual systems of notation. Unfortunately,
the more innovative a notation system is, the less likely it is to gain acceptance
within a musical culture steeped in its own traditions. As a preface to his analysis of
numerous notational reforms proposed over the past three centuries, Gardner Read

points out:

1«In 1974, after several years of decoding work, a Hurrian love-song dating from c. 1800 B.C.
was at last transcribed and performed. This song caused a major revision of our ideas about the
antiquity of musical notation, for it ante-dated the previously known oldest notation by more than
a millennium.” [Ras82, page ix]

Chapter 1

Notation, Composition, and

Computers

1.1 Introduction

Musicians often take the subject of music notation by computer to be synonymous
with music printing by computer. This is hardly surprising, as even the most cursory
examination of music notation software past and present would serve to instill this
belief. Music notation, however, has many uses in musical cultures, and music print-
ing by no means serves all of them. This chapter identifies what will be called the
compositional use of notation—a use which, up until now, has been all but neglected
by developers of music notation software. An examination of a number of represen-
tative systems from the viewpoint of the notational uses they support underlines the
need for a new approach to computerized notation systems, and helps to show how a

compositional system would differ from one whose prime focus is music printing.

1.2 Notation

Many musical activities are carried out without the use of visual symbolic systems.
Music is the art of sound in time, and improvisational styles and folk traditions

flourish without any form of written notation. Yet for many cultures, some form of

CHAPTER 1. NOTATION, COMPOSITION, AND COMPUTERS 5

Almost without exception each proposal made its small ripple in the
waters of Western music and thereafter quietly sank beneath those waters,

some reforms barely surviving the lifetime of their creators. [Rea87b,

page 1]

In the present study, the task of designing music notation software is viewed as
that of adapting technology to facilitate that incremental change which constitutes the
natural evolution of artistic style. No proposals for notational reform are to be found
here. Instead, the goal is to create a design which can fully support the syntax of many
widely understood notational traditions while allowing unlimited experimentation and
expansion from these traditional bases. If this goal can be achieved, then the step to
computerized notation systems for music may indeed turn out to be a significant one

for our musical culture.

1.3 Composition

Music notation has served and will continue to serve a wide variety of purposes in
musical cultures. This dissertation focuses on the compositional use of notation,
and the way in which computers can support that usage. The term composition,
when used in the context of notation, is intended in the sense of its Latin etymology
com- + ponere = to put together. This implies an activity in which elements from a
vocabulary of symbols are judiciously put together to create a representation of sound.
Because these symbols are visual, they enable the composer to plan the emerging
composition free from the linear, sequential constraint of time. The compositional
use of notation covers a broad spectrum of musical activities, embracing not only the
creation of original works of musical art, but such activities as preparing material for
music education, arranging, orchestration, and the creation of musical scores intended
as objets d’art in their own right.

The compositional use of notation, as defined here, contrasts most strongly with
what might be termed its archival usage: an activity in which musics resulting from
creative processes which have already taken place are translated into visual, sym-

bolic representations to supplement human memory. This archival usage has been a

CHAPTER 1. NOTATION, COMPOSITION, AND COMPUTERS 6

substantial contributer to the development of musical cultural and continues to be
so today, even if its role has been somewhat diminished by the advent of recording
technology.

Another use of notation which is distinct from both compositional and archival
uses arises from the manner in which a great deal of music is performed. For many
musical styles, music is a kind of partnership between composer and performer in
which the composer specifies, through music notation, a set of instructions for the
performer to realize instrumentally or vocally for an audience. Typically these in-
structions only partially determine the final shape of the work, leaving substantial
interpretive latitude to the performer. In this scenario, notation functions as a form
of communication between composer and performer, hence this usage could be char-

acterized as “notation for communication.” As Gardner Read comments:

As the written language by which the composer communicates with
an audience through a performer, it is a study in human relationship as
well— to be judged by the effectiveness with which it communicates what
to do, when to do it, and how to do it.” [Rea87a]

Musical analysis also makes extensive use of notation. The graphic presentations
of Schenkerian analyses, for example, testify to the power of purely visual, symbolic
codes to convey information about musical structure. Like the archival use of nota-
tion, this analytic usage differs from the compositional usage in taking the results of
creative processes which have already taken place as its starting point. Finally, the
religious and metaphysical use of notation should not be left out, particularly if the
notational practices of Oriental cultures are to be accounted for.?

There are, of course, many other uses of music notation, just as there are other
ways to categorize these uses. Many of these categorization schemes are easily re-
ducible to the categories presented here. To illustrate, consider the following list of

usages proposed by Hugo Cole (referring primarily to Occidental cultures over the

last one thousand years):

2The introduction to Kaufmann’s study, [Kau67), contrasts the use of music notation in Oriental
and Occidental cultures .

CHAPTER 1. NOTATION, COMPOSITION, AND COMPUTERS 7

1. To allow the writer to invent new music, and to calculate effects in advance and
at leisure.

2. To provide an exact timetable, so that independent parts may be closely co-
ordinated.

3. To provide the performer with an artificial memory.

4. To describe the sounds of performed music for purposes of analysis or study (as,
for instance in the notations of folk music collectors).
[Col74, page 9]

In terms of the categories of use just described, the first two of Cole’s uses are
clearly compositional, the third is archival, while the last is analytic. The point of
this section, however, is not to single out what categorization scheme is the most
appropriate for a given purpose. Rather, it is to identify the distinct usage of music
notation in which the notation system itself serves as a creative tool helping musicians
shape and form musical ideas. And as the next section shows, this compositional use
of notation has been, up until now, all but overlooked by developers of music notation
software.

1.4 Computers

This section turns its attention to music notation programs themselves in order to
discover the underlying categories of notational usage to which they are adapted. The
systems described here have been chosen for the diversity of approaches they represent
rather than in an attempt to give a complete survey of the field. An excellent history
of computerized music notation programs to 1984 can be found in Byrd’s dissertation
[Byr84]. Music notation software for the then new Apple Macintosh computer is
discussed by Yavelow [Yav85]. Since that time, the flood of commercial software on
the market would make any comprehensive attempt to describe it obsolete almost
overnight. A good source of information about available systems can be found in the

yearly publication Computing in Musicology: A Directory of Research published by

CHAPTER 1. NOTATION, COMPOSITION, AND COMPUTERS 8

the Center for Computer Assisted Research in the Humanities. In their 1989 issue,
they claim to have the names of about 75 music notation software developers on
file. The issue briefly describes 55 recent systems which have shown a “demonstrated
capability for handling classical music” [HSF89, page 44].

The earliest program dealing with music notation known to me is that of Hiller
and Baker [JB65]. Input to this system was through a typewriter modified to include
a music typeface and a paper tape punch and reader. Scores entered through the
typewriter were simultaneously punched onto paper tape for subsequent input to an
ILLIAC computer. The computer was programmed to do margin justification and
part extraction on its internal representation of the score, then output the result back
onto paper tape. This output was then fed back into the typewriter’s tape reader to
produce printed copy.

The notational usage implicit in this process is clearly not compositional. Indeed,
it would be hard to imagine its creators conceiving of compositional usages given the
limited user-interface technology available at that time. With the creative foresight
of pioneers, however, they did consider the role of the computer in the compositional

process, even if they rejected its possibility:

Preparation of the Composer’s Manuscript. This, of necessity, is a
slow laborious hand operation since it is so intimately bound up with the
compositional process itself. Composers’ habits are so idiosyncratic and so

variable that any real attempt to apply automation hardly seems feasible.
[JB65, page 131]

The research of Hiller and Baker, then, was aimed at the archival and communica-
tive uses of notation rather than the compositional. This is certainly not surprising,
for the stated goal of the project was the automation of music printing. Theirs was the
first of a long series of notation programs concentrating almost exclusively on music
printing to such an extent that the two terms—music notation and music printing—
came to be synonymous in many musician’s minds whenever computer software for
music was discussed. Music printing, however, is not really an accurate term for

the role of the software in such programs, and more properly belongs to the process

CHAPTER 1. NOTATION, COMPOSITION, AND COMPUTERS 9

of applying ink to paper. Instead, the term “music setting” is often found in the
literature.
Many early music setting programs attempted to remove the human being from

the process as much as possible. David Gomberg summed up the position thus:

[Leland] Smith takes a different view and interlaces human and com-
puter activities. By permitting explicit interaction he has quickly pro-
duced first-level results and some of what he has accomplished is quite
encouraging. Nonetheless, not having excluded human activity from the
start, he will likely find it difficult to do so later. A very basic reason for
removing human activities from the system, is that these activities require
knowledge and skill in many ways comparable to those of an engraver or
autographer. They will probably not be lost entirely, but the number of
persons involved in skilled crafts generally, and music setting particularly,

is declining quite rapidly. [Gom?77, page 69]

It has been over a decade since Gomberg wrote these words, yet no successful no-
tation system which totally removes human activities from the music setting process
has been forthcoming. Perhaps early researchers simply underestimated the complex-
ity of the problem.? One researcher who devoted a good deal of time towards the

analysis of this complexity was Donald Byrd, who wrote:

Fully Automatic High-Quality Music Notation is...in general impos-
sible without human-level intelligence. Since current work in artificial
intelligence is far from this level, one must compromise, and three ways
are possible: compromise in degree of automation, in quality of output,

or in generality of input. [Byr86, page 147]

Byrd’s own dissertation was entitled “Music Notation by Computer” [Byr84]. He

makes it clear, however, that this title is somewhat misleading, and that he chose it

3In light of current thinking about the role of computers in society, one is tempted to say of
Gomberg’s approach that “not having included human activity from the start, he will likely find it
difficult to do so later.”

CHAPTER 1. NOTATION, COMPOSITION, AND COMPUTERS 10

instead of the more accurate “Music Setting by Computer” in order to avoid even
more confusion over the less-well-known phrase “music setting”.

As witnessed by the preceding quotation, Leland Smith’s MSS program [Smi73]
included rather than excluded the user from the music setting process. Users were kept
constantly in touch with the image of the score they were entering through immediate
graphic feedback on the computer screen. Smith considered that the various editing
tools provided by MSS were among its most important features. Thus, even if it was
not an explicitly stated goal, the use of the system for composition was certainly a
possibility. A testament to the feasibility of Smith’s approach has been its durability
and success: a microcomputer-based descendant of the original MSS is currently
marketed under the name Score [Pas88|, and is in use by numerous musicians and
professional publishing companies today.

Mockingbird [Max81],[MO83], is the product of one of the most influential research
projects in the music notation field ever attempted. This influence is all the more
remarkable when one considers that neither the general public nor the computer
music research community ever had the opportunity to use the system, for it was
developed on experimental high-performance, proprietary hardware and software at
Xerox corporation’s Palo Alto Research Center (PARC). Rather than attempting to
deal with a broad range of notational tasks, Mockingbird limited its functionality to
the notation of standard piano music. Maxwell and Ornstein described the purpose

of their system as follows:

Mockingbird is a composer’s amanuensis, a computer program de-
signed to aid a composer with the capture, editing, and printing of musical
ideas. The purpose of Mockingbird is not to invent new music or to sug-
gest variations to the composer, but simply to aid him in recording his
own ideas by speeding up the notating process. Mockingbird is not a
publisher’s aid, although it does print music, nor is it a performer’s aid,
although it can play; it is strictly focused on the composer’s need for a
powerful scribe. [MO83, page 1]

This quotation shows that although Mockingbird was conceived as a composer’s tool,

CHAPTER 1. NOTATION, COMPOSITION, AND COMPUTERS 11

it focused on archival uses of notation rather than compositional uses. Nevertheless,
because the system included on-screen editing facilities which were both innovative
and powerful for their time (it was probably the first music notation program to
use direct manipulation?), compositional usage was certainly a possibility. As the
following quote shows, however, the direct manipulation of notational material on
the computer screen was seen as nothing more than a less powerful alternative to

synthesizer keyboard entry:

There are two ways to enter music in Mockingbird: by playing it on the
synthesizer keyboard directly or by adding notes to the score manually.
In the first, Mockingbird observes the synthesizer keystrokes and records
their occurrence and duration. This allows the composer to enter music
quickly and naturally in a form much like an old fashioned pianoroll. In
the second, the composer adds notes by pointing at a position in the score
with the mouse and commanding the editor to deposit a note of a specified
value. This second method is less facile than the first, but is useful for

making small corrections to the score. [Max81, page 11]

When the Apple Macintosh computer made its debut, it brought much of the
user interface technology which had made Mockingbird possible into the hands of the
general public. So rapid was the machine’s impact on the music community that it

prompted Christopher Yavelow to write:

In eighteen short months, the Apple Macintosh computer has revo-
lutionized the way “the rest of us” interact with computers, a fact that
has surely not escaped the attention of most of our readers. The impact
of the Macintosh upon the computer music world is just beginning to be
felt, but already the ramifications are proving to be profound. [Yav85,
page 52]

In 1985, Yavelow was able to review seven Macintosh-based software packages for
music which were commercially available at that time (the number had grown to al-

most forty just a year later). A good deal of this software featured on-screen music

4Direct manipulation systems are discussed in Chapter 4.

CHAPTER 1. NOTATION, COMPOSITION, AND COMPUTERS 12

notation of one form or another, and much of it permitted real-time playback through
the machine’s built-in eight-bit sound synthesis capabilities. One program in partic-
ular, “Professional Composer” [Mar86], came close to providing the kind of on-screen
manipulation and flexibility needed to rival the pencil and manuscript paper as com-
positional tools. Nevertheless, the program was first and foremost a printing program,
for it made no provisions for user extensibility or anything beyond the most standard
aspects of common music notation. Yavelow summed it up nicely when defending the

program against criticism of its playback facilities:

“People who criticize the program for not providing more flexible play-
back do not have the remotest idea what the program is all about, that is,

editing and printing music and not playing back music” [Yav85, page 64].

1.5 A Computerized Notation System for Com-
position

Among the notation systems discussed here, only rarely has the compositional use of
notation been a possibility, and never was it found to be among the developer’s stated
goals. Why have developers overlooked this important aspect of music notation, and
concentrated so much of their efforts on music printing? One reason is surely need.
After all, the pencil and paper have been the tools par ezcellence for the compositional
use of notation for centuries, and they are both cheap and abundant. High-quality
music printing, however, before music printing programs became readily available,
was a very expensive and time-consuming process. Software developers may well
have concentrated their efforts in this area because this is where they perceived the
greatest need for development. Another reason concerns the relatively large computer
resources necessary for the task. Any program dedicated to the compositional use
of notation would likely differ from the systems described previously in the following

ways:

CHAPTER 1. NOTATION, COMPOSITION, AND COMPUTERS 13

¢ Since on-screen entry and manipulation would be the primary, if not the only
means of interacting with the system, its user interface would have to be excep-

tionally sophisticated.

e Musicians often compose with an instrument at hand in order to provide them
with immediate aural feedback of their compositional ideas. If they are to be
fully served by a computerized notation system for composition, that system
ought to provide immediate, high-quality audio playback of their notational
inventions.

e Pencil and paper are unlimited with respect to number of symbols, their size,
placement, musical meaning, and so on. A computerized notation system for
composition would have to be similarly unlimited, and provide for full user

customization and extensibility.

Until very recently, machines powerful enough to support the graphics and real-
time sound synthesis required for such a system have not been widely available. I
believe, however, that the time has now arrived, and a computerized notation system
for composition is a possibility. This dissertation is devoted to the design of just
such a system. Of course, the compositional, archival, and communicative uses of
notation are by no means mutually exclusive realms, and the compositional system
which will be presented here could well be embedded in music printing programs, if
only to facilitate minor editing tasks. This dissertation, however, focuses exclusively
on compositional uses of notation. In short, it focuses on providing a framework for

working out musical ideas in the visual realm.

1.6 Summary

This chapter has identified the need for a new direction in computerized music nota-
tion systems. The uses of notation in musical cultures were discussed, with emphasis
on the evolutionary nature of notation’s historical development. Several categories
of notational usage were identified. Among these uses, the compositional use seems

to have been all but overlooked by software developers. A number of representative

CHAPTER 1. NOTATION, COMPOSITION, AND COMPUTERS 14

notation systems were analyzed in support of this claim. The feasibility of building
a computerized music notation system for composition using contemporary technol-
ogy was discussed. In the next chapter, a model for building such a system will be

presented.

Chapter 2

Three-Dimensional, Transparent

Glyphs

2.1 Introduction

This chapter introduces the three-dimensional, transparent glyph (3TG) model of
computerized notation programs for composition. The model describes a consistent
visual metaphor: two-dimensional musical scores are modeled as three-dimensional
constructs made of piles of objects. Equivalent to tree structures, these piles specify
hierarchical relationships defining both structure and temporal ordering among their
component objects. The model provides a means for conveniently representing a wide

variety of notational styles.

2.2 Models

Before describing the 3T'G model itself, it will be useful to focus on the use of the term
model, and on the motivation behind describing a system for the compositional use
of notation in this way. Minsky has defined a model as “any structure that a person
can use to simulate or anticipate the behavior of something else” [Min86, page 330].
Thomas Green tells us that “One structure models another...when the elements of the

two structures are different but the relations between the elements are substantially

15

CHAPTER 2. THREE-DIMENSIONAL, TRANSPARENT GLYPHS 16

the same-although usually, the model contains only a carefully chosen subset of the
relations in the target structure” [Gre90, page 5.

This chapter will introduce a wholly conceptual, mental design model of a music
notation system. This model functions as a conceptual bridge between a source
structure: music notation, and a target structure: a computer system for music
notation. Researchers have long recognized that mental models play a vital role in
helping users accomplish their goals when working with the computer systems these
models describe. At the same time, they allow systems to be described completely
abstractly, free of reference to any particular computer hardware or software.

In any computer system involving user interaction, it is possible to identify a
number of potentially distinct mental models. Consider, for example, the user’s
conceptual model: the conceptualization that the user holds about the workings
of the system. This conceptualization generally has little if anything to do with
how the computer actually works, and has been called the user illusion by Alan
Kay: “.the simplified myth everyone builds to explain (and make guesses about)
the system’s actions and what should be done next” [Kay84]. From the psychological
viewpoint, Yvonne Waern distinguishes two fundamental ways in which the user forms
this mental model [Wae90]. In the “bottom-up” approach, the model is formed solely
on the basis of direct experience with the system. By contrast, in the “top-down”
approach, the model is constructed on the basis of prior knowledge of similar tasks or
systems. Waern tell us that “Most modern psychological theories of learning build on
the assumption that learning mainly uses the top-down approach” [Wae90, page 75].

Another identifiable mental model distinct from the user’s conceptual model is the
design model: the designer’s conceptualization of the system as implemented in the
system itself. Common sense would seem to indicate that the design model should be
as congruent as possible with the hypothesized conceptual model of the uninitiated
user. In particular, a top-down learning strategy can be greatly facilitated if the
design model is based on some familiar aspect of the user’s knowledge and experience.
The design model must be constructed with great care, however, for subtle differences
between the designer’s and the user’s knowledge and experience can actually interfere

with the user’s success in accomplishing the goals of the system.

CHAPTER 2. THREE-DIMENSIONAL, TRANSPARENT GLYPHS 17

Ideally, the design model will include functionality unavailable in the source struc-
ture itself. To illustrate, this chapter is being typed using software whose interface
implements a model of a desktop strewn with papers. Just like real papers, these
“soft” pages can be moved around, piled, thrown away, and so on. Unlike real pa-
pers, however, the papers on this desktop display text which can be reformatted,
spell-checked, scrolled, etc., all at the touch of a button. Without such extended
functionality, there would be little point in using a computer in the first place.

