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Introduction

This tutorial is an outgrowth of a course in signal
processing given by Julius O. Smith at Stanford
University in the fall of 1984 (see Smith 1981, as
well). It provides an elementary mathematical in-
troduction to spectrum analysis. This is the frst of
two parts. In part one, the discrete Fourier transform
is introduced and analyzed in depth. In part two,
some fundamental spectrum analysis theorems and
applications are discussed. The only mathematical
background assumed is high school trigonometry,
algebra, and geometry. No calculus is required. Fa-
miliarity with summation formulae, complex num-
bers, and vectors is helpful, although not essential.

Overview

Since the days of the mathematician Jean Baptiste
Joseph Fourier (1768-1830), it has been recognized
that any sound can be broken down into a set of
sinusoidal functions in much the way that any col-
ored light can be broken down into basic colors of
the visual spectrum. Furthermore, if the sound is
strictly periodic and has no energy above a certain
frequency (i.e., it is band-limited), the set of sinu-
soids is finite. The discrete Fourier transform (DFT)
is a mathematical function that performs the op-
eration of breaking down a digitally represented
signal, such as a digitally recorded sound, into its
spectrum—a set of scalars on a set of sinusoidal
components. Most readers are probably more famil-
iar with the fast Fourier transform (FFT). The FFT
is simply an efficient implementation of the DFT.
The FFT runs in time proportional to N log N rather
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than in time proportional to N?, where N is tt
number of input samples. (For more informatis
FFTs, see Rabiner and Gold 1975 or Aho, Hop
and Ullman 1974.)

More precisely, the DFT takes a waveform |:
tally sampled sound) as input and produces a ¢
coefficients that can be used to scale aset of s
waves equally spaced between 0 Hz and the sa
pling rate f, Hz. {The frequencies between f,/2
and f, Hz are equivalent to the frequencies bet
—f,/2'Hz and 0 Hz. This phenomenon is expl:
in part two of this tutorial.) If the scaled funct
are added together, the original waveform is re
structed. This two-stage process of spectrum :
sis and waveform reconstruction is called ana
synthesis in computer music terminology. Th
of coefficients is called the frequency domain
resentation of the waveform while the wavefo:
self is called the time domain representation.
DFT and its inverse, the IDFT, are fundament:
operations that convert between these two doi
The nineteenth-century acoustician Helmhol
ognized that the spectrum of a sound is strong
correlated to what we perceive as the “timbre’
the sound. Thus the frequency domain represe
tion offers meaningful information to a music

The average musician thinks of the DFT as
black box that displays the amplitude of the b
monics of a sound. The musician can use it tc
amine the frequency content of a sound in orc
create a corresponding synthetic model. There
however, a number of reasons why it is of valt
a musician to open up this black box and see .
works. First, one can understand the subtletie
sampling-rate conversion and other operation:
sound. Secondly, one can intelligently manipu
compositional tools such as the phase vocode
(Dolson 1983). Finally, a vast body of technica
erature becomes accessible to the musician.
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The DFT is a single mathematical formula. Yet,
packed into this one formula is some powerful and
profound mathematics that merits a good deal of ex-
planation. We shall examine the DFT in terms of a
mathematical vector space. This requires that we
provide some background in linear algebra and com-
plex variables. A list of identities illustrating com-
plex variable arithmetic is provided in Appendix B.

We first discuss the input and output of the DFT,
looking at the DFT itself as a black box. Next the
DFT equation is defined. The remainder (and bulk)
of part one is concerned with explaining the DFT
equation.

The Input and Output of the DFT

The DFT is a function that takes a waveform as in-
put and produces as output the set of coefficients
that determine the sinusoids present in the sound.
Each of the output coefficients is a complex num-
ber whose magnitude specifies the amplitude of a
particular sinusoidal component and whose angle
specifies the phase of that component. (We explain
more about complex numbers shortly.) The output
of the DFT is called the spectrum of the waveform.
In common usage, the term ““spectrum” is often used
to refer to the magnitude of the DFT coefficients.
However, we define “spectrum’ as the complex co-
efficients themselves. The inverse DFT reverses the
effect of the DFT. It takes as input a spectrum and
produces as output a (time domain) waveform.

