CENTER FOR COMPUTER RESEARCH IN MUSIC AND ACOUSTICS MAY1988

Department of Music
Report No. STAN-M-50

IMPLEMENTATION OF SINGLE REED INSTRUMENTS WITH ARBITRARY BORE
SHAPES USING DIGITAL WAVEGUIDE FILTERS '

Perry R. Cook

Research sponsored in part by
The System Development Foundation
and
Dynacord, Germany

CCRMA
DEPARTMENT OF MUSIC
Stanford University
Stanford, California 94305



IMPLEMENTATION OF SINGLE REED INSTRUMENTS WITH ARBITRARY BORE SHAPES

The accurate physical modeling of musical instruments is desirable from the standpoint of
analysis, and the efficient duplication of instrument behavior is desirable from the standpoint of

USING DIGITAL WAVEGUIDE FILTERS

by Perry R. Cook

. INTRODUCTION

synthesis. Certain musical instruments, including some members of the wind instrument family have
been successfully and efficiently modeled in the past using waveguide filters [1}{2]{3]. The
one-dimensional propagation model of most wind instrument bores, coupled with the assumption of a
single input / single output system, makes the use of waveguides an exceedingly efficient method of
simulating the vibration of many wind instruments. Moreover, the approximation of a bore
instrument by differential cylinders (an analog to the scattering section) is the basis for many finite
element techniques, and musical instruments have been accurately analyzed using this technique [4].
My starting point for the instrument models presented in this paper was the waveguide clarinet model!
developed by Julius Smith [2], based on the work of Mcintyre, Schumacher, and Woodhouse [5).

Figure 1 shows a basic block diagram for this clarinet and all of the instruments modeled in my

investigation. The principal features are the non-linear reed section, the bore, and the
transmission/reflection termination section.

o> —» N .
Non- -

Input on Bore R'ﬂ““.on & Output
Linear Transmission Pressure

Breath
Reed Section

Pressure

Figure 1. Basic Bore Instrument Model

In this project, a synthesis-by-modeling / analysis-by-synthesis process was used on a variety
of single reed driven wind instruments. The procedure is described beiow:

1.

Significant features of the instrument in question were analyzed. This included
taking physical measurements, consulting the acoustical literature as refated to
the instrument, and recording reference tones of the actual instrument. The
features of each instrument are described in that instrument's section of this paper.

A waveguide mode! of the instrument bore was constructed purely from physical
measurements. This process is described in detail in Section lli of this paper.

Termination characteristics for the bore were determined. A basic acoustics
approach was used, along with input/output transfer data from recorded sounds.

The single reed non-linear mechanism was adjusted for the particular instrument
being modeled. This usually required only a scaling of the reed parameters (which
very much maps to overall reed stifiness and mouthpiece aperture size).

The model was built and tested using various input breath pressure functions. Fine
tuning was done during the testing phase, specifically the breath pressure control
envelope, the termination filter characteristics, and the reed parameters. This
experimentation phase continued until a set of reasonable and natural short sound
examples was generated using the model.



Il. THE CLARINET

The basic waveguide clarinet model is well documented in [2], 8o only a brief explanation will be
given here. As with all of the systems investigated in this paper, the only input control variable is
breath pressure, and pressure is the variable which is computed throughout the model. Pressure is
inserted into the reed simulation section, and is typically on the order of the dynamic range of the
system itsell. That is, for 16 bit synthesis, the input pressure is ramped from zero 1o about 105,

The reed section is the only non-linear block in the system, and is responsible for much of the
realistic behavior of the mode!. Incoming breath pressure is compared 1o the current left-traveling
wavefront in the bore, and this difference is proportional to the net force on the reed. The reed is
assumed massless, and thus the net instantaneous force corresponds to an instantaneous position of
the reed (like a massless spring system). The position of the reed corresponds to a slit aperture
size, which in turn yields a reflection coefficient for the impinging wave value. The slit size also
controls the amount of incoming breath pressure which is aliowed through the slit and into the bore.
The compute time relationship of a value of pressure difference (breath - wave) to a refiection
coefficient is done via a table lookup scheme, greatly simplifying computation.

Because of the cylindrical shape of the clarinet bore, the bore section of the clarinet model is
very simple, requiring only two delay lines to simulate left-going and right-going wave components
within the bore. No losses or disturbances (such as tone holes) are included in any of the basic
models, although section V briefly discusses tone hole considerations.

The final section in the model is the reflectionftransmission section. If the clarinet bell is
neglected, a simple model of the junction at the end of the instrument is that of a low-pass filter
reflection function, and a complementary high-pass transmission function (our output). The physical
justification for this assumption is that the cap of air which loads the end of the bore can be viewed
as a piston, and the physics of driving & frictionless piston dictate a low-pass reflection behavior and
a complementary high-pass transmission [6]. Wavelengths much ionger than the bell diameter are
reflected, and using the clarinet bore diameter dictates a cutoff frequency of about 5,000 Hz. This
can be approximated very efficiently at a sampling rate of 20kHz by a simple one-zero filter.