This chapter presents the design model for a music notation system based on a
familiar aspect of most users’ reality: piles of rectangular objects of uniform thickness.
For the most part, these objects behave just as they do in the physical world, and thus
provide users with the opportunity to build their own conceptual models of the system
using a top-down approach. At the same time, the model describes functionality which

goes far beyond that of the source structure—music notation—which it models.

2.3 Three-dimensional, Transparent Glyphs

The focus of this chapter, and indeed the focus of this entire dissertation, is the three-
dimensional, transparent glyph (3TG) model of the notated score. In this model,
visual elements of musical scores are represented as special objects called glyphs.
These glyphs present a two-dimensional rectangular surface displaying an image. Any
image at all can be drawn in a glyph. Typically, glyphs will display such items as
notes, clefs, staves, and other familiar symbols of music notation, but the choice of
image is totally at the discretion of the user. Furthermore, a glyph might just as well
display no image at all. The only requirement is that the image be drawn within a
two-dimensional, rectangular area. Figure 2.1 shows five glyphs with the perimeters
of their rectangular areas drawn in dotted lines.

Typically, the rectangular surface on which a glyph’s image is drawn will be com-
pletely transparent, and only the image itself will be visible, as shown in Figure 2.2.
This allows complex images to be built up by superimposing several glyphs on top of
each other. This transparency, however, is also at the discretion of the user, and a

glyph can be given any desired degree of transparency.

CHAPTER 2. THREE-DIMENSIONAL, TRANSPARENT GLYPHS 18

3=
H

Figure 2.1: Five glyphs. The perimeter of each glyph’s rectangular area is indicated
by dotted lines which are not part of the glyph itself. Notice that this area may be

larger than the image shown in the glyph, and that a glyph may have no image at
all.

Trans axent
TTrransparent. .
L-wranqpafent

Figure 2.2: Three glyphs superimposed to show their transparency. As in the previous
figure, the perimeter of each glyph’s rectangular area is indicated by dotted lines which
are not actually a part of the glyph.

CHAPTER 2. THREE-DIMENSIONAL, TRANSPARENT GLYPHS 19

Figure 2.3: Two views of a score fragment. In the rightmost view, the glyphs have
been given thickness and made opaque in order to emphasize their three-dimensional
structure.

Although glyphs present a two-dimensional surface for drawing, conceptually they
are three-dimensional boxes of unit thickness, and may be piled on top of or alongside
of each other in a virtual three-dimensional space. It is this three-dimensional piling
behavior that makes glyphs truly distinct from the graphical objects found in many
computerized drawing programs. Since all glyphs have the same (unit) thickness,
the three-dimensional space they occupy might more properly be referred to as two-
and-a-half-dimensional, or two continuous dimensions and one discrete one. In the
interests of avoiding the jargonistic phrase two-and-a-half-dimensional transparent
glyphs, however, the three-dimensional designation will be used here. Figure 2.3
shows a portion of a common music notation score alongside a representation in
which its glyphs are made opaque and given thickness in order to emphasize their
three-dimensional structure.

To recapitulate, the 3TG model presents a world populated by piles of rectangular
glyphs of unit thickness. Each glyph may be likened to a rectangular sheet of plastic
transparency whose surface can contain drawing. When piled on top of each other,
these glyphs allow complex images to be built up without ever losing the structural
identity of the individual glyphs which make up the total image. The following
sections elaborate upon the consequences of adopting this model for a music notation

system.

CHAPTER 2. THREE-DIMENSIONAL, TRANSPARENT GLYPHS 20

2.4 Hierarchies

The designers of the Mockingbird system discussed in Chapter 1 opted for a data

structure consisting of a flat, one-dimensional sequence of events. In their words:

Our first design was a structured, hierarchical data structure that
closely matched the formal structure we saw in music. But we ran into
numerous problems with it because it didn’t match the needs of an edi-
tor. After much discussion, we settled on an unstructured, sequential data
structure. This surprised us, because in the beginning we had thought that
the hierarchical design was the obvious choice. However, experience has

convinced us that the sequential design is vastly superior.[MO83, page 15]

Why is it that Maxwell and Ornstein found a hierarchical data structure to be so

unsatisfactory? Perhaps it is in their notion of hierarchy itself:

There are many possible hierarchical data structures that might be
used to represent music. We use the term loosely to describe a class of
data structures that implicitly incorporate musical structure in the design.
Thus one might imagine a data structure that had a separate part for
each measure or for each voice. A “sequential” data structure, on the
other hand, is simply a sequence of undifferentiated entities. No attempt
is made to incorporate musical structure into the design. Instead, it is
up to the algorithms to determine the structure from the entities.[MO83,

page 16]

Unfortunately, they do not tell us why a hierarchical data structure has to implic-
itly incorporate any particular musical structure. In direct contrast to their findings,
a major theme of this dissertation is that hierarchies are ideal data structures for
music notation programs, provided they are not limited to some arbitrary number
of hierarchical levels or set of shapes, and provided they are able to define temporal
ordering on the nodes which constitute them. One hierarchical structure which ful-

fills both these provisos is the TTree,! which will be analyzed in detail in the next

1Pronounced tee-tree. The leading “T” stands for “temporal” or “time”,

CHAPTER 2. THREE-DIMENSIONAL, TRANSPARENT GLYPHS 21

chapter. The binary equivalent of an ordered tree, the T'Tree associates time delays
with each of its right-going arcs. Both the TTree and its multi-branching equivalent
are unlimited as to hierarchical levels and shapes, but the TTree has the added bonus
of providing a very efficient and convenient temporal ordering on its nodes (whence
the initial letter T'). This convenience results from the fact that sibling nodes of the
ordered tree appear as a list of lists in the TTree. Thus time can be thought of as
flowing along the branches of the tree, rather than somehow between them.

The primary motivation behind the three-dimensional piling behavior of glyphs is
the expression of just such a hierarchy, for the glyph pile itself is simply the visual
analog of a tree structure, with the base of the pile corresponding to the root of the
tree. From the user’s point of view, piling one glyph onto another is equivalent to
attaching that glyph as the descendant of the other in a tree structure. To illustrate,
referring to the fragment of common music notation shown in Figure 2.3, the root of
the tree would be a glyph corresponding to the paper this score fragment is printed
upon. The first generation consists of the glyph displaying the staff. The second
generation includes the glyphs displaying the the instrument’s name (in this case,
“Fml”), the treble clef, the time signature, and the half and quarter notes. Finally,
the third generation would consist solely of the dot, attached in the tree as a direct
descendant of the half note. Note that although the borders of the glyphs displaying
the instrument and the treble clef overlap, neither is a descendant of the other, for
they are siblings occupying the second generation of the tree.

It is interesting to compare this means of expressing hierarchical relationships by
piling objects on top of each other to a closely related concept which has been in
use in graphic systems since at least as far back as 1975: the idea of putting objects
inside of each other, or physical containment.? Although containment also expresses
hierarchical relationships, the piling model presented here is much more akin to the
way many musicians are accustomed to thinking about notation. We are taught,
for example, to put staves on pages, to put notes on staves, to put dots on notes,
and so on. Whether consciously or not, musicians have been building up such visual

hierarchies for centuries, hence the 3TG model is itself a very close match to the

ZSee, for example, David Canfield Smith’s visual programming language Pygmalion[Smi75].

CHAPTER 2. THREE-DIMENSIONAL, TRANSPARENT GLYPHS 22
source structure—imusic notation—which it models.

2.5 Structural Organization Versus Graphic Gen-

erality

Striking the delicate balance between structural organization on the one hand and
graphical generality on the other is a major issue in the design of music notation
systems. This problem, described by Donald Byrd as the “fundamental tradeoft”
between semantics and graphics [Byr86, page 145], is readily understood by imagining
musical versions of the draw and paint programs available on many small computers.
A musical draw program could facilitate high-level editing and performance operations
by means of the data structure analogs of notes, staves, parts, and the like, but as
a consequence would limit its visual universe to some finite collection of pre-defined
symbols. By contrast, a musical paint program, by imposing no further organization
on its data than that of a two-dimensional array of pixels, would gain graphical
generality at the expense of its ability to perform musically meaningful operations on
that data.

The 3TG model, however, imposes no restrictions whatever on the image which
a glyph can display. At the same time, arbitrarily deep hierarchical data structures
can be built up without sacrificing any of this graphic potential. It is as if one
were able to run many paint programs at the same time, and arrange the windows
from these programs into arbitrary hierarchical structures. Structural organization
and graphic generality, then, are by no means incompatible objectives, and the 3TG

model provides a synthesis of the two perspectives.

2.6 Glyphs as Objects

The importance of user “programmability”, even in the most flexible of interactive
systems, is a theme which has been echoed over and over by software visionaries over

the years. In the words of Alan Kay:

CHAPTER 2. THREE-DIMENSIONAL, TRANSPARENT GLYPHS 23

Does this mean that what might be called a driver-education approach
to computer literacy is all most people will ever need—that one need
only learn how to “drive” applications programs and need never learn to
program? Certainly not. Users must be able to tailor a system to their
wants. Anything less would be as absurd as requiring essays to be formed

out of paragraphs that have already been written.” [Kay84, page 57]

In the field of music composition by computer, many musicians have come to exactly
this same conclusion. As Bill Schottstaedt writes, “...our experience demonstrates
that composers find a programming language far more congenial than a data-entry
system when trying to write computer music” [Sch83, page 20]. Yet a general purpose
programming language is not enough: some means must be found for focusing the
musician’s energies more on the task of composition than on the task of programming.
In the 3TG model, this can be accomplished by implementing glyphs as objects in a
visually-based, object-oriented programming language.

Most object-oriented programming languages provide some facility for sharing
code among different objects.® In a single-inheritance, class-based object-oriented
system, the class of an object contains methods (procedures) which determine how
any object which is an instance (member) of that class will behave in response to the
corresponding messages (procedure calls). Classes themselves can be arranged into
inheritance hierarchies. When an object receives a message for which its class has no
corresponding method, that method can be searched for one level up the inheritance
hierarchy in the object’s superclass, then in the object’s super-superclass, and so on,
until the corresponding method is found. If no corresponding message is found, an
error condition can be raised. This process is called inheritance, and it allows methods
which are common to a whole group of classes to be “factored out” and pushed as far
up the inheritance hierarchy as necessary, eliminating the need to repeat that code
for each of the classes involved.

When glyphs are implemented as objects, the root class of the inheritance hierar-
chy (hereafter called class Glyph) will include the necessary functionality to support
their piling behavior and the display of their images. All glyphs, no matter what

3See [Cox86] for an introduction to basic concepts of object-oriented programming.

CHAPTER 2. THREE-DIMENSIONAL, TRANSPARENT GLYPHS 24

their purpose, will inherit this functionality. The musician wishing to define some
specific behavior for a class of glyphs need only specify how that class differs from its
superclass. A Note class, for example, might contain methods which determine the
pitch of its instances. Subclasses of the Note class, such as QuarterNote or HalfNote,
would be responsible for determining their instances’ durations.

As objects, glyphs can communicate with each other by sending messages. And
because a tree structure provides a well-defined path between all of its nodes, the
hierarchy, which glyph piles define, can function as a network for channeling these
messages from glyph to glyph. Note that this tree structure is a hierarchy of instances,
not to be confused with the inheritance hierarchy described earlier, which is composed
of classes, rather than instances of classes.

This message-channeling scheme immediately suggests a method for causing glyph
piles to perform themselves as music. To illustrate, assume we have a pile of glyphs
representing a fragment of common music notation such as that shown in Figure 2.3.
When the root of the tree (pile) is sent a play message, this message eventually
trickles down through the tree until it bottoms out at the leaves (generally, some
kind of “note” glyph). Along the way, the flow of the message can be controlled by
the glyphs it passes through. A “paper” glyph, for example, might relay the message
to its subglyphs (usually “staff” glyphs) successively from the top of the page to the
bottom. Each “staff” subglyph, upon receipt of the “play” message, responds in turn
by relaying the message from its leftmost subglyph to its rightmost. These subglyphs,
generally “note” glyphs, respond by instructing lower-level synthesis functions to
generate sound samples. The mechanism ensures that the score is performed in the
correct top-to-bottom, left-to-right order, and allows for the accumulation of such
global state as current key and time signature, dynamic level, etc., in a manner
analogous to the way in which a human performer might read the score.

Note that the model’s hierarchical scheme is by no means fixed. The number of
hierarchical levels and their interrelationships constitute data which can be crafted,

or reprogrammed, by the musician as desired. The model prescribes a convenient

4This class-instance distinction is blurred in certain object-oriented programming languages. In
Smalltalk-80, for example, classes are themselves objects, and as such are instances of other classes,
called metaclasses.

CHAPTER 2. THREE-DIMENSIONAL, TRANSPARENT GLYPHS 25

framework for building such structures and for associating them with graphic repre-
sentations. Given the generality of this architecture, it is easy to extend the system
to embrace non-standard notational schemes by defining new glyph classes. In fact,
the model gives musicians the power to define their own notational worlds: worlds

which may bear little or no resemblance to common notational practice.

2.7 Glyph Sets

If the 3TG metaphor is implemented according to the object-oriented scheme just
outlined, then individual notational systems can be represented as sets of subclasses
of class Glyph. Implementations of the model would be capable of supporting any
number of notational worlds, any or all of which may potentially coexist within the
same score. Chapter 5 of this dissertation describes just such an implementation:
it presents a program, dubbed Nutation, and three distinct sets of Glyph subclasses
implementing a piano-roll notation, common music notation, and a tablature notation
system for voice and the samisen (a lute-like instrument) from the island of Okinawa.

The world of music notation by computer would be very different if programs such
as this were to reach maturity and become standard. Musicians with the programming
skills to create new glyph sets would be able to design their own notational systems,
perhaps using the computer as an intelligent performer for scores written in those
systems. Archives of these glyph sets could be kept so that they could be shared with
others, including those who preferred not to program the system itself. In such a
world, the evolutionary nature of music notation and its relationship to composition,

as discussed in Chapter 1, could be greatly enhanced.

2.8 Summary

This chapter has introduced the central idea of this paper: the three-dimensional,
transparent glyph (3TG) model of computerized music notation programs. By pre-
senting the concept as a model, reference to any particular hardware or software

implementation was avoided. At the same time, such a description forms a mental

CHAPTER 2. THREE-DIMENSIONAL, TRANSPARENT GLYPHS 26

model of great benefit to the potential user. After claiming the superiority of hierar-
chical data structures over purely flat, one-dimensional structures for music notation
programs, the hierarchical data structure implicit in the glyph’s three-dimensional
piling behavior was identified. The 3TG model was shown to provide a synthesis
between notation programs’ need for structural organization on the one hand and
graphic generality on the other. The importance of user programmability for com-
puterized compositional systems was stressed, and an outline of a single-inheritance,
class-based object-oriented programming language supporting the 3TG model was
presented. Finally, the concept of glyph sets and the implication they might have for

the future of the compositional use of notation was discussed.

Chapter 3

The TTree

3.1 Introduction

The three-dimensional, transparent glyph (3TG) model introduced in Chapter 2
strongly suggests some form of tree structure for its implementation. There are,
of course, many ways to implement trees, each exhibiting characteristic advantages
and disadvantages for a given problem domain. Further implementation choices re-
sult from adopting the object-oriented programming paradigm, where the principle
of data abstraction groups data together with the operations to be carried out upon
that data.

This chapter introduces the concept of the TTree: a simple and elegant structure
uniting temporal organization with the hierarchical representation of musical scores in
an object-oriented system. The TTree is shown to be an ideal choice for implementing
the 3T'G model.

Throughout the chapter, a basic knowledge of computer data structures and
object-oriented programming concepts is assumed. Wherever possible, formal def-

initions have been relegated to the footnotes.

27

CHAPTER 3. THE TTREE 28

3.2 Design Goals

Before informed decisions about data structure design can be made, a set of relevant
design goals must be formulated. The six “ground rules” for graphic software sys-
tem design suggested by Newman and Sproull—simplicity, consistency, completeness,
robustness, performance, and economy [NS73, page 80]—form a convenient starting
point. These goals are no less applicable to software combining music with graphics,
although the added computational load of audio processing may well make system
performance the dominant concern. For music composition and synthesis (MCS),
moreover, with its emphasis on creativity, the importance of system performance is

well-known. As Rodet and Cointe point out:

Why is MCS one of the most interesting fields for testing advanced
technology for computing? In MCS, perhaps even more than in artificial
intelligence, programs have to be tested, modified, and rewritten very
often. This modification must be effected quickly and easily; otherwise,

the continuity between musical ideas and results gets lost.[RC84, page 32].

System performance, then, must not disrupt the continuity between musical ideas
and results. Any delay between an operation carried out in the visual realm and the
audition of that operation’s result must be kept to a minimum. This suggests that
it is better to provide a single, unified data structure for both playing and displaying
than to provide separate, quasi-independent structures requiring complex conversion
functions between the two domains. With a single structure, operations in the visual
realm are, effectively, operations in the auditory realm. At the same time, with only a
single representation, it is impossible for audio and visual representations to become
inconsistent with one another.

An integrated data structure, however, must also satisfy the goal of completeness.
For music composition software, this means simultaneously meeting the needs of
graphic score representation and real-time audio playback. More specifically, for
an effective implementation of the 3TG model, a structure must be found which
integrates temporal aspects of score performance with the model’s graphical, tree-

structured representation. This is the role of the TTree. Before describing this

CHAPTER 3. THE TTREE 29

structure, however, a few well-known characteristics of trees will be reviewed in order

to establish a working vocabulary.

3.3 Trees

There are many ways to implement trees in a computer.! A fundamental problem
confronting all implementations is the fact that an arbitrary number of subtrees may
be attached to any given node. Clearly, the task of allocating storage for these sub-
trees would be greatly simplified if this number were constant. Applications, however,
are seldom so obliging. Fortunately, due to what has been called the natural corre-
spondence between forests and binary trees [Knu73, page 333], it is always possible
to represent a multi-branching tree by its corresponding binary one.? Informally, a
binary tree is formed from its corresponding tree by linking together the subnodes
of each root, then deleting all but the leftmost root-subnode branch, as shown in
Figure 3.1.

Because the binary correspondent never has more than two edges emanating from

any of its nodes, it is much more convenient to implement than its multi-branching

1Stating the well-known recursive definition, the term tree designates a finite set of one or more
nodes T such that

1. One particular node, root(T') € T, is designated as the root of T ;

2. The remaining nodes are partitioned into n > 0 disjoint sets T3,...,T,. Each of these sets is
in turn a tree, and together they are called the subtrees of the root.

Further, as with most computer applications, the order of the subtrees T3,...,T, is taken as signif-
icant. In graph theory, then, this usage would be referred to as a finite, labeled, rooted and ordered
tree.

2A binary tree B can be defined formally as a finite set of nodes which is either empty or contains
a root and two disjoint binary trees B; and By, called its left subtree and right subtree respectively.
Whereas the ordering of subtrees in a tree is significant, it is the position of the subtrees which is
significant for the binary tree. It makes no sense, for example, to have a tree with a 2nd subtree and
not a lst subtree, though it is perfectly acceptable to have a binary tree with a right subtree but
no left subtree. Formally, the binary correspondent of a forest of trees F = (Th,...,T,), denoted
B(F), is defined as:

1. if n = 0 empty, else

2. root(Ty) is its root; By = B(Ty,,Th,,...,T1,,) is its left subtree, where T1,,T},,...,T1,, are
the subtrees of root(T}), and By = B(T3,...,Ty) is its right subtree.