Fourier’s theorem implies that if a waveform is
periodic and band-limited, it can be represented by
a finite number of sinusoids. The DFT assumes that
its input is one period of such a waveform. With
this assumption, a finite number of sinusoids can
be used to represent the waveform. (Further im-
plications of this assumption are discussed in part
two of this tutorial.) The frequencies of the sinu-
soids used in the DFT are equally spaced between
0 Hz and the f, {or between ~f,/2 and f,/2). The
number of sinusoids in the set is the same as the
number of samples in the waveform. Note that the
input “waveform” can, in fact, be several periods of
some other waveform. For example, if the waveform
is of length N and it consists of four copies of a

in

waveform of length N/4, the resulting spectrum
will contain significant energy at only one out of
every four frequencies.

In mathematical terms, both the input and out-
put of the DFT are sequences. A sequence is a list
of numbers indexed by an integer variable. For ex-
ample y = {1, .5, .1, —.1} is a sequence of length N
= 4, with y(0) = 1, y(1}) = .5, and so forth. A se-
quence can also be represented with a functional
definition. For example, the functional definition
y{n) = cos(wn), where w is the radian frequency,
generates a cosine sequence. {w = 27f/f,, where f
is the frequency in Hz and f is the sampling rate
in Hz.)

In sound processing, the input to the DFT is a
sequence of samples of a digitized pressure function
of time. By convention, we use the index n as the
sample number wheren =0,1,2, ..., (N — 1}, and
we use a lower case letter as the sequence name
le.g., y). Time can be converted from sample num-
bers to seconds by defining a function of time in
seconds y(t,) = y(nT), where T is the sampling in-
terval (that is, the reciprocal of the sample rate) in
seconds. Note, however, that this is still a discrete-
time function defined only at the points nT, n = 0,
1,2,...,(N-1).

The output of the DFT, the spectrum, is also a
sequence. This means that frequency is quantized
just as time is quantized. We follow the convention
that k is the index variable of the output sequence,
wherek=0,1,2,...,(N ~ 1). We use the upper-
case version of the input sequence name for the out-
put sequence name (e.g., Y). Y(k) thus represents
the coefficient of the kth sinusoidal component of
the spectrum of the waveform y. The physical units
of frequency (Hz) can be shown explicitly by defining
a function of a continuous variable that has been
sampled Y(f.) = Y(k/NT)). This is, once again, a
function of discrete values.

Definition of the DFT

We begin by simply stating the equation for the
DFT and giving a brief explanation of its compo-
nents. The DFT equation is:
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DFTy) & Y(k) & 5 ylnje-r,

k=01,..., N=-1.

A number of possibly unfamiliar symbols appear in
this formula. The subscript X is used in the nota-
tion DFT,(y), to show that the output of the DFT is
a spectrum indexed by k. The symbol means “i
defined as.” Z¥ 2} x{n) means ““the sum of all values
of x(n) for n between 0 and N — 1 inclusive.” In our
case, x[n) is the multiplication of the input wave-
form y(n) by a complex function e-*«"". n is the
waveform sample index, e is the famous irrational
number that serves as the base of the natural loga-
rithm (Moore 1978a, 1978b). Its appearance in the
DFT formula stems from Euler’s identity, which
expresses sines and cosines in terms of the expo-
nential function, as we show. j is the square root of
negative one (— 1} and is further explained in the
section on complex numbers. w, is the radian fre-
quency of the kth sinusoidal component. It can be
expanded to w, = 27kf,/N, where f, is the sam-
pling rate in samples per second. T = 1/f, is the
sampling period in seconds per sample.

The variable k is held fixed for each evaluation
of the summation. That is, the summation is first
evaluated for k equal to 0. This produces the Fourier
coefficient of the first sinusoidal component. Then
k is reset to 1, and the summation is reevaluated to
give the second Fourier coefficient. The process is
repeated until all N Fourier coefficients have been
computed. Notice that as k goes fromO0to N — 1,
w, T goes from O to 27 in equal jumps. This turns
out to be equivalent to measuring energy in N fre-
quency bins equally spaced from 0 Hz to the sam-
pling rate.