The model worked quite well as described, with the only difficult task being the development of
good breath pressure control functions. The clarinet model! is extremely sensitive to the slope of the
onset of breath pressure, displaying characteristic clarinet overblowing (locking on higher order
vibration modes). Once in the steady state, a rather small decrease in breath pressure yielded a
large change in oscillatory behavior. A very small amount of white noise mixed with the breath
pressure function makes the system more robust, yielding more natural sounding attack transients.
Figure 2 shows an FFT of a typical steady state clarinet tone, supenmposed with the expected
clarinet resonance modes from published tables {7].
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Figure 2. Steady State Waveguide Clarinet Spectrum vs. Predicted Spectrum




lll. THE SOPRANO SAXOPHONE

The sopranc saxophone is a nearly perfect conical bore, but with length and bell diameter
measurements very close to those of the clarinet. This made it a very good choice for the next
simulation. The reed table and bell transmission/reflection filters used for the clarinet were left
intact, but the simple delay lines used for the ciarinet bore were replaced by the characteristic
saxophone conical bore. A general purpose wavequide bore was constructed using one scattering
junction per spatial sample (one junction per 1.6cm at 20kHz sampling rate). Each junction scattering
coefficient is a function of the characteristic impedances of the two sections It joins, and since
characteristic impedance is a function of area, the scattering coefficients can be computed from the
area function. The conica! bore exhibits the characteristic of a cone, in which the radius is a linear
function of the position down the bore.

radius = initial radius + flare * (bore position)
fm=ro+{*Xn a
This corresponds to an area function which is a function of position squared.
area of nth section = a, =pi* 12 =pi* (rg +f* X, )2 (2

The reflection coefiicient is found by forming the ratio of the difference of the areas and the sum
of the areas in the two adjacent sections.

Cn= [an- a(n.1)}/lan + a(n.1)) [

Using the measured data from a soprano saxophone with an initial radius of 3.75mm, a flare of
.0359mmv/mm, and a length of 66.2cm, a 40 section saxophone waveguide bore was constructed and
integrated into the mode!l. The physics of an expanding bore dictate that the pressure shifts from high
to low (with an accompanying reciprocal velocity relationship) as the wave travels from the
mouthpiece to the bell. This required that high pressures be accomodated in the reed table in order
for significant output to be realized. The high mouthpiece pressure corresponds physically very well
with the stiffer reeds typically used on saxophones. The saxophone is also quite different from the
clarinet in the region where the mouthpiece connects to the horn, in that the sax mouthpiece fits over
the horn. There is thus a large discontinuity (abruptly shrinking area) at this point, making the first
junction reflection coefficient large and positive, while all others within the bore are negative and
decreasing.

The tones produced by the soprano saxophone model were characteristically horn-like, and as
expected, quite distinct from the sound of the clarinet model. The sensitivity to the breath pressure
envelope was much less severe than in the clarinet, with a wide range of acceptable values for onset
slope and steady state value. 1t was found that by adding a slow periodic deviation to the breath
pressure function in steady state, a shift in pitch as well as amplitude was achieved. By
experimenting with the attack envelope length and slope, and the breath tremolo/vibrato amplitude,
several convincing saxophone tones were realized. Figure 3 shows the amplitude envelope and
corresponding fundamental pitch trajectory from a typical saxophone tone, demonstrating the pitch
deviation which results from only breath pressure modulation.
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Figure 3. Saxophone Amplitude and Fundamental Pitch Time
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The most accurate model of the saxophone bore, using one junction per spatial sample,
approximates the bore as a series of cylindrical segments whose lengths are determined by the
sampling rate. This has been shown to be an exact simulation at the sample points of one dimensional
vibration in a linear lossless system [8]. However, the computational overhead for such a model is
quite large. The next step in the saxophone experiments was to simplify the model, by approximating
the bore with fewer and longer cylindrical segments. Of course this ‘model decimation’ causes a
compromise in accuracy, but a tempting decrease in computational complexity makes the simpler
models worthy of investigation. The model was decimated by factors of 2, 4, and 8, yielding bores
of 20, 10, and 5 sections. Noting that particular harmonics were being increased by the
approximation process, a decimation scheme was done in which the bore was approximated with 5
sections of uneven lengths. The sections were of relatively prime sample lengths, and it was hoped
that this scheme would spread out the effects of the approximation. The 3 even decimation schemes
still exhibited characteristic horn waveforms, although progressively coarser for the more severe
approximations. Rather than the expected result, the prime decimation scheme yielded an interesting
multiphonic oscillation, with many unfused tones present. Figure 4 shows steady state FFT plots of
the original model, the three evenly decimated models, and the prime decimated model. .