CHAPTER 3. THE TTREE 30

Figure 3.1: An ordered tree and its corresponding binary tree. The root node of each
tree is indicated by a double circle. Links removed from the tree to form its binary
correspondent have been drawn with dotted lines to show the underlying process
involved.

counterpart. For this reason, computer implementations of trees almost always make
use of the corresponding binary representation. In this dissertation, the term “binary
tree” will be used instead of the longer “binary correspondent of a tree,” while the
term “ordered tree” will designate the corresponding tree.3

From the viewpoint of memory usage, the most parsimonious schemes for repre-
senting binary trees make use of sequential memory locations for node storage. These
representations, however, can be very difficult to alter after they have been set up,
and may be unsuited to applications where interactive restructuring of the tree is the
rule rather than the exception, as with the 3T'G model. Accordingly, a linked repre-
sentation, with the left and right subtrees of a node represented by pointers (memory

addresses) will be adopted here.

3The binary correspondent of a free, as opposed to a forest of trees, follows directly by letting
F = (Ty) in Footnote 2. In this case, note that the right subtree of root(T}) will always be empty.

CHAPTER 3. THE TTREE 31

Figure 3.2: Ancestor links. This binary tree depicts ancestor links as curved, dotted
lines.

Because pointers are unidirectional, it can be very inconvenient for nodes to refer
to their ancestors. For this reason, in applications where “upward” references within
the tree will be required, a third pointer is often used. These “ancestor” pointers,
which link nodes with their direct ancestors, are depicted as curved, dotted lines in
Figure 3.2. Note that such pointers refer to each object’s ancestor in the corresponding
ordered tree, which is not necessarily the object’s binary tree ancestor. To illustrate,
in Figure 3.2, the node labeled “H” has, as its ancestor, the node labeled “B”, despite
the fact that its binary tree ancestor is actually “G”.

Traversal is the name given to the task of visiting the nodes of the tree in some
prescribed order such that each node is visited exactly once. Traversal algorithms
are extremely important for implementations of the 3TG model, because they are
the means by which graphic information is accessed from the structure for commu-
nication to the display hardware, and by which audio information is accessed for
communication to the synthesis hardware.

There are three common methods of traversing a binary tree. All are described
recursively according to the formula “traverse the left subtree, then traverse the right
subtree.” The methods differ as to when the root of each subtree is visited: preorder
traversal visits the root before traversing the left subtree, inorder visits the root after
traversing the left subtree, while postorder visits the root only after the left and right
subtrees have been traversed. Referring to Figure 3.2, preorder visits the nodes in
the order ABFGHCIJDKE, inorder yields FGHBIJCKDEA, while postorder yields

CHAPTER 3. THE TTREE 32

HGFJIKEDCBA.

3.4 Structural Levels

Readers might argue that the binary tree is a useful implementation strategy, but has
little value beyond the realm of computational efficiency. In many situations, however,
the binary representation is actually closer to intuitive notions about hierarchy than
is its ordered counterpart. For a given application, if the connections among siblings
have equal or greater conceptual primacy than the parent-sibling connection, then the
binary tree is likely a superior model in terms of both conception and implementation.

Such situations abound in music. Schenkerian theory [FG82], for example, places
much more emphasis on the notion of “structural level” than on the relationship
between the elements of one structural level and another. It is as though the tree
structure were viewed in cross-section, emphasizing relationships between branches
over relationships along branches. The binary tree, of course, models this situation
precisely, for siblings are directly connected in a list, in contrast to the indirect con-
nection, through their common ancestor, provided by the ordered tree.

Another example is afforded by the temporal structure of common music nota-
tion. In the upper tree of Figure 3.3, notational elements of a score fragment are
represented as nodes in a tree. The tree’s root is the paper the score is printed on;
the next structural level contains the staves; finally, the clefs, notes, rests, and so
on, form the bottom level. Now, whereas the pitch structure of the work is primarily
determined by relationships along the branches, the temporal structure is determined
by relationships between branches. Thus, in the lower, binary tree of Figure 3.3, time
flows along the branches, rather than somehow between them, as with the ordered

tree.

3.5 TTrees

Before a binary tree score representation can be performed by machine, its temporal

structure must be made explicit. This is the role of the TTree, where the leading “T”

CHAPTER 3. THE TTREE 33

aper,
\
Staﬂ/ taff
\\
TrebleClef Quanermﬂ\l ote BassClef Hallv ote QuarterNote
Paper

taf/ taff

TrebleClef — QuarterNote — HalfNote BassClef =—— HalfNote = QuarterNote

Figure 3.3: Ordered tree versus binary tree. This fragment of a common music
notation score is represented first as an ordered tree and then by the corresponding
binary tree. Braces, barlines, and time signatures have been omitted for simplicity.

CHAPTER 3. THE TTREE 34

Paper:0

Staff:0 Staff:0

TrebleClef:0 —— QuarterNote:1 =——— HalfNote:2 BassClef:0 == HalfNote:2 =——— QuarterNote:1

Figure 3.4: A TTree. The figure reproduces the binary tree of Figure 3.3, with
horizontal arcs labeled by time delays, and with arcs entering each node from above
drawn vertically.

stands for “temporal” or “time”. A TTree is simply the binary correspondent of an
ordered tree, with time delays associated with its right-going arcs.

In Figure 3.4, the binary tree of Figure 3.3 has been converted to a TTree by
labeling its nodes with integers representing time delay in beats. At the same time,
the graph has been shifted so that arcs entering each node from above are aligned
vertically. Shifting the graph in this way emphasizes its time structure: nodes aligned
along common vertical axes are temporally simultaneous. Note that the time delay
associated with each node affects only horizontal relationships. Thus, referring to
Figure 3.4, the node labeled Paper together with the nodes Staff and TrebleClef di-
rectly underneath it are temporally simultaneous. Moreover, because TrebleClef has
a time delay of 0, the leftmost QuarterNote also occurs at the same time. This Quar-
terNote’s time delay value, however, delays the occurrence of the leftmost HalfNote
by one unit. Similarly, because the leftmost Staff has a time delay of 0, the right-
most Staff, together with BassClef and the rightmost HalfNote are simultaneous
with Paper, while the rightmost QuarterNote is delayed by two units.

There is an interesting natural language interpretation of the TTree which can
help to clarify the way in which it organizes time. In this interpretation, vertical arcs
are referred to as “is” arcs, horizontal ones are referred to as “then” arcs, while delay
values are referred to as “wait” values. To illustrate, Figure 3.5 shows the partially

complete layout of a typical school fugue form as a TTree. The structure of the

CHAPTER 3. THE TTREE 35

fugpe:0

exposition;20 =———— development:30

stret{o:10 coda:5

altoEntry:3 = tenorEntry:3

Figure 3.5: A partially complete school fugue form represented as a TTree.

fugue can be read directly from the tree. One can say “fugue is exposition wait 20
then development wait 30 then stretto wait 10 then coda”’, and “stretto is altoEntry
wait 3 then tenorEntry”. Note that the time delay associated with the node labeled
fugue is redundant. The time delays associated with nodes tenorEntry and coda are
similarly redundant, though they will become meaningful if further horizontal arcs
are attached to them at some later stage.

It is important to note that a T'Tree’s delay values have nothing whatsoever to do
with duration. The altoEntry of Figure 3.5, for example, could last anywhere from
milliseconds to millennia. If the stretto is a true musical stretto, then the duration of
altoEntry must be greater than 3 units, though this information is in no way implied
by the T'Tree, which limits its role to indicating the relative begin times of the nodes
it is made of.

The glyphs of the 3T'G model introduced in Chapter 2 map directly into the
nodes of a TTree. TTrees are the key to implementing the model: they provide, in
a single structure, both the temporal information needed for score performance and
the hierarchical information needed to support the model’s tree-structured graphical

representation.

CHAPTER 3. THE TTREE 36

3.6 TTrees and Grammars

This section provides an analysis of T'Trees in the context of formal language theory.
The reader unfamiliar with the theory may safely skip this material without loss of
continuity. The formalism adopted here is taken from Hopcroft and Ullman [HU79].

The relationship between formal grammars and data structures for computer mu-
sic was first investigated by the Structured Sound Synthesis Project (SSSP) [BRBM77).
The purpose of the present description is twofold. First, it provides an alternate
analysis of the structure within the framework of a well-defined mathematical formal-
ism. Second, by showing the relationship between TTrees and grammars, a basis is
formed for the development of automatic score generating programs. Though such
development is beyond the scope of this dissertation, the possibilities are extremely
compelling. As generative tools, for example, such programs become tools for al-
gorithmic composition. Conversely, analytic tools could be built which use existing
compiler technology to convert one-dimensional note list representations into graphic
scores.?

Formal language theory shows how certain, possibly infinite, sets of strings (the
language generated by a given grammar) can be derived from a single distinguished
symbol (the start symbol of the grammar), through the successive application of
a series of rules (the grammar’s rewriting or production rules). For clarity, these
derivations are often displayed as ordered trees. A derivation, however, could just as
well be displayed as the binary equivalent of an ordered tree and, by extension, as
a TTree, provided all of the production rules used in the derivation are of a certain

form. To this end, define a T grammar G as any grammar of the following form:

4There is a fairly extensive body of research dealing with the use of grammars for composition
and analysis. In the study [Die85), in-depth analyses of several representative projects are discussed.

CHAPTER 3. THE TTREE 37

Gr = (V,T,P,S), where
V is a finite set of symbols called variables,
T is a finite set of symbols called terminals,
P is a finite set of production rules of the form:
A-X1 X Xp,, m21, A X; €V
orA—a A€eV,aeT,

S € V is the grammar’s start symbol.

T grammars, then, are simply context-free grammars with the exception that their
productions are restricted to a special normal form. Similar to Chomsky normal, the
right-hand sides of all productions in a T grammar must contain either a single
terminal symbol or one or more non-terminal symbols.3

A TTree can be viewed as a binary tree corresponding to a (non-binary) derivation
tree in a T grammar. Thus, the application of a T grammar production of the form
A = X1X, .-+ X; will have a vertical arc from A to X;, X; will have a horizontal arc
to X9, X5 a horizontal arc to X3, and so on. Thus:

A

l
Xl-—)XQ—)X3—’. .

Note that this procedure results in the binary equivalent of a derivation tree.

T grammars restrict their productions in order to permit this form of tree struc-
ture without violating certain conventions concerning derivation trees. Specifically, if
productions of the form A — zy29+--2,,,A € V and z; € T,m > 2 were not prohib-
ited, then terminals could appear as interior nodes, whereas they normally only occur
in leaf positions. Observe that no restriction in the grammar’s generative capacity
is brought about by this restriction, for any context-free language not containing the
null string is generated by a grammar of this form. In fact, the grammar might well

~be termed “semi-Chomsky normal,” for the above observation is often proved as an

5In Chomsky normal form, either a single terminal symbol or exactly 2 non-terminal symbols
may appear on the right-hand side of every production.

CHAPTER 3. THE TTREE 38

intermediate result when proving the generative equivalence of Chomsky normal form
grammars and context-free grammars.®

The primary purpose of any TTree defined by a T grammar derivation is to give
temporal meaning to the symbols constituting the tree. To this end, a numeric ‘wait’
value, W(X) is associated with every variable X € V . The time of any symbol
v € VUT in a TTree, relative to its root, is the sum of all values W(X) of the
variables X having horizontal branches on the path from S (the start symbol) to v.
More formally, if z; and x, are two symbols in a T'Tree such that z; is an ancestor of
Zn, and if the path from z; to z, is described by the sequence of symbols zy, z9, ..., Z,,

then the time from z; to z, is defined as follows:

n—1 W(z) if z branches horizontally to
T(z1,2,) = Z V(zi, Tit1), V(z,y) = { (z) . 7oy
pa 0 otherwise

To recapitulate, there is a convenient mapping between TTrees and formal gram-
mars: TTrees can be seen as (binary) derivation trees corresponding to derivations in
a T grammar. Although T grammars restrict their productions to a certain normal
form, they are generatively equivalent to context-free grammars. Associating numeric
“wait” values with the variables of a T grammar allows temporal information to be
embedded in the derivation tree itself.

In a recent paper, I describe a compositional environment which parallels these
formal language concepts precisely [Die89b]. By contrast, the TTree model presented
in this chapter has no notion of disjoint sets of variables and terminals: it is as
if all the nodes of the tree were members of the variable alphabet. The formal
grammar correspondence can easily be established, however, by adding terminals

t and productions T' — t for all variables T' € V.

3.7 Message Channeling

In object-oriented systems, the nodes of binary trees may be conveniently represented
as objects. Instance variables of these objects, when bound to other nodes in the tree,

8See, for example, [HU79, pp 92-93]

CHAPTER 3. THE TTREE 39

implement the arcs which define the tree’s structure. An important characteristic of
all tree structures is that there is exactly one simple path between any two nodes in a
tree.” For an object-oriented system, where communication between objects is done
by message-passing, this means that every object in a binary tree will have a unique,
well-defined way of messaging every other object.® The tree becomes, in effect, a
channel for inter-object communication.

In order to illustrate this point, some form of algorithmic language will be required.
In this and subsequent examples, the syntax of Smalltalk-80 will be adopted.® Follow-
ing the natural language interpretation introduced in Section 3.5, assume that every
object in a binary tree has instance variables named is and then which are either nil
(empty) or contain references to the respective vertically and horizontally situated
objects in the tree. The corresponding messages is and then cause these references
to be returned. Furthermore, assume that each object contains an instance variable
ancestor, which it returns in response to the message ancestor. Thus, referring to
Figure 3.5, fugue can send the message aMessage to altoEntry by executing “self
is then then is aMessage”, while stretto would communicate with development by
executing “self ancestor is then aMessage.” !0

In the object-oriented programming literature, structures such as these have been
referred to as “instance hierarchies” as distinct from “class hierarchies.” Class hi-
erarchies, through the mechanism of inheritance, are the principle means by which
many object-oriented languages allow objects to share behavior. Behavior sharing
within instance hierarchies, however, can be a very powerful tool. In a TTree, such

sharing can be accomplished by having every object which does not understand a

"In graph theory, a path is simple if all its nodes and edges are distinct.

8This paper uses the terms “message-passing” and “messaging” in the sense of Smalltalk-80 or
Loops: “...a synchronous form of message-passing in which the sender must wait for a reply from
the receiver before continuing.” [Weg87, page 512]

9For the sake of precision, it is often better to adopt an actual programming language for de-
scribing algorithms rather than some subset of English. Smalltalk-80 [GR83], as one of the oldest
and best-known object-oriented programming languages, has a simple and consistent syntax which
is ideal for this purpose.

100f course, if the structure contained explicit pointers backwards along the horizontal axis (i.e.
true, “binary tree” ancestor pointers), this message could be simply “self predecessor aMessage.”

CHAPTER 3. THE TTREE 40

given message simply “delegate” that message to its ancestor.!! Messages, then, will
always travel upwards through the tree towards the root until they arrive at an object
that can respond to them.

The implementation described in Chapter 5 makes extensive use of this form of
delegation. To illustrate, consider the case of a “note” glyph trying to send the
message aMessage to its “staff” glyph. Now, it may not be the case that notes sit
directly on top of staves in a score: there could be, for example, several layers of
“part” glyphs, “measure” glyphs, and so on, between the two. But if we arrange for
staves, and staves alone, to return self in response to the message findStaff, then a
note can simply execute “self findStaff aMessage”. Since the objects lying between
the note and the stave don’t understand findStaff, they will pass it on successively up
the ancestor chain until it reaches the staff, and the communication is accomplished.

Several useful categories for describing behavior-sharing mechanisms in object-
oriented programming languages are introduced in The Treaty of Orlando [SLUS8Y).
Adopting the terminology of this paper, the form of delegation presented here can be

described as:

¢ Dynamic: sharing patterns are determined when an object actually receives a

message.

o Explicit: the programmer explicitly directs the patterns of sharing by direct
manipulation of glyphs through the 3TG model.

o Per object: idiosyncratic behavior can be attached to the individual object.

When merged with the static, implicit, and per group behavior-sharing mechanisms
of class-based inheritance, the scheme provides a powerful programming system for
building scores with the 3TG model.

11The term “delegation” refers to the process of determining behavior sharing strategies dynam-
ically (during program execution). Various forms of inheritance and delegation are described in
Wegner’s article [Weg87], while Stein has argued for their equivalence [Ste87].

CHAPTER 3. THE TTREE 41

3.8 The TTree as Declarative Description

Like “object-oriented”, the adjective “declarative” is often applied to programming

languages and descriptions. Ullman defines a declarative language as:

...a language in which one can express what one wants, without ex-
plaining exactly how the desired result is to be computed. A language
that is not declarative is procedural. “Declarative” and “procedural” are
relative terms, but it is generally accepted that ordinary languages, like
Pascal, C, Lisp, and the like, are procedural, with the term “declarative”
used for languages that require less specificity regarding the required se-
quence of steps than do languages in this class. [Ul188, page 21]

Declarative languages attempt to liberate programmers from the necessity of spec-
ifying “how” results are obtained, allowing them to focus on “what” results they wish
to obtain. Presumably, this makes the programming process easier and, all other
things being equal, users will prefer declarative languages over procedural ones. Nev-
ertheless, most music representation languages to date have tended towards procedu-

ral descriptions. This has led Dannenberg to remark:

In spite of these precedents, my position is that algorithmic or procedu-
ral descriptions are a bad approach to the representation problem because

of the difficulty of manipulating these descriptions.[Dan89b, page 73]

The message channeling capabilities of the TTree, described in Section 3.7, have
a strong declarative flavor, for they largely free the programmer from having to spec-
ify the mechanism involved in passing messages among nodes of the tree. Users can
manipulate the structure freely, leaving the mechanics of how messages pass among
its component objects to the underlying execution mechanism. This simplifies ma-
nipulation tasks not only for the user, but for other programs and processes as well.
The TTree, then, has the potential to unite many of the advantages of declarative

language descriptions with object-oriented and programming technology.

CHAPTER 3. THE TTREE 42

3.9 TTree Traversal

As mentioned in Section 3.3, traversal algorithms are critical for implementations
of the 3TG metaphor, for they are the basis by which the TTree is both displayed
and played. This section introduces a number of traversal algorithms in the context
of object-oriented programming. The algorithms are presented as methods of some
class whose instances are nodes in a TTree. While the terminology used is that of the
TTree, these methods make no reference to the TTree’s unique temporal structure
(this discussion is reserved for Section 3.10). Consequently, they are just as applicable
to binary trees as they are to TTrees.

Unless otherwise stated, all the following traversal methods are activated by mes-
saging the root node of a binary tree with the method name. Although only preorder
traversal methods are shown, most of these methods can be easily converted to in-
order by simply moving the self visit message expression textually past the is traverse
message expression.

Preorder traversal of a binary tree can be accomplished recursively as follows:!?

traverse
self visit.
is notNil
ifTrue: [is traverse].
then notNil

ifTrue: [then traverse]

Method 1. Preorder traversal of a T'Tree.

12Briefly, a Smalltalk-80 message send is written simply as receiver message, or, if the message
takes an argument, as receiver message: argument. Variables local to a method are declared by
enclosing them between vertical bars, as in | local |. Assignment is designated by a left-pointing
arrow,«, while the uparrow symbol, 1, precedes the name of the object to be returned from a method.
The boolean infix operator, “==", yields true if and only if both its operands are exactly the same
object. Finally, code enclosed in square brackets, such as [receiver message: argument] is called a
block in Smalltalk-80: its execution is deferred until it is sent the message value. Blocks are often
passed as arguments in messages to instances of the Boolean subclasses True and False. To illustrate,
the ifTrue: method of class False never evaluates its block argument, while the corresponding method
in class True always evaluates it (by sending it the message value).

CHAPTER 3. THE TTREE 43

Note the two uses of the message notNil in Method 1. These messages function
as conditionals for testing the existence of is and then objects before these objects
are themselves messaged recursively. They implement the termination conditions for
the two recursive descents. They can easily be eliminated, however, by filling all
empty instance variable slots in each object in the tree with sentinels: special objects
used to mark the tree’s boundaries. No matter what messages they receive, sentinels
simply return, effectively terminating any recursive descent without the need for a
conditional. Thus Method 1 can be simplified to:

traverse
self visit.
is traverse.

then traverse

Method 2. Preorder traversal of a T'Tree with sentinels.