The inverse DFT, or IDFT, is defined to be:

N_
IDFT,(Y) 2 y(n) é% 3 Ylkewo,

Note that the IDFT and DFT equations are quite
similar. Since the IDFT is the inverse of the DFT,
taking the IDFT of the DFT of a waveform is an
identity operation. That is, IDFT,(DFT(y)) = y{n).
Similarly, DFT,(IDFT(Y)} = Y(k).

Having defined the DFT, we now explain how it

works. The approach we take is to view the D
as a simple change of coordinate system. Thi:
quires some concepts from linear algebra, incl
the concepts of vector, basis, vector projectior
orthogonality. First, however, we need to unde
stand something about complex numbers and
they are used in the DFT.

Why Complex Numbers Appear in the
DFT Equation

The input to the DFT is a sequence of sample
waveform. These samples are real numbers wi
taken from the physical world, but they can be
plex numbers in theoretical cases. Of more re]
vance to the musician is the fact that the Fou:
coefficients generated by the DFT are generall
complex. Complex numbers are used in the D
for two reasons. First, Euler’s identity (given i1
later), allows a sinusoid to be expressed as a c«
plex exponential. Since trigonometric calcula
are often much more cumbersome than expon
calculations, it is preferable to work with exp:
tials. (See Smith 1981 for a comparison of trig
metric and exponential methods.) Second, it i
essary that both a phase term and an amplituc
term be associated with each spectral compor
Complex numbers allow both to be packaged
single algebraic quantity.

Complex Numbers

The set of real numbers is converted to the se
complex numbers by the addition of a single
number, j. (Appendix A gives a brief discussic
the original motivation for the invention of c
plex numbers.) We define j as j & V=1. (Som
use i rather than j as V—1.) Then j2 = -1, j3

j* = 1, etc. For any negative number x < 0 an
nve number R=-x,Vx=V-R=jVR A«
plex number z is defined as a sum of a real p:
an imaginary part, either of which can be 0.
z can be represented as x + jy where x and y
real. We also sometimes use the notations Re-
{“real part of z equals x”’) and Im{z} = y {“ima
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Fig. 1. Representation of
the point (0. 1) = i on the
complex plane.
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part of z equals y”’). The real numbers are the sub-
set of the complex numbers for which y = 0. Ap-
pendix B is a list of identities that includes the rules
for complex arithmetic.

We can plot complex numbers in a plane (called
the complex plane) as ordered pairs (x, y). For ex-
ample, the number j has coordinates (0, 1) as shown
in Fig. 1. We can also express complex numbers in
terms of polar coordinates as an ordered pair (R, 8)
where R = |z| is the magnitude of zand 6 = £z is
the angle of z. Using simple trigonometry, we can
convert from rectangular coordinates (x, y) to polar
coordinates {R, 8) and vice versa:

x = R cos|(8)
y = Rsin(#6)
R=Vxi+y?
8 = tan"Yy/x).

Note that z = x + jy is an algebraic representa-
tion of z in terms of its rectangular coordinates.
Similarly, there is an algebraic representation of z in
terms of polar coordinates:

z = R{cos{6) + j sin(6)).

Thus any complex number can be broken down
into a cosinusoidal and a sinusoidal component.

Another representation of z exists in terms of
polar coordinates. In order to define it, we must
introduce Euler’s identity:

e® = cos(8) + j sin(8]. {1

(A proof of Euler’s identity is not given here, al-

though the perplexed reader may be consoled to
note that for 8 = 0, /° = (cos(0) + jsin{0)) = 1 + jO
= 1, as one would expect.) With Euler’s identity, we
gain the alternative algebraic representation of z in
terms of polar coordinates:

z = Re™ = R{cos{8) + j sin{6}).

This representation simplifies the mathematics of
the DFT greatly, since simple rules of exponents
can now be used in place of difficult trigonometric
identities.

The complex conjugate of z is notated Z = x + jy
A x- jy. In polar coordinates, Re’ A Re-# It is
calculated by simply replacing j with —j. Note that
z + Z = 2Re{z}. Similarly, z — Z = 2Im{z}. This
fact, with Euler’s identity, can be used to derive for-
mulas for sine and cosine in terms of e’:

e+ el = gif + g-i®

(cos(@) + jsin{8)) + (cos(8) — i sin{6]))
= 2 cos|§).
Similarly, e — &° = 2; sin().