IV. THE TIME VARYING, SINGLE REED DRIVEN, HUMAN VOCAL TRACT

In order to investigate truly arbitrary bore shapes, various bores were constructed from data on
the human vocal tract [9]. The shape functions were copied and transiated into refiection coefficients
for waveguides. Taking a vocal tract length of 8 inches for an adult male (this is somewhat longer
than average), only about 13 scattering sections are required for a waveguide bore model at 20kHz
sampling rate. Two bores were constructed, one fashioned after the neutral Uh sound (as in rubber),
and the other shaped like the Oo sound (as in food). The clarinet reed calibration proved suitable for
the models, as the excitation end of the vocal tract is not significantly smaller than the exit opening.

In fact, the mouth opening area is often much smaller than the excitation end, and thus problems can
occur with excessive output pressure at the exit point.

Since the network was driven with a single reed, which does not correspond very closely with
the highly damped vocal folds, the fundamental pitch of oscillation is much higher than that of the
maie voice. The massless reed does not display the sluggishness of the vocal folds, and thus the
oscillation is likely to lock on to one of the many formant peaks. The fundamental which most
commonly occurs is the first resonance formant, but many modes are possible. The principal
difficulty with ‘playing’ this instrument was the mode locking phenomenon, and this prompted the final
selection of the more neutral vowels. Very small changes in breath pressure, bore shape, or vibrato
caused the vibrational behaviors to rapidly shift. All of this is consistent with the massless reed
non-linear oscillator, in that the reed is extremely sensitive to the loading of the tube to which it is
connected.

A higher fundamental pitch means that there are less harmonics in the final waveform, so the
formant envelope was much more difficult to trace. The two steady state vibrations did show
differences (most noticeably a difference in fundamenta! pitch), and the next step in modeling was to
make a transition gradually from one shape to the other. The shape was modulated between the two
vowel shapes sinusoidally, that is, each coefficient varied from its value in the Oo bore to its value in
the Uh bore in a sinusoidal fasion. The transition period from one bore to the other and back was
selected to be one second. This experiment produced an effect which was more interesting musically
than it was speechlike, which again is consistent with the high fundamental produced by the reed, and
the resulting lack of ease in hearing formants. The actual sound was like a musical instrument which
changed from a clarinet-like characteristic, to a more sax-like sound. Figure 5 shows steady state
FFTs of the oscillations of the two bores, along with the normal formant curves of the two vowels.
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Figure 5. Single Reed Vocal Tract Spectra and Expected Formants

V. TONEHOLES

The behavior of these bores is quite interesting, even in their sterile, lossless form. However
the addition of tone holes is required in order to bring the models into a more musical form. A tone
hole performs many important functions in a wind instrument. One is the obvious function of changing
the effective length of the bore, thus allowing pitch changing. Another is 1o filter out resonance
modes, as in the clarinet register key, which allows the player to overblow more easily, and thus
this function is also related to pitch control. Another important function is that of radiation, allowing
some of the sound energy to escape and add to the overall percieved sound of the instrument.

Neglecting turbulance at the tone hole, tone holes can be grouped into two categories [10][11].
The two distinct types of tone holes are differentiated by their chimney height. That is, tone holes
which have negligible length as tubes, and those which enclose so much air volume that the mass of
this air mus! be included. Tone holes with negligible height can be modeled as simple three way
scattering junctions. Further, shallow tone holes which are located between horn sections of the
same cross-sactional area can be reduced to a simple single multiply structure. The analysis of a
deep chimney tone hole is like the bell refiectiontransmission analysis of Section I, with a low pass
reflection component, and a high pass transmission component.

Even if the tone hole characteristics are simple, as in the shallow chimney case, the notion of
placing all of the tone holes of an actual instrument into a bore mode! points to a large increase in
computation. In order to accurately locate the holes fractionally between spatial samples as
required, all pass filters could be employed to yield the necessary fractional sample delays. But this
points to even more computation. Add the filters required for deep chimney tone holes, and the
" computation increases yet further.

The time varying bore aspect of waveguide filters is one possible solution to the problem. In the
experiments on both the saxophone and the vocal tract, it was clear that large pitch shifts are
possible in bores of fixed length, because of the reaction of the reed with the bore shape. The
acoustic lumped circuit model of a chain of tone holes is a ladder fiter, with each tone hole being
replaced with two series impedances and one shunt impedance. Some testing has been done toward
simulating the effects of tone holes with the same time varying bore used for the vocal tract
instruments discussed in this paper. One benefit of this type of implementation is that the
computational overhead is constant, with each junction requiring some fixed amount of computations

per sample.
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