Observe that if there are n objects in a binary tree, then exactly n + 1 is and
then instance variable slots in the nodes of the tree will be nil.!> One single sentinel
object can be used over and over to fill all these slots. The technique removes 2n
conditionals from any traversal of the tree, while introducing n + 1 extra message
sends. Whether or not this results in a computational saving, however, will depend
on the particular implementation language. In Smalltalk-80, for example, where
each conditional itself involves 2 message sends, the use of sentinels can result in
significantly faster traversal. In languages where conditionals involve no message
sends, however, the use of sentinels may actually increase the time it takes to do a
complete traversal.

Note that Method 2 is a tail-recursive method, that is, the last executed statement
is a call to itself. In order to save stack space, tail-recursion may be replaced by a
reassignment of the message parameters followed by iteration. Since the traverse mes-

sage has, apparently, no parameters, the process should be straightforward. In reality,

13To see this, note that a binary tree with n nodes will have 2n slots for is and then instance
variables. Every object in the binary tree except the root will have exactly one instance variable~
either an is or a then-referring to it, thus there will be n — 1 such references. Consequently,
2n — (n—1) = n+ 1 of these instance variables will be nil.

CHAPTER 3. THE TTREE 44

however, most object-oriented languages always pass along one invisible parameter
with every message send, namely the identity of the object to whom the message is
being sent. The variable self is bound to this value before the corresponding method
is executed. This means that self must itself be reassigned in order to eliminate the

tail-recursion, as in the following:

traverse
[self isSentinel]
whileFalse:
[self visit.
is traverse.

self « then]

Method 3. Preorder traversal with sentinels and tail-recursion

elimination.

This method assumes that non-sentinel objects answer false to the message is-
Sentinel, while sentinels answer true. Unfortunately, the method is not correct
Smalltalk-80, for that language, like many object-oriented languages, prohibits the
explicit assignment of the variable self. The following method, which takes the root

of the tree as an argument, has no assignments to self:

traverse: aRoot
| aNode |
aNode < aRoot.
[aNode isSentinell]
whileFalse:
[aNode visit.
self traverse: aNode is.

aNode « aNode then]

Method 4. Preorder traversal with sentinels and tail-recursion

elimination, and with no assignments to self.

CHAPTER 3. THE TTREE 45

One drawback of all the traversal algorithms discussed so far is that they behave
slightly differently if their recursive descent begins at the root than if it begins at
some other object in the binary tree. If we apply Method 2, for example, to the node
labeled stretto in Figure 3.5, then the coda will be visited in addition to the subtree

-rooted in stretto, which in many cases will not have the desired effect. Instead, an

“auxiliary” function can be used:

traverse
self visit.

is auxTraverse

auxTraverse
self visit.
is auxTraverse.

then auxTraverse

Method 5. Preorder traversal using an auxiliary function.

This section concludes with an iterative, right-threaded [Knu73, page 323] preorder
TTree traversal algorithm. In right-threaded binary tree traversal, nil right-subtree
pointers in nodes of the tree are set to point to the inorder successors of these nodes,
resulting in efficient algorithms for both preorder and inorder traversal. These al-
gorithms traverse subtrees without the necessity of any “auxiliary” functions as in
Method 5, and, by eliminating recursion, provide great savings in stack space.

In Section 3.7, “ancestor” links were described which connected the nodes of a
TTree to their ancestors in the corresponding ordered tree. It is not hard to see that
for any node in a TTree with a nil then pointer, the node pointed to by such an
ancestor link is precisely its inorder successor. This gives rise to the following method

for preorder traversal:

CHAPTER 3. THE TTREE 46

traverse
| aNode |
aNode « self.
[true] whileTrue:
[aNode visit.

[aNode is isSentinel]

ifFalse: [aNode « aNode is].

ifTrue:

[[aNode then isSentinel]
ifFalse: [aNode « aNode then].
ifTrue:

[[aNode then isSentinel]
whileTrue:
[aNode « aNode ancestor.
[aNode == self]
ifTrue: [Tself].
ifFalse:[aNode « aNode then].
1111

Method 6. Preorder traversal using sentinels and threaded traver-
sal.

The traversal algorithms of this section provide a means for displaying scores in
the 3TG model. If, for example, every glyph of a TTree responds to the visit message
by drawing its image onto the screen, then a complete tree traversal will completely
redraw the score. In the next section, these same algorithms form the basis of simple

and efficient methods for score performance.

3.10 Playing TTrees

This section extends the algorithms of Section 3.9 to make use of the TTree’s unique

ability to situate its nodes in time. There is, of course, much more to playing a score

CHAPTER 3. THE TTREE 47

than simply locating musical events in time. As we shall see, however, this is simply
a question of granularity: the TTree can generate discrete sound samples as easily
as it can generate high-level musical events requiring event-schedulers and synthesis
hardware for their final realization.

The present discussion adopts the convention that “playing” or “performing” a
node in the TTree is accomplished by sending that node one or more play messages
at a predetermined time. In response to this message, the node’s corresponding
play method is responsible for actuating the available sound synthesis machinery.
Playing a TTree, then, is the process of delivering these play messages to its nodes
in accordance with the delay values associated with each node.

The most straightforward way of playing a TTree is to precompute absolute times,
relative to the tree’s root, for all the nodes in the tree. Any of the traversal methods
given in Section 3.9 can then be used to write out a note list [DJ85, pages 14-17] or
a series of time-tagged instructions for some event-scheduling process as described in
[AKS86] or [Dan89a]. For any given node, its absolute time will be the the sum of all
the delay values along the path from the root to itself, not including its own delay
value. Regardless of whether preorder or inorder traversal is performed, the nodes
will probably have to be sorted into ascending order of begin time, for many note list
processors require their input to be in this form.

Despite its simplicity, this approach contradicts an important goal enunciated
in Section 3.2, for it is little more than a conversion function for creating a quasi-
independent data structure for TTree performance. The following method avoids
creating such structures by embedding scheduling control within the methods of the

node objects themselves:

CHAPTER 3. THE TTREE 48

tick
self play.
is tick.
self wait ifFalse:
[then tick]

wait
delay = 0 ifTrue:
[T false].
delay « delay - 1.

Ttrue

Method 7. Sampling algorithm for TTree performance.

Although the methods introduced in this section use the recursive descent struc-
ture of Method 2, any of the methods of Section 3.9 may be similarly adopted.
Method 7, called the “sampling” algorithm, assumes that some process will send a
series of tick messages to the TTree’s root at a fixed sampling rate. The tick message
itself propagates recursively down the is branches of the tree, but can only propagate
along then branches when a node’s wait method returns false. As successive tick
messages arrive at a given node, that node’s delay value will eventually time out,
causing the wait method to return false, and allowing the tick message to flow not
only downwards but along the node’s vertical then branch as well. As in Method 2,
this method uses sentinels to terminate the recursive descent. Figure 3.6 shows a
score fragment together with snapshots of the corresponding TTree as it evolves in
response to the five tick messages needed to perform it in its entirety.

In Method 7, the wait method operates by simply decrementing a counter called
delay, returning false only when the counter has reached zero. Any temporal opera-
tion which returns true or false, however, can be used as a wait method. Processes like
“wait until my ‘is’ branch has finished playing” or “wait until the ballerina assumes
her arabesque downstage right” exemplify some of the possibilities.

If the play methods of the nodes in a TTree generate individual sound samples

CHAPTER 3. THE TTREE 49

Root O
Staff 0 — —_ Staff O

[Note 2 M { Note 2] [Note 4 |

Root 0O Root 0

Staff O |L —{_Sta; { Staff 0 Staff 0 IL 1_Staff O
[Note 1 M"—{ Note 2 | [Note 3] [Note 0 }>—{ Note 2] [Note 2 |

Root O Root O

Staff 0 — 1 _Staff O Staff 0 —_Staff O |
[Note 0 —{ Note 1 | [Note 1] [Note 0 = Note 0 | [Note 0 |

Figure 3.6: The sampling algorithm. The figure shows “snapshots” of the sampling
algorithm playing a score fragment. The fragment is deliberately left incomplete for
simplicity. As successive tick messages course through the TTree, the delay value of
the first half note eventually times out, allowing the second half note to receive the
tick message.

CHAPTER 3. THE TTREE 50

with each message, than they will typically require thousands of play messages to
complete their tasks. On the other hand, if these methods generate, say, MIDI events,
then they may need no more than a single message. In either case, however, they
will eventually begin receiving messages they have no use for. Further, as more and
more then branches open up, the effective size of the tree being traversed grows and
grows. As a result, traversal takes progressively longer and longer to execute, with
many nodes receiving the message long after they have played themselves out.
Many of these redundant messages can be eliminated, however, by revising the tick
method to answer true whenever more play messages are needed, and false otherwise:
tick
selfNeedsMore ifTrue:
[selfNeedsMore « self play].
isNeedsMore ifTrue:
[isNeedsMore « is tick].
thenNeedsMore ifTrue:
[self wait ifFalse:
[thenNeedsMore <« then tick]
1.

TselfNeedsMore | isNeedsMore | thenNeedsMore

Method 8. Sampling algorithm for TTree performance with mes-
sage blocking.

Method 8 assumes that the T'Tree’s sentinels respond to tick with false. The
method uses three boolean-valued instance variables: selfNeedsMore,isNeedsMore,
and thenNeedsMore. These variables, which must all be initialized to true before
playing begins, prevent the tick message from propagating to nodes that no longer
need it. As an added bonus, the root node of the TTree will return false in response
to tick only when the entire tree has played, effectively informing the original mes-
- sage sender that the performance has finished. No such termination information is
provided by Method 7.

Method 8 implements “message-blocking”, because it blocks tick messages from

CHAPTER 3. THE TTREE 52

tick
selfNeedsMore ifTrue:
[selfNeedsMore « self play].
isNeedsMore « is tick.
self wait ifFalse:
[thenNeedsMore « then tick].
isNeedsMore ifFalse:
[is « is then].
thenNeedsMore ifFalse:
[then « then then].
1TselfNeedsMore | (is isSentinel not) |

(then isSentinel not)

Method 9. Sampling algorithm for T'Tree performance with sub-
tree deletion.

The efficiency of Method 9 is gained at quite a price: once the TTree has been
performed in its entirety, only its root node will be left intact! This deficiency, how-
ever, can be remedied for the cost of two new instance variables. When initialized to
each node’s is and then pointers before playing, these variables can take the place of
the original pointers during performance, leaving all original linkages intact.

As a final refinement of T'Tree performance algorithms, note that for certain trees,
most tick message traversals will function only to count off delay values, and will cause
no play messages at all to be sent. Such “ineffective” traversals can be skipped if,
at a particular time in the tree’s performance, the delay until the next play message
will be sent is known in advance. Then, through a simple modification of the wait

method of Method 7, such traversals can be eliminated:

CHAPTER 3. THE TTREE 51

F:0

G:0

Figure 3.7: A TTree demonstrating message-blocking.

traveling downwards or to the right in the tree. To illustrate, assume that every node
in the tree of Figure 3.7 returns false after receiving but a single play message. The
first tick will reach all nodes except E. The second tick message will reach node E,
but will be blocked from reaching nodes F and G, because D’s isNeedsMore instance
variable will be false. But consider the path this second tick message must take to
reach E. It must travel from node A through nodes B,C, and D. A More refined
approach would eliminate these intermediate nodes, shortening the traversal path by
forging an arc directly from A to E.

The following method accomplishes path-shortening through “subtree deletion”:
the process of removing arbitrary subtrees from the tree once they no longer require
tick messages. Each node does its subtree deletion work only after both its is and
then subtrees have been traversed. If either subtree returns false in response to tick,

then it no longer requires tick messages, and can be removed from the tree.

CHAPTER 3. THE TTREE 53

wait
delay « delay - (conductor tickLength).
delay = 0 ifTrue:
[T false].
conductor nextPlayIn: delay.

Ttrue

Method 10. Modified wait method for eliminating “ineffective”
ticks.

Rather than assuming some fixed message rate, Method 10 relies on a conductor
object sending tick messages to the tree at prescheduled times. With each traversal,
nodes subtract the value of “conductor tickLength” (the time since the last tick was
sent) from their delay instance variable, passing the new value to conductor through
the message “nextPlayIn: delay.” After every traversal, conductor schedules the next
tick message as the minimum of all the delays it received.

In his essay Composing with Computers [Loy89], Gareth Loy distinguishes two
basic models of event scheduling for music. Strict functional models do their work by
polling at fixed intervals. Event-oriented models, on the other hand, with no notion
of sample rate, are controlled only by the frequency of musical events. Both have
their advantages and disadvantages, and successful systems have been built using
both approaches. As we have seen, the TTree structure supports both models, for
the sampling algorithms clearly belongs to the functional category, while Method 10

describes an event-oriented approach.

3.11 Summary

Chapter 2 introduced the metaphor of three-dimensional, transparent glyphs (3TG) as
a way to organize graphically-displayed musical scores in computerized compositional
environments. This chapter has presented a data structure which not only supports
the displaying of such scores, but the playing of them as well. Called a T'Tree, the

structure is the binary correspondent of an ordered tree with time-delays associated

CHAPTER 3. THE TTREE 54

with its right-going arcs. Like binary trees, T'Trees are often better conceptual models
of musical structure than their multi-branching correspondents, and may well be more
efficient in terms of computer implementation.

The connection between TTrees and formal grammars suggests the possibility of
using the structure for both compositional algorithms and automatic score-generating
programs. In an object-oriented system, T'Trees provide both a well-organized in-
stance hierarchy greatly facilitating object-to-object communication, and a powerful
behavior-sharing mechanism. These features result in a declarative-like data descrip-
tion which contrasts with the procedural descriptions of many music-representation
schemes.

A variety of TTree traversal algorithms with differing properties can be imple-
mented within the object-oriented paradigm. Simple extensions to these algorithms

provide efficient and elegant methods for TTree performance.

Chapter 4

User Interface Design

4.1 Introduction

Chapter 2 of this paper introduced the three-dimensional transparent glyph model of
the notated score. In this chapter, the unique style of musician-machine interaction
implicit in the model is explored. Issues concerning the design of a prototypical user
interface based upon the model are discussed. This discussion forms the basis of the

user interface to the music notation program described in the following chapter.

4.2 Scope of the Discussion

Decisions about user interface design are made from different perspectives by different
people. All too often, such decisions are based solely on the personal taste, experi-
ence, and intuition of the software developer. Fortunately, in today’s commercial
software development world, design decisions are frequently guided by preestablished
standards. Many computer manufacturers, for example, in an effort to achieve consis-
tent user interfaces across applications, publish such references as “Human Interface
Guidelines: The Apple Desktop Interface” [App88], or “The NeXT User Interface”
[NeX89a]. Unfortunately, only rarely are such guidelines formulated according to
factually or experimentally verified principles, in spite of the ever-growing body of

results obtained from user interface research.

55

CHAPTER 4. USER INTERFACE DESIGN 56

The current focus of the human-computer interaction research community can be
divided into three categories.! First, software engineers are exploring the technolo-
gies of object-oriented, distributed, and knowledge-based systems for creating highly
interactive, visual computer environments. Second, human factors experts are at-
tempting to map out the basic cognitive processes underlying our interaction with
computers. Finally, a growing number of researchers are exploring such topics as
workgroup computing, participatory design, and the role of the computer in society.

For a compositional environment based on the 3TG model, how can these research
results help in the design of a user interface? During the earliest stages of design, this

research is probably at its least prescriptive. As Day points out,

the psychological and human-factors literature is rarely specific
enough to describe precisely how a user interface should be designed. This
is especially true when developing new technologies or designing complex
user interfaces. Therefore, a human factors specialist designing a user in-
terface relies on established knowledge and experience for the first “draft”

design. This design is then tested for usability.[Day89, page 4]

The importance of iterative usability testing [GL85] and other empirical measures
of interface design cannot be overestimated. Such testing, however, cannot be carried
out without an implemented, prototypical system to carry it out upon. To this end,
the present chapter consigns the task of usability testing to further research, and
focuses exclusively on the design of a first “draft” system. Chapter 5 describes the
implementation of just such a system, based on the discussion of this chapter together

with the TTree data structure presented in Chapter 3.

4.3 Conceptual Integrity

The first draft of a user interface, then, must rely heavily on “established knowledge
and experience.” One theme in particular, the concept of conceptual integrity, will

underlie all of the discussion of this chapter. To quote from Frederick Brooks:

1Grudin’s paper discusses the historical evolution of the changing focus of user interface research
and development [Gru90].

CHAPTER 4. USER INTERFACE DESIGN 57

I will contend that conceptual integrity is the most important con-
sideration in system design. It is better to have a system omit certain
anomalous features and improvements, but to reflect one set of design
ideas, than to have one that contains many good but independent and
uncoordinated ideas.[Bro75, pg. 42]

What Brooks articulated in 1975 has become, in various formulations, a familiar
refrain in user interface design. One way of achieving a conceptually integral user
interface is to base all decisions about its design on a single, pervasive metaphor.
If this metaphor is powerful enough, many of the details of the interface will follow
naturally from it. In this way, rather than obliging users to rummage through volu-
minous technical documentation, they can predict how certain actions are achieved
by direct inference on the metaphor. At the same time, a single metaphorical design
basis helps to foster a consistent interface. And as Peter Polson has demonstrated,
“ ...consistent user interfaces mediate positive transfer within an application across
tasks...These results should surprise no one; the important fact is their magnitude”
[Pol88, page 103].

It can be a creatively challenging task to find a single metaphor that can wrap an
entire application domain into one conceptual package, particularly if that domain
is highly abstract or unfamiliar. Fortunately, the 3TG model introduced in Chap-
ter 3 is both concrete and familiar. Stacking objects into piles, for example, is a
common, everyday experience, and although musicians do not usually conceptualize
scores as three-dimensional piles of symbols, the concept of putting staves on pages,
notes on staves, dots on notes, and so on, is familiar to all those acquainted with
traditional western notational practice. For this reason, the 3TG model makes an
excellent metaphor for the user interface to a music notation program. By basing all
decisions about interface design directly on this metaphor, a conceptually integrated

compositional environment for music notation can be built.

4.4 Direct Manipulation

Schneiderman, in [Shn83], portrays direct manipulation systems as follows:

CHAPTER 4. USER INTERFACE DESIGN 58

Continuous representation of the object of interest.

Physical actions (movement and selection by mouse, joystick, touch screen, etc.)

or labeled button press instead of complex syntax.

Rapid, incremental, reversible operations whose impact on the object of interest

is immediately visible.

Layered or spiral approach to learning that permits usage with minimal knowl-

edge.

In effect, direct-manipulation interfaces permit users to operate directly on com-
puter representations of objects themselves, rather than indirectly through some in-
termediate language. These interfaces are known to decrease the demands on user’s
short- and long-term memory [Jac89]. At the same time, most users find them easier
to master and more enjoyable to use than the corresponding indirect-manipulation
interfaces. Such “fostering of enjoyment” among users is a key characteristic of any
system boasting the enhancement of creativity among its goals.

The 3TG model readily lends itself to a direct-manipulation style of interaction.
This interaction must include a facility for removing a given glyph from one pile and
placing it on another. This operation is easily effected using a graphics input device
such as a mouse, light pen, or joy stick, and a single “drag” button.? The input device
is used to position a cursor over the glyph to be moved. Then, with the drag button
held down, this glyph can be dragged to its new location. If two drag buttons rather
than one are used, the second button can be used instead of the first to indicate
that a clone (deep copy®) of the glyph should be made, and that it, rather than the
original, is to be dragged to the new location.