A complex number multiplied by its conjugate is
equal to its magnitude squared:

2z = (x + jylix — jy) = x* = [jy) = x* + y? = |z~
Or, in polar coordinates,

2Z = Re®Re™® = R2e® = R? = |z

Discrete-Time Complex Sinusoids

The DFT projects a waveform onto a set of discrete-
time complex sinusoids. Projection is explained
later. In this section we define a complex sinusoid
and generate it from the exponential function. We
show that raising a complex number of unit mag-
nitude e to successive powers generates succes-
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Fig. 2. A sinusoid with T
= /4 on the complex
plane.
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sive points along the circle of unit magnitude y(n) =
e (Fig. 2). A sequence of the form e'™ is called a
discrete-time complex sinusoid of unit amplitude.
A discrete-time complex sinusoid (hereafter called
simply a sinusoid) can be defined as the sequence:

yln) & ewtn = gunT = cos|wnT) + j sin{wnT).

The real component of this sequence is a sampled
cosine with unit amplitude and frequency «T ra-
dians per sample. The imaginary component is a
sampled sine with unit amplitude and frequency
T radians per sample. The complex magnitude is
interpreted as amplitude (in this case equal to 1).
Figure 2 shows an example of a sinusoid with T =
/4 radians per sample. A sinusoid eT is periodic
with a period of P & 27/w seconds. That is, we can
add P to the initial phase without changing the
trajectory:

em(nTQ Pl = elunTeuuP = ermnTerllmf’lP = emnTe12:r = emnT.

Similarly, for all integers k, eminT + &M = gwnT Thy
27/w is the period of the sinusoid.

A sinusoid can be scaled by a real amplitude ¢
and can have a real phase offset ¢:

Alcos(wnT + ¢) + jsin(wnT + ¢)] = Ae/tenT*

Futhermore, ¢ can be “pulled out” and combine
with A to form a convenient single complex coe
cient Z that incorporates both amplitude and ph

y(n) = Alcos{wnT + ¢) + jsin(wnT + ¢)]
= Aei(UﬂT*ﬂ

‘Aeié )emnT

Zeuunr'

The complex coefficients that make up the spec
trum produced by the DFT can thus express bot

phase and amplitude. The magnitude and angle
the coefficient are, respectively, the amplitude a

Inffo



Fig. 3. Representation on
the complex plane of the
spiral .95/cos(w/10) +

j sin(w/10{}™ m = 0,
1,...20

Complex plane
o

-1 0 1

phase of the complex sinusoid corresponding to
that coefficient.

Incidentally, we can easily represent a sinusoid
with exponentially decaying or increasing magni-
tude. Consider an arbitrary point in the Z-plane
and let z = Re7. Then raising z to successive in-
teger powers produces a spiral as shown in Fig. 3:

z" = R"e¢"™'T = R"|cos{wnT) + j sin{wnT)).

We have already seen that ¢“'" produces a circular
motionforn=20,1,2,...,(N ~ 1). It is necessary
only to show that R” produces an exponential decay
(for R < 1) or an exponential growth (for R > 1) ora
constant (for R = 1J.

The decay is customarily represented in terms of
a time constant 7, where R & -7, Solving for 7,
gives r = —T/In{R) seconds, where In is the log
base e. A given point z in the complex plane can
thus be represented as:

7z = Re# B g-TrrgT = g-Tir+ T,

Raising z to successive integer powers,

zn = Rnemc = e—nT/remnT =

e T"|cos(wnT) + j sin(wnT)).

We have shown that the relationship between com-

14

plex numbers and sinusoids is unexpectedly strong.
In particular, any complex number raised to suc-
cessive integer powers generates a complex sinusoid
of frequency w with 2 magnitude that is either ex-
ponentially increasing, exponentially decreasing, or
constant, depending on the sign of 7.