This manipulation metaphor will be referred to as clone-and-drag in order to

distinguish it from the more prevalent cut-and-paste metaphor implemented by many

2A graphics input device such as a mouse which allows both itself and a button or buttons to
be operated with a single hand may be preferable to one requiring two hands. In a musician’s
studio there may well be other tasks—playing a keyboard, operating the controls on an amplifier,
waving a conducting baton-—which the musician wishes to perform concurrently with commanding
the computer.

3The the article [Die89b] for a discussion of deep versus shallow copying in computer music
systems.

CHAPTER 4. USER INTERFACE DESIGN 59

graphically-based user interfaces today. With cut-and-paste, the object of interest
is first selected by the user. Then, either the command cut or copy is executed,
generally by choosing the command from a menu. This typically causes either the
object itself or a copy of the object to be placed in some invisible buffer. Next, the

- desired destination location for the object is indicated, and the command paste is
executed to copy the object from the invisible buffer into the destination.

Note that this characterization of the cut-and-paste metaphor does not really fit
Shneiderman’s portrayal of a direct manipulation interface, for the object of interest
is not continuously represented during the operation: after the cut or copy command,
the object becomes invisible until the paste command is issued. As a result, users
must retain an image of the object in their memories in order to use the metaphor
effectively. If this memory image is lost, the user risks inadvertently replacing the
object in the invisible buffer with some other object. Some systems implement the
buffer as a stack of objects, alleviating the problem of inadvertent replacement at the
cost of greater demands on the user’s memory store.

By contrast, the clone-and-drag metaphor fits Shneiderman’s portrayal precisely.
The object of interest is continuously represented during the operation, freeing users
from the necessity of keeping an image of the object in their own memory. The four
discrete physical actions necessary to complete a cut-and-paste operation—select ob-
ject, cut, identify destination, paste—are replaced, in clone-and-drag, by two con-
tinuous ones: select and drag to destination. Further, users can view the effect a
clone-and-drag operation will have on a representation before they commit to it by
releasing the drag button. For these reasons, clone-and-drag operations are often
found in computer drawing programs, and they make excellent manipulation meth-

ods for repositioning glyphs in a 3TG-based compositional environment.

4.5 Windows

After reviewing several research projects concerning window system design, Shneider-
man concludes that the advantages and disadvantages of various design approaches

are still too poorly understood to be of much guidance to the developer [Shn87].

CHAPTER 4. USER INTERFACE DESIGN 60

Nevertheless, design choices will have to be made, for the pervasiveness of windowing
systems on computers today makes it hard to imagine a graphic user interface without
one. For many development projects, the decision to use some form of user interface
management system* will obviate the need to do much in the way of basic window
- design. ‘Such management systems, however, still give the developer enough latitude
to seriously affect the usability of the interface. Consequently, designers of successful
window-based applications must invest a good deal of thought into the ways in which
their applications might map into their chosen windowing environment.

A likely scenario for a 3TG window-based system assigns to each window of a po-
tentially multi-window application the task of displaying a single hierarchy of glyphs.
In this scheme, the background of each such window represents the root glyph of the
hierarchy. Glyphs can be dragged not only from one pile to another, but from one
hierarchy (window) to another as well.

If glyphs can be dragged from one window to another, then a unique method
for deleting glyphs can be implemented. In this method, deletion is triggered when
a glyph is dragged out of its window and released at some location outside of all
of the application’s windows. Adopting this scheme simplifies the user interface by
eliminating the need to dedicate a menu item or other control scheme to the task.

Window-to-window mobility also provides a convenient means for delivering sets
of glyphs to the user. In place of some specialized palette scheme with its requisite
set of commands, windows may be “pre-loaded” with sets of individual glyphs. Users
drag glyphs from these pre-loaded windows into their “working” windows as needed.
Except for the fact that such windows have been pre-loaded, they are identical to
all windows in the system. As a result, no new commands are needed to manipulate

them, thus the number of commands the user must master is kept to a minimum.

4A user interface management system [BC89, page 207 is a software support package, often
provided by the computer vendor, which defines much of the look-and-feel of the applications which
use it.

CHAPTER 4. USER INTERFACE DESIGN 61

4.6 Grouping

There are many potential circumstances in which a group of glyphs would be best
treated as a unit rather than as a set of individual objects. As a simple example,
when a complex glyph pile has been built up, the user may wish to guard against the
possibility of inadvertently destroying the structure through some accidental clone-
and-move operation. For cases such as these, a scheme in which piles may be “glued”
or “frozen” together may suffice: when frozen, the individual glyphs which make up
the pile cannot be repositioned with respect to the pile’s foundation (root) glyph.

One way in which the interface to a 3TG-based compositional environment can
be greatly simplified is to ensure that any operation which affects a single glyph also
effects every glyph piled upon it, whether the pile is frozen or not. Thus, when a
glyph is dragged, all glyphs piled upon it are dragged as well. Similarly, when a
glyph is cloned, all glyphs piled upon it are cloned as well. This simplicity is gained
at a cost, however, for if users wish to operate on a glyph without affecting the glyphs
piled upon it, they must first move these piled glyphs off of their foundation before
performing the operation. A parallel set of operations operating only on single glyphs
rather than on glyph piles could be implemented, though this might unduly increase
the complexity of the interface, sacrificing a good measure of conceptual integrity in
the process.

The glyph pile, then, can be used as a unit which implicitly specifies the scope
of certain operations. Buxton et. al. define scope as “the sphere of action of any
activity” [BPRB81]. Their article distinguishes a variety of approaches to scope in in-
teractive score editors, and suggests that for the demonstrative approach (“transpose
this note, that note, and that note”), graphic manipulation is the most appropriate
tool. The demonstrative approach is easily implemented in a direct-manipulation
system using what might well be termed “scope-by-pile.” Unfortunately, it will not
always be the case that every glyph in some desired scope will belong to a common
pile. Since such situations are likely to be very common, an appropriate mechanism
must be found which is still metaphorically related to the 3TG model.

Many graphic user interfaces implement “multiple selection”: a mechanism by

CHAPTER 4. USER INTERFACE DESIGN 62

which more than one object can be selected, and thus operated upon, at a time. The
idea of scope-by-pile is itself a form of multiple selection, but a severly restricted
one for two reasons. First, only glyphs which are connected to a common subglyph
can be selected. Second, if two glyphs which are connected by a common subglyph
are selected, then so are any other glyphs sharing the same subglyph, including that
subglyph itself. Nevertheless, these restrictions can be removed by allowing operations
to effect more than one pile at a time, effectively expanding the notion of scope-by-pile
into scope-by-set-of-piles.

There is another method by which the shortcomings of the scope-by-pile method
can be circumvented, a method which is perhaps closer in spirit to the 3TG model
than is the scope-by-set-of-piles concept. This method introduces the concept of the
tray: a glyph which functions as the missing common subglyph under two or more
other glyphs. When a glyph is selected in some “special” way (by double-clicking
with a mouse, for example), a tray glyph can be created and attached under the
selected glyph. Subsequent special-selections cause the original tray to grow in size
to support each subsequent specially-selected glyph. Further, every such glyph can
be automatically “frozen” to the tray. When the multiple selection is complete, users
manipulate the tray just as they would any other glyph, with the exception that when
the tray is “unfrozen”, it deletes itself, leaving behind all the glyphs sitting on top of
it.

The tray concept is more general than the scope-by-set-of-piles mechanism de-
scribed earlier, for multiple trays can easily coexist within the same application at
any given time. It is as if the interface supported multiple multiple-selections. Unfor-
tunately, due to their unusual selection and deletion behavior, trays do contribute to
the conceptual complexity of the interface. Nevertheless, since trays have a concrete,
metaphorical relationship to the real world, that complexity may be easy for the user
to surmount. Clearly, only empirical investigation can determine whether this is in

fact the case.

CHAPTER 4. USER INTERFACE DESIGN 63

rew: "
bebvvess
&b obdd

AAAAAAAAA

AR W
P Peeee
P g et

Figure 4.1: Clipping. The figure shows two possibilities for displaying a glyph which
overhangs another.

4.7 Clipping

For any implementation of the 3TG model, there will be several possibilities for
dealing with the situation of one glyph piled on top of another such that its edges
overhang the glyph it is piled upon. Referring to Figure 4.1, when glyph A is piled
on glyph B, should the portions of A which do not intersect B be visible, as in 4.1a,
or should A be clipped to the border of B, as in 4.1b?

I believe that the clipping approach, as exemplified by Figure 4.1b, is preferable
for several reasons, even though it contradicts the concrete, real-world characteristic
of the “piles of objects” metaphor (in the real world, objects don’t clip their borders to
each other). Because of the transparency of glyphs, adopting a non-clipping approach
leads to ambiguities about how the glyph hierarchy is structured. In Figure 4.1a, for
example, it is impossible to decide on the basis of visual data alone whether A is
on B, Bis on A, or, for that matter, whether A and B actually coexist at the same
hierarchical level and simply overlap visually. By contrast, Figure 4.1b makes it much
more visually apparent that A is resting atop B.

Of course, it could be argued that in Figure 4.1b, it is not clear that anything at all

CHAPTER 4. 64

A4

[~]

Figure 4.2: Clipping to suppress detail. A trill figure with the trill fully written out
as a fragment of common music notation, then “mounted” on a trill symbol is shown.
The arrow indicates that the fragment has been dragged over top of the symbol. It
is aligned so that only a part of its area which contains no drawing is “visible” over
the symbol—the rest is clipped. Both the fragment and the symbol are enclosed in
rectangles to show the extent of their glyphs.

rests on B. Since users don’t see all of A, the rectangle in B’s upper left corner could
simply be a part of B’s image. Yet the fact that clipping makes most of A disappear
can be used to advantage. As we shall see, the ability of clipping to suppress detail
opens up a whole new set of possibilities for the 3TG model, as witnessed by the
following examples.

In Figure 4.2, a trill figure is fully-written out in a fragment of common music
notation, then frozen onto a glyph containing a trill symbol, where it is clipped to
the glyph boundary of that symbol. Because a portion of the fragment containing no
drawing at all is located over the symbol, the fragment is entirely invisible. Further-
more, because the fragment is frozen to the symbol, it is inaccessible until the unit is
unfrozen. When unfrozen, the user can drag the fragment off of the symbol and alter
it as desired.

Clipping can also be used to hide information not normally associated with a

musical score. In Figure 4.3, the glyph pile at the left is shown on the right in

CHAPTER 4. USER INTERFACE DESIGN 65

SiaEFM

Figure 4.3: Two views of an FM instrument. The 3-d view on the right reveals
structures which have been visually clipped from the view on the left.

an alternate representation where clipping is turned off and all glyphs are mounted
on opaque platforms to emphasize their three-dimensionality. The figure shows a
schematic diagram of a simple FM instrument [Cho85]. The schematic includes two
glyphs representing sinusoidal oscillators (labeled by a sine wave cycle), an adder
glyph (labeled by a circle with a plus sign near the top), and four constants (labeled
by circles resembling the faces of clocks).

Finally, Figure 4.4 exemplifies how musical structure itself can be encapsulated
by clipping. In this figure, a musical phrase is “hidden” on top of a glyph labeled
“Soprano”. Other structure-defining glyphs may be combined with it into larger and
larger formal compositional units, until a complete composition is formed.

Clipping, then, carries with it an enormous potential for hiding visual detail from
the user. Although it may not be the case that the 3TG model is the most convenient
representation for all aspects of composition and synthesis, it is certainly conceivable
that a composer’s entire compositional world, from the lowest level of sample gen-
eration to the highest level of formal organization, could be united under a single

metaphor and manipulated from a simple and consistent user interface.

CHAPTER 4. USER INTERFACE DESIGN 66

Figure 4.4: Two views of a structure-defining “phrase” glyph

4.8 Summary

This chapter has presented a discussion of user interface design for a compositional
system based on the three-dimensional, transparent glyph (3TG) model introduced in
Chapter 2. While recognizing the importance of iterative usability testing, the chapter
has focused exclusively on the early, prototypical design phase of the interface in order
to provide a foundation for implementing a running, testable prototype. Adopting the
principle of conceptual integrity as a fundamental assumption, an interface has been
described which relates all its functionality to the the metaphor implicit in the 3TG
model of the musical score. A direct-manipulation system employing a “clone-and-
move” strategy in place of the familiar “cut-and-paste” editing style was described.
The use of a multi-window environment in which glyphs can be moved from window
to window reduced the complexity of the interface by eliminating the need for any
separate palette mechanism. Problems concerning the grouping and editorial scope of
glyphs were discussed, and the concept of a tray was introduced as a possible solution.

Clipping was shown to provide a powerful and unique method for suppressing visual
detail.

Chapter 5

An Implementation of the 3TG
Model

5.1 Introduction

This dissertation has, until now, diligently avoided reference to any particular im-
plementation of the three-dimensional transparent glyph model of music notation.
Indeed, one of the motivations behind describing the system in terms of a model was
to avoid reference to any particular computer hardware or software. Nevertheless, the
model is intended as a framework for implementation, and its formulation benefited
enormously from the parallel development of a working computer system, dubbed Nu-
tation. The present chapter describes Nutation in terms of the technical resources it is
built upon, in terms of the underlying programming system it supports, and in terms
of the interface it presents to the musician. Finally, three different styles of music
notation implemented within the system—piano roll notation, common music nota-
tion, and Okinawan notation—are presented. A basic knowledge of object-oriented

concepts and terminology on the part of the reader is assumed.!

1Cox’s book contains a good introduction to object-oriented concepts and terminology [Cox86].

67

CHAPTER 5. AN IMPLEMENTATION OF THE 3TG MODEL 68

5.2 Goals

The implementation of a computer system based on the 3T'G model was undertaken
with several major research goals in mind. As discussed in Chapter 4, iterative
usability testing of user interface design cannot be carried out without the existence
of a working prototype to carry it out upon. The creation of just such a prototype,
with the promise of further refinement of the model through empirical means at a
later stage of development was a major goal of the implementation. At the same
time, while certainly not constituting “proof” of any rigorous kind, the existence
of a working system would lend credence to many of the claims about the model

articulated in the foregoing chapters. The model was claimed to be:
¢ a new direction in computerized music notation systems.
¢ a model for the compositional use of notation.
¢ a means for conveniently representing a wide variety of notational styles.

e because of its similarity to the physical world, a mental model of great benefit

to the potential user.

o the visual representation of an underlying hierarchy, which in turn was claimed
to be an ideal data structure for music notation programs. When implemented
as a TTree, the hierarchy was claimed to be both a good conceptual model of
musical structure and a convenient data structure for both the displaying and

the playing of scores efficiently in real time.

¢ conducive to an object-oriented, visual programming language implementation

furnishing musicians with the opportunity to define their own notational worlds.

¢ strongly suggestive of a simple and conceptually integral direct-manipulation

style user interface.

The creation of a fully-functioning notation system, ready for use by the computer-

music community, was not a goal of this implementation. At an early stage of research,

CHAPTER 5. AN IMPLEMENTATION OF THE 3TG MODEL 69

such an undertaking was judged to be beyond the scope of this study.? Instead,
development was limited to exploring those aspects of notation where the three-
dimensional approach seemed especially appropriate, at the same time developing

enough functionality to demonstrate the feasibility of a full-blown system.

5.3 Technical Resources

In the previous section, neither code portability nor machine independence were listed
among the goals of the implementation. Freed from these constraints, the project was
able to take advantage of the unique hardware and software facilities for real-time
graphics and music synthesis provided by the NeXTTMcomputer.3

The NeXT computer used for the project was among the earliest machines manu-
factured by the company, and included both the MC68030 central processor and the
MC68882 floating-point coprocessor with 16 megabytes of random access memory,
a 330 megabyte Winchester disk, and a 256 megabyte removable optical disk drive.
In addition, the machine provided significant hardware support for sound generation
through its DSP56001 digital signal processing chip clocked at 25 MHz, and its high-
quality stereo digital-to-analog converter operating at 44100 samples per second with
16-bit quantization. With this setup, significantly complex, compact-disk quality
stereo sound could be synthesized in real-time without the necessity for any external
hardware other than amplifier and speakers.

The computer ran the Mach operating system [NeX89b| designed at Carnegie
Mellon University, and supported full UNIX® 4.3 BSD [Wan88] compatibility. The
principle implementation languages were Objective-C® [Cox86] and Allegro CL®

2Some idea of the size of the task can be gleaned from Donald Byrd’s experience with his SMUT
system. In his words: “My first estimate of how long it would take to have a usable program
was on the order of a few months, not 14 years. Underestimates this extreme of the difficulty of
programming CMN [Conventional Music Notation] seem to be rather common.” [Byr84, page 114]

3All too often, the choice of hardware and software tools for computer music research has more
to do with resource availability than with the exigencies of the task at hand. In this case, however,
the availability of a NeXT computer—arguably the first machine to take support for music software
development seriously— greatly facilitated the research.

CHAPTER 5. AN IMPLEMENTATION OF THE 3TG MODEL 70

(Common Lisp) [Fra]. A good deal of use was made of NeXT’s programming kits: ex-
tensive, pre-compiled libraries of Objective-C classes. The Application Kit [NeX89c|
provided a comprehensive user interface management system, while sound synthesis
was done entirely through the Music Kit [JB89]. All graphics on the NeXT computer
utilized the PostScript® system, including the basic PostScript language [Ado85] aug-
mented by the Display PostScript® extensions [Ado89] and NeXT’s own extensions
to Display PostScript [NeX89d].

5.4 The System

5.4.1 The Programming Language

As discussed in Section 3.6, the implementation of glyphs as objects was an important
facet of the 3T'G model. From the programmer’s point of view, Nutation is a computer
environment for a visual programming language. Shu defines visual programming as
“the use of meaningful graphic representations in the process of programming” [Shu88,
page 9]. In Shu’s categorization scheme, Nutation’s language is closest to a “language
for supporting visual interaction”, for it supports visual representations and visual
interactions, but the language itself is textual, not visual.

The language of Nutation follows the single-inheritance, class-based object model
of Objective-C. Indeed, the language is “embedded” within Objective-C itself, while
extending Objective-C in several significant ways. First, every object has a user-
specifiable image which is displayed on the computer screen. Normally, this image
is common to all instances of the same class. All instances of class QuarterNote, for
example, display the same image, even though the size, or “magnification” of that
image can vary from instance to instance. It is possible, however, for a class to specify
that its instances have unique images. To illustrate, every instance of class Beam has
a unique image determined dynamically by the notes associated with that instance.
Without the capability for a unique image, every unique beam structure displayed by
the program would have to correspond to a unique class.

The language of Nutation also differs from Objective-C in having the class Glyph,

CHAPTER 5. AN IMPLEMENTATION OF THE 3TG MODEL 71

rather than class Object, at the root of its inheritance hierarchy.* This Glyph class
provides all the functionality one might expect of class Object, including methods for
instance creation, copying, deletion, testing inheritance relationships, and so on. In
addition, the class provides the functionality for the piling behavior defined by the
model. Every-instance of class ‘Glyph has instance variables to-support the TTree
data structure described -in Chapter 3. Instance methods provide for the interactive
restructuring of the tree in response to messages generated by the user’s actions on
the NeXT computer’s two-button mouse.

Whenever an instance of class Glyph receives a message for which no corresponding
method can be found within its inheritance hierarchy, it responds by relaying the
message to its ancestor in the T'Tree. This mechanism supports the form of delegation
described in Section 4.7. The behavior of any given glyph, then, is determined not
only by the class to which it belongs, but by the classes to which all its T'Tree ancestors
belong as well.

Programming the system consists of first subclassing the Glyph class, specifying
images for the new class, creating instances of the new class, then using the mouse
to pile these instances on top of each other, creating the hierarchical TTree data
structure in the process. Typically, users are relieved of all but the last of these steps,
. for the system provides collections of pre-defined and pre-created glyphs. Thus users
are free to concentrate on the interactive, mouse-driven restructing of glyph piles.
Nevertheless, the ability to create completely new Glyph subclasses or to modify
existing ones is always a possibility.

One of the goals of the system is to allow the user to make small modifications to
a class definition, test the results of that modification, modify again, and so on, with-
out the necessity of compiling, linking, and restarting the entire program for every
change. This encourages an incremental, exploratory style of program development.
Unfortunately, when the program was developed, the NeXT computer provided no
support for the “incremental linking” needed to create such a programming environ-

ment. The version of Common Lisp provided by Franz Inc., however, provided a

4Strictly speaking, the root of the inheritance hierarchy is still class Object, with class Glyph as
an Object subclass. Conceptually, however, Glyph is at the root, for the system provides no way to
create an instance of Object which is not an instance of Glyph.

CHAPTER 5. AN IMPLEMENTATION OF THE 3TG MODEL 72

partial solution to the problem.

Franz’s Common Lisp system allowed compiled Objective-C to be incrementally
linked into a running Lisp image, then executed directly from within that image.
Accordingly, the bulk of the Nutation system (which consisted of compiled Objective-
C class definitions) was linked into a Lisp image. Facilities were provided for editing,
compiling, then linking Glyph subclasses into the image from within the image itself.
To the user, this Lisp image was all but invisible, as incremental linking was virtually
the only use made of the underlying Lisp system.

This method, however, had several unfortunate consequences. First, the size of
the program grew substantially as a result, and taxed the NeXT computer’s resources
to the point of affecting performance. Second, it was no longer possible to use the
debugging facilities provided for Objective-C, as they were never designed to deal
with Objective-C embedded in Lisp. Finally, the incremental linking process itself
was quite slow, making exploratory programming more of a frustration than a boon
to creativity. For all these drawbacks, however, significant amounts of the program’s
development were carried out using the method which, for minor changes in the
program’s code, was considerably more convenient than relinking and rerunning the

entire system.

5.4.2 The User Interface

Nutation implements a multi-window, menu-based system inheriting much of its look-
and-feel from NeXT’s Application Kit user interface management system. Though
there may be many windows on the screen at the same time, every window falls into
one of three window-types. This section describes these window-types, and introduces
the user interface commands provided for manipulating them.

The first window-type to be described is the “glyph window”, called simply “win-
dow”. These windows are responsible for the display and manipulation of glyphs and
glyph piles. Windows are created by menu selection, and are initialized by the system

to contain a single glyph, called the rootGlyph.® Instances of class RootGlyph, these

5This chapter follows certain conventions in order to distinguish concepts from the names of
classes and instances of those classes. Concepts use normal type, classes are indicated with Slanted

CHAPTER 5. AN IMPLEMENTATION OF THE 3TG MODEL 73

objects display a solid white rectangular image, and appear to be the “background”
of the window they are displayed within.

Whenever a window is resized, its rootGlyph is also resized to ensure that it
fills the entire window. These rootGlyphs, however, never shrink, they only grow.
As Figure 5.1 shows, if a window is resized so that its borders are smaller than its
rootGlyph’s borders, then the window will display scroll bars along the sides and

bottom, allowing portions of the rootGlyph outside of the window’s boundary to be
scrolled into view.

Figure 5.1: Nutation’s glyph windows. The same window is shown before and after
resizing. The scroll bars on the smaller window allow scrolling invisible parts of the
rootGlyph into view.

The Nutation system provides a number of preprogrammed Glyph subclasses.

These classes are all stored in individual disk files, and may be accessed by clicking

type and always begin with an upper case letter, while instances of classes are slanted but begin
with a lower case letter. Thus “note” refers to the concept of a note, “Note” designates a class, and
“note” refers to an instance of that class.

CHAPTER 5. AN IMPLEMENTATION OF THE 3TG MODEL 74

on the “new glyph” button (the second button from the right in the bottom, or
“command” row of each of the windows in Figure 5.1), then choosing the desired
class from a list. This instructs Nutation to create an instance of that class and pile
it onto the rootGlyph.

A cursor tracks the location of the mouse on the computer screen. Whenever the
cursor is positioned over a glyph and the left mouse button is held down, that glyph
may be dragged to a new location. As long as the button is held down, the glyph is
effectively detached from any glyph pile. As soon as the button is released, however,
the system identifies that glyph (other than the one being dragged) which is directly
underneath the cursor, and attaches the dragged glyph as one of its subglyphs. In
this way, arbitrarily complex glyph piles can be built up.

Figure 5.2 illustrates Nutation’s implementation of clipping. Whenever a glyph is
placed on top of another, the uppermost glyph will be clipped to the boundaries of
the glyph it is piled upon. As discussed in Section 5.7, this clipping allows for the
deliberate suppression of detail from the image.

In some cases, the structure of a glyph pile may not be visually obvious. For this
reason, a special version of the glyph window, invoked by the “raise” switch (third
from the right in the command row), draws a different view of the glyph hierarchy.
As Figure 5.3 illustrates, glyphs in a raised view do not clip, and they are drawn
opaque and given thickness to emphasize their 3-dimensional structure.

Unfortunately, in this implementation, the raised view is a frozen entity: the
glyphs it displays cannot be dragged, cloned, or manipulated in any way. A raised
view with all the functionality of a glyph window would have been a very useful
addition to the interface.

As an alternative to instance creation using the “new glyph” button, holding
down the right mouse button instead of the left with the cursor positioned over an
existing glyph will create a clone, or “deep copy” of that glyph. Although a window’s
rootGlyph cannot itself be dragged, it can be cloned, and the resulting copy can be
dragged.

Glyphs are not confined to any particular window: they may be dragged out of

one window and relocated in any other. When a glyph is dragged out of a window

CHAPTER 5. AN IMPLEMENTATION OF THE 3TG MODEL 75

Figure 5.2: Clipping. This figure shows three Nutation windows. Window b displays
the same two glyphs as window a, with the smaller glyph piled onto the larger. In
window c, however, the larger glyph has been piled onto the smaller, causing its image
to be visually clipped to the boundaries of the smaller.

and the mouse button released while it is outside of all glyph windows, that glyph is
deleted from the system, and it disappears from the screen.

All of the above operations—dragging, cloning, and deletion—work identically
whether they are applied to a single glyph or to a pile of glyphs. In fact, the only
time that an operation affects but a single glyph is when there are no other glyphs
piled on top of it. To temporarily protect the structure of a pile, it can be “frozen”
together by activating the “freeze” button (third from the left in the command row).
When frozen, the pile acts just as if it were an individual glyph, and none of its glyphs
may be moved independently until the pile is “melted”.

Any window, together with all its glyphs, may be saved to a disk file as a unit.

CHAPTER 5. AN IMPLEMENTATION OF THE 3TG MODEL 76

MUSIC e

Figure 5.3: The raised view. The leftmost window above is shown on the right
in an alternate “raised” display mode, with no clipping and with all glyphs made
opaque and given “thickness” to emphasize their three-dimensional structure. The
raised display reveals that the glyph in the upper right is not a subglyph of the large
glyph—instead, these two glyphs coexist at the same hierarchical level. By contrast,
the glyph in the lower right is clearly piled on top of the larger glyph.

Similarly, any window previously saved to disk may be loaded back into the system.
Not only does this provide for the saving and retrieving of previous work, but it
furnishes an alternative to the “new glyph” button for creating glyphs in the first
place. Windows, such as that shown in Figure 5.4, can be “preloaded” with sets
of glyphs as desired. Such windows function as pallets, providing a source for the
cloning of glyphs as needed. A lock mechanism on the window (the leftmost button
in the command row of Figure 5.4) ensures that only clones, and not originals, can
be dragged off of such a window.

Section 5.6 discussed the question of grouping, and introduced the concept of
“trays”: glyphs which function temporarily as common direct ancestors to other
glyphs so they can be manipulated as a unit. Figure 5.5 exemplifies the use of
trays to move two glyphs simultaneously without affecting the glyph they are piled
upon. When the tray is created, all the glyphs sitting upon it are “frozen” to it.
Later, when a tray is “melted”, it is deleted automatically. Trays function much like
the multiple-selection mechanisms found in many user interfaces. Unlike multiple-

selection, however, many trays may coexist at once, effectively providing multiple

CHAPTER 5. AN IMPLEMENTATION OF THE 3TG MODEL 7

r6 B

b=8bk ¢ Music

Fml Pluek DBWavelvi

EIpPRI R

Figure 5.4: A pallet window. Pallets are ordinary glyph windows which have been
“preloaded” to function as a source of glyphs for other windows through the cloning
mechanism.

multiple-selections.

Every window always contains one particular glyph, called the “target” glyph,
which is the object of a number of special commands. Whenever a glyph is moved,
cloned, or simply selected by the mouse, it becomes the current target, and is dis-
tinguished on the display by being “shadowed”, as exemplified by the staff glyph
of Figure 5.6. As a special case, whenever the rootGlyph is the target, no shadow
whatever will be displayed on the screen.

The target glyph is the recipient of a number of important messages; indeed, it
is the “entry point” for messages to the glyph hierarchy. As an example, whenever a
window’s “play” button (second from the left in the command row) is pressed, a series
of tick messages are sent to the target. Normally, part of the target’s response to
the message will be to relay tick to all those glyphs which are piled upon it, possibly
activating the machine’s synthesis hardware in the process. This response, however, is

entirely determined by the corresponding tick method in the target’s class definition,

CHAPTER 5. AN IMPLEMENTATION OF THE 3TG MODEL 78

Figure 5.5: Trays. Suppose the user wishes to move the two small glyphs in window
a off of the larger glyph, while preserving precisely the physical relationship between
the two. To accomplish this, the user double clicks on the small glyphs, creating a
new “tray” glyph and installing it as their common direct ancestor (window b). Note
that the glyphs are “frozen” to the tray, as shown by the change to a solid rectangular
icon in the “freeze” button. In window c, the tray unit has been moved off of the
larger glyph. Finally, in window d, the tray glyph is melted, resulting in its automatic
deletion.

CHAPTER 5. AN IMPLEMENTATION OF THE 3TG MODEL 79

and can be programmed by the user as desired.

Pressing the window’s “browse” button (the rightmost button of the command
row), sends a browse message to the target glyph. Typically, glyphs respond to this
message by activating the second of Nutation’s three window-types, called a browser
window. As Figure 5.6 shows, browsers display two independent text editors. The
top editor contains PostScript language code which defines the image the target glyph
displays. Editing and saving this text will cause that image, together with the images
of all other glyphs belonging to the same class, to change. The bottom text editor
contains the method definitions defining the target glyph’s behavior. When this
text is changed, the Objective-C compiler is invoked to recompile the class, then the
underlying Lisp subsystem is invoked to incrementally link the resulting compiled
code back into the system.

The last of Nutation’s window-types is called an inspector (Figure 5.7). Unlike
the browser, which displays and changes the definitions of a glyph’s class (i.e. its be-
havior and image), the inspector displays and changes the values of a glyph’s instance
variables (i.e. its state). Though there may be many browser windows on the screen
at a time, there is only one inspector window. This window displays information
about the current target glyph. Whenever a new target glyph is selected by mouse
action, the information displayed by the inspector will change as well.

When the structure displayed in a glyph window becomes extremely complex, or
when glyphs are particularly small, it can be difficult to pick out individual glyph
using mouse action alone. For this reason, the inspector window provides facilities
for walking through the hierarchy. Referring to Figure 5.7, the top row of buttons
changes the current target, moving laterally through the hierarchy with the “then”
and “precursor” buttons, moving toward the root via the “ancestor” button, and
moving toward the leaves with the “is” button.

The second row of buttons on the inspector is used for resizing. Whenever the
“Knobs” button is pressed, the target glyph is surrounded by a rectangle drawn with
dashed lines, with three rectangular knobs around its perimeter, as shown in the
glyph window of Figure 5.7. The leftmost knob only moves up and down—it is used
for changing the height of the rectangle. The rightmost knob moves only left or right,

CHAPTER 5. AN IMPLEMENTATION OF THE 3TG MODEL 80

dup 0 rlineto
neqg exch rmoveto
} repeat

o

#-clearAccidentals ;
// set all accidentals to NOACCIDENTAL
{ int i ;
for{i = 0 ; 1 < 70 ; 1i++)

accidental{i] = (char) NOACCIDENTAL ;
return self ;

Figure 5.6: A browser window. The upper text view of the window contains
PostScript language code defining the target glyph’s image, while the lower view
contains method definitions in Nutation’s extended version of Objective-C.

and changes the rectangle’s width. The middle knob, however, moves both horizon-
tally and vertically, changing both the height and the width of the rectangle, while
maintaining a constant ratio between these two dimensions. Pressing the “Accept”
button causes the target glyph to be resized to fill the resized rectangle.

There are two fundamental ways in which this resizing may be computed. In the
first case, not only the glyph, but any glyph sitting upon it is resized as well. Pressing
the “Pile” button, however, turns it into a “Glyph” button, and subsequent resizes
will change only the target glyph, without affecting any glyphs piled upon it.

Moving and resizing glyphs entirely through mouse interaction may not be the

most desirable form of manipulation, especially when precise alignment is called for.

CHAPTER 5. AN IMPLEMENTATION OF THE 3TG MODEL 81

#<0ObjC-Class Staffs, suprclass Glyﬁh, instance-
size 134>

Figure 5.7: The inspector window. Most of the information in this window refers to
the instance variables, or “state” of the current target glyph—in this case, an instance
of class Staff5 The dotted lines and small rectangular knobs surrounding the staff in
the glyph window indicate that the staff is currently being resized.

CHAPTER 5. AN IMPLEMENTATION OF THE 3TG MODEL 82

The two panels in the middle of the inspector are provided for this purpose. They
allow both the size and location of the glyph’s outer boundaries, called the “Frame”,
as well as the image within that frame to be precisely specified. Three plug-like icons,
called “couplers”, are visible in this area. They determine the coupling between the
various parameters of the frame and image. The frame’s “size” coupler, for example,
when plugged together, ensures that whenever the width is modified, the height is
modified accordingly, and vice-versa. Clicking on the coupler “decouples” it, allowing
the width and the height to be changed independently of each other.

The bottom window of the inspector allows access to the underlying Lisp subsys-
tem. Utilizing Lisp’s Objective-C interface, arbitrary messages may be sent to the
current target glyph, to its ancestor, its precursor, and so on. Any response from the
message is shown in the lower text view. Although any legal Lisp expressions may be
evaluated here, its main purpose is to allow access to instance variables and methods

defined in the user’s own Glyph subclasses.

5.5 Three Glyph Sets

This section focuses on three of the notational systems Nutation is capable of support-
ing. It should be remembered, however, that these systems are not, strictly speaking,
part of the program for, in the 3TG metaphor, particular styles of music notation
are more akin to “data” than they are to “program”. Indeed, this disassociation of
the mechanics of the program from the particulars of any given notational style is an
important aspect of the 3TG approach: it allows a single program to support a wide
variety of notational styles, while offering a framework for implementing the user’s
own notational innovations.

In Section 3.7, the notion of glyph sets was introduced: sets of subclasses of
class Glyph which define individual notational styles. This section will describe the

implementation of three such glyphs sets for the Nutation program.

CHAPTER 5. AN IMPLEMENTATION OF THE 3TG MODEL 83

5.5.1 Piano-Roll Notation
Introduction

An important characteristic of Western art music in the twentieth-century has been
its tendency toward novel rhythmic invention. Such composers as Elliot Carter and
Pierre Boulez have extended the traditional vocabulary by calling for increased dura-
tional diversity and rhythmic precision in their works. At the same time, the opposite
tendency towards less rhythmic precision and greater interpretive freedom is found in
the works of such composers as Earle Brown and Luciano Berio. These new forms of
rhythmic expression have led to the development of new forms of notation, including a
group of techniques often referred to as “proportional”, “spatial”, or “time” notation.

For all their diversity, most proportional notation systems share at least two com-
mon characteristics. First, the onset time of a musical event is indicated by the
horizontal location of that event’s symbol on the staff. Second, the duration of the
event is indicated by the horizontal length of the event’s symbol. A good example of
such a system which is currently very popular in computer music systems is called
“piano-roll notation” (PRN). The system takes its name from its resemblance to the
perforated rolls of paper used to record keystroke and sequencing information for the
player pianos popular in the 1920’s.

Implementation

PRN is a good starting point for understanding how glyph sets are implemented in
Nutation, for only three Glyph subclasses are required. These three classes are all
illustrated in Figure 5.8. Class TimeLine is the “staff” of the system, instances of
class Mark are the musical events, while class PluckIns identifies the “instrument” to
use in performing the passage.

Temporal information is measured in terms of units of time called “beats”, marked
by short black vertical lines along the bottom of the timeLine. Although the timeLine
of Figure 5.8 represents a total duration of only seventeen beats, the inspector win-
dow’s resizing feature allows it to be stretched horizontally to any desired duration.

Pitch is represented along the vertical axis, where light gray lines serve as guides to

CHAPTER 5. AN IMPLEMENTATION OF THE 3TG MODEL 84

Figure 5.8: A passage in piano-roll notation.

locate pitch more precisely. Solid gray lines locate the pitch-class C, with C0 at the
bottom. Dotted lines locate E, while dashed lines locate G. A number of mark glyphs
have been piled on the timeline. These marks have been stretched to various lengths
(and therefore various durations) using the inspector window’s resize facility. Finally,
a pluckIns glyph, labelled “Pluck”, identifies the Music Kit synthesizer patch that
Nutation will use in performing the passage.

It is instructive to trace through some of the mechanism whereby this passage is
performed on the underlying synthesis hardware. Glyphs never communicate directly
with this hardware; instead, they relegate the task to objects from NeXT’s Music
Kit. Every mark, for example, contains an instance of the Music Kit Note class.
These notes must be assigned both a pitch and a duration value before they can
be played. In response to the message scan, marks determine the appropriate pitch
value for their notes by messaging the timeLine they are piled upon, passing their
current location as an argument. The timeline, in turn, responds with the pitch value
corresponding to that particular location. The mark then uses this information to
set its note’s pitch value. Duration is determined in a similar way, using the mark’s

width in pixels and the timeLine’s notion of the number of beats per pixel to compute

CHAPTER 5. AN IMPLEMENTATION OF THE 3TG MODEL 85

the value.

In Nutation’s internal TTree data structure, all the marks on a timeLine are
organized as a single list of “then”-related objects.® Furthermore, the timeLine is
left-to-right ordered, that is, it ensures that the order of the the marks (or any other
glyph, for that matter) on this list corresponds to their left-to-right ordering on the
screen. In other words, the leftmost mark on the screen will be the first element on
the list, the next-to-leftmost mark will be the second element, and so on. Before they
can be performed, each mark must set its “wait” value: the time delay (which may
be 0) from itself until the next mark. In response to the message scan, this value
is computed by multiplying the distance in pixels between successive marks by the
timeLine’s notion of the number of beats per pixel.

The actual performance of the passage takes place when the user presses the “play”
button. This sends a single scan message, then a series of tick messages to the current
target glyph, from whence they are relayed to the rest of the structure according to
the TTree performance algorithm.” When a mark first receives a tick message, it
messages the timeLine it is piled upon, sending its Music Kit note object along as an
argument. From information stored in the plucklns glyph, the timeLine knows which
Music Kit instrument (called a synthpatch in the Music Kit’s vocabulary) to use in
realizing the note . It then passes the note to that instrument, causing the Music Kit
to actually synthesize the event.

Many elaborations to this PRN scheme are possible. The goal of this implemen-
tation, however, was to present the mechanisms underlying glyph sets as clearly as
possible. Although the next two sets to be presented are considerably more complex,

most of the basic mechanisms involved are identical.

8See Chapter 3 for an explanation of terminology associated with the TTree data structure.
"Nutation currently uses Method 8 of Chapter 3, the “message blocking” algorithm.

CHAPTER 5. AN IMPLEMENTATION OF THE 3TG MODEL 86

5.5.2 Common Music Notation
Introduction

Despite a good deal of regional and historical variation, common music notation
(CMN) has been an-uncommonly well-standardized notation system for most of the
-past three hundred years. Byrd defines CMN .(which he refers to as conventional

music notation) as follows:

...any arrangement of the symbols in general use by computers in the
European art music tradition from about 1700 to 1935, used with the
meanings which were standard: (1) if the notation was made between
1700 and 1935, at the time it was made; (2) if the notation was made
before 1700, with the meanings of 1700; or (3) if the notation was made
after 1935, with the meanings of 1935.[Byr84, page 13]

There are many reasons for implementing CMN in Nutation. The system is well-
understood by a large segment of the musical world, and much of Western musical
culture has been conceived with it as a tool. A substantial amount of contemporary
music in all genres is still entirely expressible in the system. Most notational reforms
and extensions in use today take CMN as their starting point. Finally, because the
system is both rich and complex, it makes an excellent test of Nutation’s, and, by

extension, the 3TG model’s representational capability.

Staves

Class Staff provides services similar to those provided by class TimeLine in the PRN
system described in the previous section.® Staves determine the pitch of the notes
which are piled upon them on the basis of both the location of these notes and on the
location and type of any clefs which are present. When a glyph representing a Music
Kit instrument (such as PRN’s pluckIns glyph) is piled on a staff, then the pile can
be performed by the underlying synthesis hardware.

8This class is actually called Staff5 by the system in order to distinguish it from other types of
staves with more or fewer lines.

CHAPTER 5. AN IMPLEMENTATION OF THE 3TG MODEL 87

Like timeLines, staves are left-to-right ordered, and they always have a “wait”
value of 0. As Figure 5.9 shows, this means that if a number of staff glyphs (each
piled with clef, note, and instrument glyphs) are piled on the rootGlyph, they will
all play at exactly the same time, regardless of how they are arranged physically on
that rootGlyph.

pluckIns:(0 — trebleClef:0 = quarterNote:1 pluckins:Q =~ bassClef:0 === quarterNote: 1

Figure 5.9: Staves. The window contains two staves piled on the rootGlyph. A raised
view of the passage is shown for clarification. Since the staves have a 0 “wait” value,
they will be performed concurrently, as indicated by the corresponding TTree.

CHAPTER 5. AN IMPLEMENTATION OF THE 3TG MODEL 88

Systems

Class System provides the functionality for sequential execution of staves. Systems
determine the duration of all the glyphs which are piled upon them, then set their
“wait” value accordingly. Unlike Staves, rootGlyphs are top-to-bottom ordered. As
Figure 5.10 shows, whenever a number of system glyphs (each piled with stave, clef,
note, and instrument glyphs) are piled on the rootGlyph, they will be played sequen-
tial from the top of that rootGlyph to the bottom.

Notes

Nutation provides individual classes for notes of all durations from the whole note
down to the 128th note. In addition, all these classes (with the exception of class
WholeNote) come in pairs: one version for the ascending stems, another for the
descending ones. Much of the functionality of these fifteen classes is identical—in
fact, they differ only in their notion of their own duration and in the image which
they display.? Obviously, it would be a great waste of system resources to reproduce
their common functionality in each class. Accordingly, an abstract superclass,? called
class _Note, is provided for this purpose.!!

Unlike the marks of the PRN system, where “wait” values were determined by the
horizontal separation between successive marks, _notes have an intrinsic, defaultfwait
value. Class QuarterNote, for example, always sets this value to one beat.!? Aé one
might expect, piling an instance of class Dot on a quarterNote increases this value
to 1 1/2 beats, while piling an additional dot onto the first dot increases it to 1 3/4
beats, and so on.

9The images of all notes, as of most of the glyphs in this CMN implementation, utlhzé the
PostScript Sonata font from Adobe Systems Incorporated.

10 An abstract superclass is a class which has no instances. It exists solely to provide common
functionality to its subclasses through inheritance.

'Nutation adopts the convention that the name of any class which the user does not create
instances of (such as an abstract superclass) begins with an underbar character.

12This assignment of one beat to the quarter note is only incidently related to the conventional
one-beat duration of a quarter note in, say, 3/4 time. A QuarterNote’s wait value could just as well
have been a half a beat or, for that matter, 10 beats. All that matters is that it be twice as long as
an eighth note, half as long as a half note, and so on. The actual duration of a beat is a Musﬂ: Kit
parameter, and can be independently controlled by the user.

CHAPTER 5. AN IMPLEMENTATION OF THE 3TG MODEL 89

rootGJyph:0
system:1 system:1
smL[:O :0
pluckIns:Q === trebleClef:0 —= quarterNote:1 pluckIns:0 —— bassClef:0 —— quarterNote: 1

Figure 5.10: Systems. The window contains two systems piled on the rootGlyph.
Because systems display only a transparent surface, they are only visible in the raised
view on the right. Since the first system has a“wait” value of 1 beat, the systems will
be performed sequentially, as shown by the corresponding TTree.

CHAPTER 5. AN IMPLEMENTATION OF THE 3TG MODEL 90

This implementation does very little in the way of automatic formatting. Although
such formatting is certainly feasible in the 3TG approach, it is not among the goals
of the implementation. Nevertheless, a certain amount of it greatly simplifies the
user’s task in working with the system. Instances of class _Note, for example, are
automatically relocated to the nearest line or space whenever they are piled onto a
staff. Instances of Class _Clef and Class _Accidental (the abstract superclasses from
which all clefs and accidentals inherit) also behave in this way. Barlines automatically

align themselves to the bottom and top lines of whatever staff they are piled upon.

Ledger Lines

One approach to implementing ledger lines in Nutation would be to provide “ledger”
glyph subclasses displaying one, two, three, four, and so on, ledger lines. Whenever a
ledger line is needed, the user could pile the appropriate ledger line glyph on the staff,
then pile its note on top of the ledger. Such an approach would, of course, render
any passage with extensive use of ledger lines extremely tedious to enter, let alone
modify. Consequently, instances of class _LedgerLine are provided automatically by
the implementation, appearing wherever and whenever the conventional syntax of
CMN requires them.!3

Figure 5.11 shows two _notes together with their corresponding _ledgerLines. As
the raised view to the right reveals, all _ledgerlines always display an image of six
lines. When fewer than six lines are required, the extra lines are effectively made
invisible by laying them over the staff, where they will simply duplicate some portion
of the image of this staff. In this way, situations requiring up to six ledger lines can
be handled with a single glyph class.

Figure 5.11 also reveals a surprising implementation detail. Rather than piling
-notes onto their associated -ledgerLines, a -note and its _ledgerLine coexist at the
same hierarchical level. Either implementation is possible, however, for _ledgerLines

are purely visual aids, adding no functionality whatever to class Glyph. Keeping

13Tike the abstract superclasses _Note and .Clef, class _LedgerLine begins with an underbar. It
is not an abstract class, however—the underbar indicates that the user never creates instances of
the class (they are created and deleted automatically by subclasses of class -Note.

CHAPTER 5. AN IMPLEMENTATION OF THE 3TG MODEL 91

rootGlyph:0

quartetNoteDown:1 ledger:0 halfNoteUp:2 ledger:0

Figure 5.11: LedgerLines. Note that _ledgerlines always display 6 lines. As the
corresponding TTree shows, _ledgerLinesexist at the same hierarchical level as the
notes they are associated with.

-notes and _ledgerLines on the same level, however, avoids any clipping of the _note’s

image which might otherwise take place.

Accidentals and Key Signatures

Accidentals are implemented as subclasses of the abstract superclass _Accidental.
These subclasses differ from one another only in their response to the message value.
A sharp, for example, will respond with the integer 1 (“raise” a semitone), while a
flat will respond with -1 (“lower” a semitone).

Recall that _Notes have no intrinsic notion of their own pitch. Instead, in response
to the “scan” message, they determine this pitch by messaging the staff they are piled

upon, passing their screen location as an argument. Subclasses of class .Accidental

CHAPTER 5. AN IMPLEMENTATION OF THE 3TG MODEL 92

also respond to “scan” by messaging their staff. They cause the staff to alter its
notion of the pitch value of any given location, thus affecting the interpretation of
any subsequent _note at that location. As might be expected, barLines cause the
staff to forget these alterations.

Accidentals which appear in key signatures have a larger scope than ordinary acci-
dentals, for they alter not only a single pitch, but an entire pitch class. Furthermore,
they have an entirely different scope: unaffected by barlines, only another key signa-
ture can redefine an existing one. In order to properly provide this functionality, the
implementation must be able to determine whether or not a given accidental is part
of a key signature. Class KeySig is provided for this purpose. As Figure 5.12 shows,
a keySig is completely invisible, for its image is nothing more than a transparent

surface. KeySigs exist solely to provide a place to pile _accidentals, distinguishing

rootGlyph:0

staff:0

fm1Ins:0 bassClef:0 keySig:0 1.0 32Note:0.125

sharp:0 sharp:0

Figure 5.12: Accidentals. Since accidentals display only a transparent surface, they
are completely invisible, except in the raised display.

CHAPTER 5. AN IMPLEMENTATION OF THE 3TG MODEL 93

Beams

Class Beam is the sole glyph class in this implementation to use the “unique image”
feature introduced in Section 5.4.1. Rather than sharing the same image among all
its instances, each individual beam glyph draws its image on the basis of whatever
glyphs are piled upon it.

Whenever the current target glyph is a beam and the “freeze” button is pressed,
the beam computes and draws the stems and beams as appropriate, then messages
all the glyphs piled upon it to redraw themselves. In addition, beams affects the way
in which some of these glyphs will redraw. Subclasses of class _Note (other than class
WholeNote) actually have a second image, called their “altImage”, consisting solely
of a note head with no tail. Whenever a _Note is “frozen” to a Beam, it will display
this altImage.

Figure 5.13 outlines the process of creating a beam structure from the user’s
point of view. First, a beam glyph is obtained, and _notes (or, for that matter, any
glyph subclass) are piled on top of it. Freezing the beam causes the entire pile to
be redrawn as a beam structure. While frozen, the individual glyphs which make up
the pile cannot be moved. When the pile is “melted”, however, the beam structure
disappears and the stems of the _notes reappear. The individual glyphs which make

up the pile may then be manipulated as needed.

Multi-part Music

The notation of homophonic and polyphonic music is problematic for notation pro-
grams which provide automatic score playing, and is especially difficult when deter-
mining the identity of individual parts is at issue. This section introduces solutions,
based on the 3TG approach, to three different notational conventions in multi-part
music: several simultaneous single-part staves, multiple notes on the same note stem,
and several independent polyphonic lines on the same staff.

The first case, that of several simultaneous single-part staves, requires no special
mechanics to achieve. As we have seen, staff glyphs have a “wait” value of zero.

This means that whenever several staves are piled onto a system, they will all play

CHAPTER 5. AN IMPLEMENTATION OF THE 3TG MODEL 94

c. d.

Figure 5.13: Beams. In panel a, several _notes have been piled on a beam. The beam
is the target glyph in this case, as indicated by its gray shadow. In panel c, the pile
has been frozen (note the change from an empty rectangle to a solid rectangle in the
“freeze” button), causing it to redraw itself as a beam structure. The raised view,
panel d, reveals that _notes on a frozen beam display only their note heads.

CHAPTER 5. AN IMPLEMENTATION OF THE 3TG MODEL 95

simultaneously. Figure 5.14 presents an example of this style of notation.

DBWavelvi

. =

e e e
A T [LA 1

DBWavelvi

&b = P

—T 1 =T
3 i A
AN3 V4 -

e I

DBWavelvi
i 4 3.

1) fe——T
l"' B RS I A

DBWavelvi
. H p———
P e T =
0 T p 7
yam| 1 [P 2 1] b
LA T T I | IL N

Figure 5.14: Simultaneous single-part staves.The excerpt is from the Choral Ich bin’s,
ich sollte biflen’, from J.S. Bach’s St. Matthew Passion.

The second case, multiple note heads sharing the same note stem, is almost as
simple to implement as the first case. As Figure 5.15 demonstrates, -notes can simply
be piled on top of one another with their stems coincident. The TTree in this figure
shows that all these _notes are connected to each other by vertical, “is” branches.

Since “is” branches have no time delay at all, all these _notes will play simultaneously.

CHAPTER 5. AN IMPLEMENTATION OF THE 3TG MODEL 96

rootGlyph:0
staff:0
fm1Ins:0 —— trebleClef:0 ~— qu\c]Notc:l
q ote: 1
quarterNote:1

Figure 5.15: Chords. As the raised view indicates, multiple notes on the same stem
can be implemented by simply piling _notes on top of each other. The corresponding
TTree shows that these _notes are all joined by vertical, “is” branches, and thus they
will all play simultaneously.

Unfortunately, this method is only convenient for notes which have no flags, such
as half notes and quarter notes. Notes with flags need to be resized, using the inspec-
tor, so that their flags are invisible. An alternative, not implemented in Nutation,
would be to have such notes display their “altImage”, as they do whenever they are
frozen onto a beam glyph.

The situation is considerably more complex when multiple independent parts are

to be placed on a single staff. Byrd identified the major problem areas as follows:

Two voices sharing a staff are basically accommodated by some sim-

ple modifications of the standard rules. For example, stems for the upper

CHAPTER 5. AN IMPLEMENTATION OF THE 3TG MODEL 97

voice are always pointed up and for the lower voice down, and slurs, or-
naments, and groupet accessory numerals all move to the outside. Many
problems can arise, however. For example, the voices can cross, so that
the upper voice is temporarily lower in pitch; in this case interference
between symbols in the two voices, requiring some repositioning, is quite
likely. (Bach’s Siz-Part Ricercare from The Musical Offering is a spec-
tacular example: it has three voices per staff almost continuously). In
fact, variable numbers of voices on a staff and voices moving from one
staff to another are not at all unusual; these occurrences sometimes leads
[sic] to ambiguities when fewer than the maximum number of voices are

present.[Byr84, page 40]

When Byrd wrote these lines, he was primarily interested in the music setting
problem, and the attendant issues of automatic formatting. Such formatting is not
among the goals of this implementation, however, and is left almost entirely up to the
user. Nevertheless, many of the same problems confront any system which attempts
to play such a multi-part texture, for in both cases the system must be able to sort
out which notes belong to which part.

This implementation provides a class PartQ) for exactly this purpose. These
partQs display no image at all—their role is simply that of holding a single musi-
cal part. Whenever a partQ is piled onto another partQ, it is linked into the TTree
as that partQ’s “is” glyph, forming a chain of vertical, “is” branches in the TTree.
Furthermore, all partQ’s in this chain are automatically aligned on the screen so that
their origins are at the same point.

Figure 5.16 shows the process of creating a multi-part, single staff passage from
the user’s point of view. First, separate parts are created, as shown in windows a and
b. Normally, these parts would be constructed over top of a staff, though the staff
has been omitted from this figure for clarity. The parts are then piled successively on
top of a staff, as shown in frame c. The corresponding TTree shows that whenever a
part@ is piled onto another partQ, it is always attached as its “is” glyph, displacing
any other “is” object.

This implementation scheme allows a virtually unlimited number of parts to be

CHAPTER 5. AN IMPLEMENTATION OF THE 3TG MODEL 98

rootGlyph:0

partQ:0

halfNote:2 — quarterNote:1

100tG)yph:0

parfQ:0

quarterNote: 1 ==—— halfNote:2

pluckins:0 =— cClef:0—— :0

:0~—— halfNote:2 —— quarterNote:1

quarterNote:1 === halfNote:2

Figure 5.16: Multiple parts on the same staff 1. Since part objects display nothing,
they are completely invisible. In frames a and b, they have been made the current
target glyph in order to show their location.

CHAPTER 5. AN IMPLEMENTATION OF THE 3TG MODEL 99

displayed on the same staff, while making it obvious to the system which notes belong
to which part. Unfortunately, this is not necessarily visually obvious to the user.
Furthermore, multiple partQs on a staff form a “stack” data structure, and only the
topmost one can be accessed by the user at any one time. Editing any other part
involves the unpiling and subsequent. repiling of parts lying on top of it. Although
several schemes for turning this stack into a “deque” or “queue” were attempted (the
“Q” in the class name Part() is a remnant of one of these attempts), nothing entirely
satisfactory was found.

This section concludes with a more complex example of multi-part music. Fig-
ure 5.17 shows the opening measures of J.S. Bach’s Chaconne from the Partita in
D minor for solo violin. The passage features as few as two and as many as four
separate polyphonic voices at any one time, often changing the number of voices in
the middle of a measure. The implementation uses four partQ glyphs throughout.
When fewer than four parts are required, invisible rests could have been inserted. In
this example, however, notes in the extra parts simply double existing notes in the
required parts. By placing these doubling notes directly over top of each other, the
extra parts effectively disappear from the display.

5.5.3 Okinawan Notation
Introduction

Okinawan notation (ON), a tablature system for the three-stringed, lute-like samisen,
was invented in the eighteenth century and extended in the 1920’s to include the
complex, highly ornamental Okinawan singing style. La Rue, in his 1951 study of the
system, remarked that

“While it is now nearly six years since I came across the Okinawan
notation, I shall never forget my naive surprise that music could be effec-
tively written down in a manner so utterly different from our own.” [Rue51,
page 34).

The Okinawan system contrasts markedly with both PRN and CMN. The need

to demonstrate the 3TG model’s ability to support a wide variety of notational styles

CHAPTER 5. AN IMPLEMENTATION OF THE 3TG MODEL 100

Figure 5.17: Multiple parts on the same staff 2. The excerpt shows the opening
measures of J.S. Bach’s Chaconne from the Partita in D minor for solo violin.

together with the visual beauty of the Okinawan system made it an ideal candidate

for implementation in Nutation.

The Notation System

Since it is relatively unknown in Western cultures, a brief explanation of ON will be
presented here. The reader is referred to La Rue’s article for further details [Rue51].

ON makes use of a rich variety of symbols. Pitch is represented in a manner similar
to German lute tablature, with individual characters provided for each string-fret
combination on the samisen. The actual interpretation of these symbols is dependent

on the instrument’s tuning which, in addition to its conventional form, uses three

CHAPTER 5. AN IMPLEMENTATION OF THE 3TG MODEL 101

types of scordatura. The vocal line uses the same set of symbols, with the pitches
determined from the corresponding samisen pitch. In order to represent the profusion
of ornamentation characteristic of the vocal style, a wealth of ornamental symbols are
used.

In CMN, musical event duration is determined primarily by the shape of individual
symbols, whereas sequence and pitch are determined primarily by those symbols’
location on a staff. In ON, the situation is reversed: pitch is indicated by symbol
shape, with sequence and duration indicated by staff location. The staves of the
system (see Figure 5.18), which are read right-to-left, top-to-bottom, are composed
of two separate columns: one for the samisen, one for the voice. The rectangles which
divide the samisen column can be thought of as representing a quarter-note duration
each. Eighth-note subdivisions are notated by placing symbols on the line, while the
symbol resembling the letter “O” is a rest. The rhythm of the samisen part in the

figure, then, is quarter/eighth/eighth/quarter/quarter rest.

samisen
voice

o

&\ 5

R185<

T B52
Tak

O

5
o

-
Figure 5.18: The “staff” of Okinawan notation.

Running parallel to the samisen column is the voice part. This part is further

subdivided into three columns: the right-most presents the pitch symbols, the middle

CHAPTER 5. AN IMPLEMENTATION OF THE 3TG MODEL 102

column the vocal ornaments, while the text to be sung is presented in the leftmost

column. Rhythm in the voice part is keyed to the rectangles in the samisen column.

Implementation

The symbols displayed by most of the glyphs in this implementation were obtained by
digitally scanning illustrations found in La Rue’s article, then converting the results
into PostScript bitmaps. The number of glyph subclasses needed was surprising: no
fewer than 65 classes were created, compared to 44 for CMN and 3 for PRN.

Since ON reads from right-to-left, a special glyph, called an ONPage glyph, is
used to override the rootGlyph’s inherent top-to-bottom ordering. As Figure 5.19
shows, this glyph displays the title “Okinawan Notation” in this implementation.
The staves of ON are represented by the class ONGrid. Since the pitch of any symbol
is independent of its staff position, class ONGrid is somewhat simpler than CMN’s
class staff. Two further glyphs classes, called ONTrack and ONVoiceTrack, are used
to to distinguish between the samisen column and the voice column.

As we have seen, the voice column of ON is further divided into separate columns
for pitches, ornaments, and words. Since words and ornaments never occur without a
pitch, however, no separate glyphs were needed to represent these columns. Instead,
what might be rather loosely called a “note” can be constructed by piling the orna-
ments and words onto the pitch glyph. Figure 5.20 shows such a note pile. Typically,
there will be several ornaments and perhaps several words attached to each pitch
glyph.

Pitch glyphs (subclasses of the abstract superclass -ONsf, for Okinawan Notation
string-fret) are very similar to the _notes of the CMN implementation. They each
have a music kit note object which they use to interface with the synthesis hard-
ware during performance. Ornaments piled on a pitch glyph cause amplitude and
frequency envelopes to be applied to the note object, imitating the frequency scoops
and dynamic variations of Okinawan vocal style. Word glyphs, in this implementa-
tion, are confined to single vowels. They tell the corresponding note how to choose
from among a predetermined set of presampled waveforms during synthesis.

Like the voice part, the samisen part may contain ornamentation, though this

CHAPTER 5. AN IMPLEMENTATION OF THE 3TG MODEL 103

Okinawan Notation

Figure 5.19: The Okinawan notation framework.

is never as elaborate as its vocal counterpart. Small teardrop-shaped glyphs piled
onto pitch glyphs trigger these ornaments. Rather than programming the mechanics
necessary to have these ornaments perform themselves, it proved more convenient to
take advantage of the ability of clipping to suppress detail. As Figure 5.21 shows,
ornaments can be written out in full (in ON, of course!), piled onto the tiny tear-drop
shaped ornament glyph (which will completely clip them from view), then piled onto
the pitch glyph. The ornament glyph itself has no unique functionality whatsoever.
This section concludes with an example, Figure 5.22, of a complete ON composi-

tion. The work, which is taken from La Rue’s paper, is not a traditional Okinawan

CHAPTER 5. AN IMPLEMENTATION OF THE 3TG MODEL 104

Figure 5.20: The structure of an Okinawan “note”. This pile consists of a pitch glyph,
two ornamental glyphs, and a word glyph.

Figure 5.21: A samisen ornament. As revealed by the raised display, the tiny teardrop
shape conceals the ornament in the form of a fully-written out passage of ON.

CHAPTER 5. AN IMPLEMENTATION OF THE 3TG MODEL 105

piece. Instead, it was written specifically to demonstrate as many facets of the nota-

tion system as possible in a single work.

Okinawan Notation
1) [l |9z |z "
X M . 4L
e BRIRE
ool MR -
0| | Ll je| [)
—L"FF--EE: ;t-rﬁh 930.*: E &
-mj » *| :#
[k L l u.":
Aleal (B]] |£]7:y |B
7e[@
ST B el B el R
Em A ﬂ T
] Q.4 LE RE I .
5] (L [

Figure 5.22: A composition in Okinawan notation.

5.6 Summary

This chapter has described a computer implementation of the 3TG model. The
system, dubbed Nutation, was built primarily with the goal of supporting claims
made about the model throughout the dissertation.

Nutation takes the form of an object-oriented, visual programming language, and

CHAPTER 5. AN IMPLEMENTATION OF THE 3TG MODEL 106

provides both an integrated programming environment for the development of glyph
subclasses and a direct manipulation system for manipulating instances of these sub-
classes. Three very different music notation styles, implemented as “glyph sets”, were
presented: a simple piano-roll notation system, a subset of common music notation,
and an Okinawan tablature notation system for voice and samisen.

While certainly not constituting “proof” of the dissertation’s claims, the existence
of three fully functional systems, each capable of displaying and playing substantially

complex scores in real time, certainly supports their validity.

Chapter 6

Conclusion

6.1 Contributions

This dissertation has presented an original model of computerized notation programs
for composition. This three-dimensional, transparent glyph (3TG) model represents
musical scores as three-dimensional constructs made of piles of boxes of unit thickness
called Glyphs. Equivalent to tree structures, these piles specify hierarchical relation-
ships among their component glyphs. If these glyphs are implemented as objects,
then the images and conventions of particular notational styles can take the form of
data encapsulated as object specifications in an object-oriented, visual programming
language.

An original data structure, called the TTree, was presented as a possible imple-
mentation structure for the model. A TTree is the binary correspondent of an ordered
tree with time delays associated with its right-going arcs. In a TTree, time can be
thought of as flowing “along” these arcs, rather than somehow “between” them, as in
the corresponding ordered tree. When the glyphs of the 3TG model are implemented
as nodes of a TTree, their hierarchical interrelationships not only specify structural
connections, but define temporal ordering as well.

The model strongly suggests a unique, direct-manipulation-style user interface.
Because the model is based on concrete, familiar objects of everyday experience, it

makes an excellent metaphor for the design of such an interface. It was shown that

107

CHAPTER 6. CONCLUSION 108

most of the elements of the interface could be based directly on such a metaphor,
resulting in an interface with a good deal of “conceptual integrity”.

A working computer prototype of the model, dubbed Nutation, was described.
Although not constituting proof of any rigorous kind, the prototype does at least lend
credence to many of the claims made about the model throughout the dissertation.
One particular claim—that the model is capable of supporting a wide variety of music
notation styles—was given especially strong support, for the implementation included
a piano-roll notation system, a subset of common music notation, and an eighteenth-

century tablature system for voice and samisen from the island of Okinawa.

6.2 Directions for Further Research

There are many aspects of the 3T'G model which were addressed only partially or
not at all in this dissertation. The algorithmic generation and manipulation of glyph
piles, for example, warrants further exploration, particularly in light of the declarative
nature of the model’s data representation, for it is generally believed that declarative
language descriptions are easier to manipulate than procedural ones.

The model does not address the issue of multiple simultaneous hierarchies. Si-
multaneous generation along multiple hierarchical dimensions was shown to be a
powerful tool for analysis as early as Winograd’s systemic grammar scheme for tonal
music [Win68]. More recently, Dannenberg has proposed an extensible data structure
for music representation which allows the encoding of multiple hierarchies [Dan86].
While Nutation and the 3TG model certainly don’t preclude such structures, they
don’t provide any particular support for them either.

A number of pragmatic issues arose during the coding of the model’s computer
implementation. These issues primarily concerned problems of scale, for Nutation is
currently not very successful at dealing with very large scores. How should something
of the complexity of, say, a complete opera, be organized? As a single glyph pile?
As a set of independent, sequentially-ordered piles? The graphics algorithms used by
the implementation were neither particularly innovative or efficient, and though they

served well for the short examples presented in the dissertation, they almost certainly

Bibliography

[Ado85]

[Ado89]

[AKS86]

[App88]

[BC89]

Adobe Systems Incorporated. PostScript Language Reference Manual,
1985.

Adobe Systems Incorportated. PostScript Language Eztensions for the
Display PostScript System, 1989.

David P. Anderson and Ron Kuivila. Accurately timed generation of dis-
crete musical events. Computer Music Journal, 10(6):48-56, 1986.

Apple Computer, Inc. Human Interface Guidelines: The Apple Desktop
Interface. Addison-Wesley, Reading, Mass., 1988.

Judith R. Brown and Steve Cunningham. Programming the User Interface:
Principles and Ezamples. John Wiley & Sons, New York, 1989.

[BPRBS81| William Buxton, S. Patel, William Reeves, and Ronald Baecker. Scope in

interactive score editors. Computer Music Journal, 5(3):50-56, 1981.

[BRBM77] William Buxton, William Reeves, Ronald Baecker, and Leslie Mezei. The

[Bro75]

[Byr84]

use of hierarchy and instance in a data structure for computer music. Com-
puter Music Journal, 2(4):10-21, 1977.

Frederick P. Brooks, Jr. The Mythical Man-Month. Addison-Wesley, Read-
ing, Mass., 1975.

Donald Alvin Byrd. Music Notation by Computer. PhD thesis, Indiana
University, 1984.

110

CHAPTER 6. CONCLUSION 109

would prove inadequate for large scores.

It should be emphasized that the model may very well provide solutions to many
if not all of these problems. Music notation by computer is a very large and complex
undertaking, and only a subset of the issues involved could be realistically addressed
within the scope of this dissertation. Only further research will tell if even more

powerful conceptual tools than the 3TG model are needed to solve them.

BIBLIOGRAPHY 111

[Byr86]

[Cho85]

[Col74]

[Cox86]

[Dan86]

[Dan89a)

[Dan89b]

[Day89]

[Die85]

[Die88)

Donald Byrd. User interfaces in music-notation systems. In Proceedings of
the International Computer Music Conference 1986, pages 145-151. Com-
puter Music Association, 1986.

John M. Chowning. The synthesis of complex audio spectra by means
of frequency modulation. In Curtis Roads and John Strawn, editors,
Foundations of Computer Music, chapter 1, pages 6-29. MIT Press, Cam-
bridge,MA, 1985.

Hugo Cole. Sounds and Signs. Oxford University Press, London, 1974.

Brad J. Cox. Object Oriented Programming:An Evolutionary Approach.
Addison-Wesley, Reading, Mass., 1986.

Roger B. Dannenberg. A structure for representing, displaying, and editing
music. In Proceedings of the 14th International Computer Music Confer-

ence, pages 241-248. Computer Music Association, 1986.

Roger Dannenberg. Real-time scheduling and computer accompaniment.
In Max V. Mathews and John R. Pierce, editors, Current Directions in
Computer Music Research, chapter 17, pages 225-261. MIT Press, Cam-
bridge,MA, 1989.

Roger B. Dannenberg. Music representation issues: A position paper. In
Proceedings of the 15th International Computer Music Conference, pages
73-75. Computer Music Association, 1989.

Mary Carlo Day. Designing the human interface: An overview. AT&T
Technical Journal, 68(5):2-8, September/November 1989.

Glendon R. Diener. Formal languages in music theory. Master’s thesis,
McGill University, Montreal, Quebec, 1985.

Glendon R. Diener. TTrees: An active data structure for computer music.
In Proceedings of the 14th International Computer Music Conference, pages
184-188. Computer Music Association, 1988.

BIBLIOGRAPHY 112

[Die89a]

[Die89b)

[Die90]

[DJ85)

[FG82]

[Fra)

[GL85)

[Gom77]

[GR3]

[Gre90]

Glendon R. Diener. Nutation: Structural organization versus graphical
generality in a common music notation program. In Proceedings of the
15th International Computer Music Conference, pages 86-89. Computer
Music Association, 1989.

Glendon R. Diener. TTrees: A tool for the compositional environment.
Computer Music Journal, 13(2):77-85, 1989.

Glendon R. Diener. Conceptual integrity in a music notation program. In
Proceedings of the 16th International Computer Music Conference, pages
348-350. Computer Music Association, 1990.

Charles Dodge and Thomas A. Jerse. Computer Music: Synthesis, Com-

position, and Performance. Schirmer, New York, 1985.

Allen Forte and Steven E. Gilbert. Introduction to Schenkerian Analysis.
W.W.Norton and Company, New York, 1982.

Franz Inc., Suite 275, 1995 University Ave, Berkeley, CA 94704 USA. Al-
legro CL User Guide.

J. D. Gould and C. Lewis. Designing for usability: Key principles and what
designers think. Communications of the ACM, 28(3):300-311, 1985.

David A. Gomberg. A computer-oriented system for music printing. Com-
puters and the Humanities, 11(2):63-80, 1977.

Adele Goldberg and David Robson. Smalltalk-80: The Language and its
Implementation. Addison-Wesley, Reading, Mass., 1983.

Thomas R.G. Green. Limited theories as a framework for human-computer
interaction. In D. Ackermann and M.J. Tauber, editors, Mental Models and
Human-Computer Interaction I, pages 1-39. Elsevier Science Publishers
B.V., North-Holland, 1990.

BIBLIOGRAPHY 113

[Gru90]

[HSF89]

[HU79]

[Jac89)

[JB65)

[JB8Y)

[Kau67)

[Kay84]

[Knu73]

[Loy89]

Jonathan Grudin. The computer reaches out: The historical continuity
of interface design. In Jane Carrasco Chew and John Whiteside, editors,
Empowering People: CHI 90 Conference Proceedings, pages 261-268. ACM
Press, 1990.

Walter B. Hewlett and Eleanor Selfridge-Field. Computing in Musicology:
A Directory of Research. Center for Computer Assisted Research in the
Humanities, 525 Middlefield Road, Suite 120, Menlo Park, CA, 1989.

John E. Hopcroft and Jeffrey D. Ullman. Introduction to Automata Theory,
Languages, and Computation. Addison-Wesley, Reading, Mass., 1979.

R.J.K. Jacob. Direct manipulation in the intelligent interface. In P.A. Han-
cock and M.H. Chignell, editors, Intelligent Interfaces: Theory, Research,
and Design, chapter 6, pages 165-212. Elsevier Science Publishers B.V.,
North-Holland, 1989.

L.A. Hiller Jr. and R.A. Baker. Automated music printing. Journal of
Music Theory, 9(1):129-152, 1965.

David Jaffe and Lee Boynton. An overview of the sound and music kits for
the NeXT computer. Computer Music Journal, 13(2):48-55, 1989.

Walter Kaufmann. Musical Notations of the Orient: Notational Systems
of Continental Fast, South, and Central Asia. Indiana University Press,

Bloomington, 1967.
Alan Kay. Computer software. Scientific American, 251(3):53-59, 1984.

Donald E. Knuth. The Art of Computer Programming, volume 1. Addison-
Wesley, Reading, Mass., 1973.

Gareth Loy. Composing with computers—a survey of some compositional
formalisms and music programming languages. In Max V. Mathews and
John R. Pierce, editors, Current Directions in Computer Music Research,
chapter 21, pages 291-396. MIT Press, Cambridge,MA, 1989.

BIBLIOGRAPHY 114

[Mar86]

[Max81]

[Min86]

[MO83]

[NeX89a)

[NeX89b)

[NeX89c]

[NeX89d]

[NS73]

[Pas88)

[Pol8s]

[Ras82]

Mark of the Unicorn, Inc. Professional Composer User’s Manual, 1986.

John Turner Maxwell III. Mockingbird: An interactive composer’s aid.

Master’s thesis, Massachusetts Institute of Technology, 1981.

Marvin Minsky. The Society of Mind. Simon and Schuster, New York,
1986.

John Turner Maxwell IIT and Severo M. Ornstein. Mockingbird: A com-

poser’s amanuensis. Technical report, Xerox Corporation, 1983.

NeXT Inc. The NeXT System Reference Manual, chapter 2: The NeXT
User Interface. NeXT Inc., 1989.

NeXT Inc. The NeXT System Reference Manual, chapter 16:The Mach
Operating System. NeXT Inc., 1989.

NeXT Inc. The NeXT System Reference Manual, chapter 6: Program
Structure. NeXT Inc., 1989.

NeXT Inc. The NeXT System Reference Manual, chapter 24: PostScript
Operators. NeXT Inc., 1989.

William M. Newman and Robert F. Sproull. Principles of Interactive Com-
puter Graphics. McGraw-Hill, New York, second edition, 1973.

Passport Designs Inc., Suite 103, 625 Miramontes St., Half Moon Bay, CA
94019 USA. Score User’s Guide, 1988.

Peter G. Polson. The consequences of consistent and inconsistent user in-
terfaces. In Raymonde Guindon, editor, Cognitive Science and its Applica-
tions for Human-Computer Interaction, chapter 2, pages 59-108. Lawrence
Erlbaum Associates, Hillsdale, New Jersey, 1988.

Richard Rastall. The Notation of Western Music: An Introduction. Green-
wood Press, New York, 1982.

BIBLIOGRAPHY 115

[RC84]

[Rea87a

[Rea87b]

[Row82]

[Rue51]

[Sch83]

[Shn83]

[Shn87]

[Shu88]

[SLU8Y)

[Smi73]

Xavier Rodet and Pierre Cointe. Formes: Composition and scheduling
of processes. Computer Music Journal, 8(3):32-47, September/November
1984.

Gardner Read. Music Notation: A Manual of Modern Practice. Taplinger
Publishing Co.,Inc., New York, second edition, 1987.

Gardner Read. Source Book of Proposed Music Notation Reforms. St.
Martin’s Press, New York, 1987.

Lewis Rowell. Thinking About Music. The University of Massachusetts
Press, New York, 1982.

Jan La Rue. The Okinawan notation system. Journal of the American
Musicological Society, 4(1):27-35, 1951.

Bill Schottstaedt. Pla: A composer’s idea of a language. Computer Music
Journal, 7(1):11-20, 1983.

Ben Shneiderman. Direct manipulation: A step beyond programming lan-
guages. IEEE Computer Magazine, 16(8):57-69, 1983.

Ben Shneiderman. Designing the User Interface: Strategies for Effective
Human-Computer Interaction. Addison-Wesley, Reading, Mass., 1987.

Nan C. Shu. Visual Programming. Van Nostrand Reinhold Company, New
York, 1988.

Lynn Andrea Stein, Henry Lieberman, and David Ungar. A shared view of
sharing: The treaty of Orlando. In Won Kim and Frederick H. Lochovsky,
editors, Object-oriented concepts, databases and applications, chapter 3.
ACM Press frontier series, New York, N.Y, 1989.

Leland Smith. Editing and printing music by computer. Journal of Music
Theory, 17(2):292-309, 1973.

BIBLIOGRAPHY 116

[Smi75]

[Ste87]

[U1188]

[Wae90]

[Wan88]

[Weg87]

[Win68]

[Yav85]

David Canfield Smith. Pygmalion: A Creative Programming Environment.
PhD thesis, Stanford University, 1975.

Lynn Andrea Stein. Delegation is inheritance. In OOPSLA 87 Conference
Proceedings, pages 138-146. ACM Press, 1987.

Jeffrey D. Ullman. Principles of Database and Knowledge-Base Systems,
volume 1. Computer Science Press, Rockville, Maryland, 1988.

Yvonne Waern. On the dynamics of mental models. In D. Ackermann and
M.J. Tauber, editors, Mental Models and Human-Computer Interaction I,
pages 73-93. Elsevier Science Publishers B.V., North-Holland, 1990.

Paul S. Wang. An Introduction to Berkeley UNIX. Wadsworth Publishing
company, Belmont, California, 1988.

Peter Wegner. Research directions in object-oriented programming. In
Bruce Shriver and Peter Wegner, editors, The Object-oriented classification
Paradigm, pages 479-560. MIT Press, Cambridge,MA, 1987.

Terry Winograd. Linguistics and the computer analysis of tonal harmony.
Journal of Music Theory, 12:2-49, 1968.

Christopher Yavelow. Music software for the Apple Macintosh. Computer
Music Journal, 9(3):52-67, 1985.