Vector Representation

The waveform y that serves as the input to the DFT
can be viewed as a vector y in a multidimensional
space where the coordinates of the vector are the
successive samples of the waveform. Similarly, the
spectrum Y produced by the DFT can be viewed as
a vector whose coordinates are the spectral coeffi-
cients. We use vectors because they allow us to use
simple rules of linear algebra. Everything gleaned
from the vector viewpoint applies also to the se-
quence viewpoint. This section explains the vector
viewpoint in detail. :

The concept of a point in the Cartesian plane rep-
resented as an ordered pair [x(1), x(2)] is familiar.
Similarly, a point in space (or, more accurately, 3-
space) is an ordered triple [x(1}, x(2), x(3}]. This idea
can be generalized to N-dimensional space (or N-
space) with a point represented as an ordered N-tu-
ple. The nth coordinate of the point y in N-space is
represented by the notation y{n). Although this cor-
responds to our notation for a sequence, the notion
is quite different. The coordinate y(n) is not an ele-
ment of a sequence but the nth coordinate of a single
point y in N-dimensional space with the coordi-
nates [y(0), y(1), y(2), . . ., y[N = 1]].

The point y can also be interpreted as a vector.

(A vector is a line segment with a direction.) Thus
the vector y extends from the origin (the point
x(n) = O for all n) to the point y. If the sequence is
complex, each coordinate in the corresponding vec-
tor is similarly complex, and each coordinate axis
can be thought of as a complex plane rather than a
line. The waveform y can be viewed as a vector y in
N-space, where the coordinates of the vector are the
successive samples of the waveform. We use the no-
tation y for the vector y when speaking specifically
in terms of vectors. We use the notation y(n), both
for the nth component of a sequence y and for the

Computer Music Journal
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nth coordinate value of a vector y. It should be clear
from the context which interpretation is intended.

The rules of two-dimensional vector addition can
be easily generalized to N dimensions. The sum of
vectors y and X is defined as y + X 2 [y(0) + x(0),
y{1) + x{1), ..., y(N =1} + x(N = 1}]. In terms of
sounds, this process is equivalent to mixing. Multi-
plication of a scalar a by a vector y is defined as
ay = |ay(0), ay(l), . . ., ay(N — 1)}, equivalent to
adjusting the gain of a sound.

In the Cartesian coordinate plane, the distance
from the point (g, b) to the origin is Va? + b? |or
Vla|? + |b|? for complex numbers). This is called
the norm of (a, b). (There are various other possible
choices for the norm but this is the meaningful one
for our purposes.) Similarly, in N-space, the norm of
the vector y with complex coordinates is defined as

7] & VIyOIF + [y(1F + . .. + [N = 1F

and is interpreted as the distance from the origin to
the point y or as the length of the vector y. If y, and
y, are two vectors, then the distance between them

is the norm of the difference of the two vectors.
That is,

Iy, -yl &

Viyil0) = y0I2 + [yy{1) = yalLIZ + ...+ [ys(N = 1) = yo(N - 1)R .

The norm squared of the vector is interpreted as
the total energy of the corresponding waveform. In
the next section we show that the norm squared is
equal to the inner product of the vector with itself.

A spectrum can be viewed as a vector. A spectrum
vector, however, is in a different N-dimensional
coordinate system from the corresponding time
sequence. Indeed, the DFT can be viewed as a ro-
tation of a vector from one coordinate system to
another. To see how this works, it is necessary to
introduce the idea of projection.

Vector Projection

We eventually show that the DFT produces each

value of the spectrum by projecting the waveform
vector onto a vector representing a particular sinu-
soidal component and taking the coefficient of the
projection. In order to do this, we must generalize

Fig. 4. Orthogonal projec-
tion of the vector gonto
the vector i,
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the notions of projection and perpendicularity
an N-dimensional complex space.

Let us return, for the sake of simplicity, to a
cussion of vectors of two real dimensions and «
projection from a geometric standpoint. Let V.
be two vectors of nonzero length (see Fig. 4). N
choose a vector w lying along the same line wi
such that Z, the vector from the end of w to th
of y, is perpendicular to the line collinear witl
(Collinear means “lying along the same line.”)
the vector w is the projection of ¥ onto x. We 1
the notation X, for w in order to explicitly sho
relationship betweenX, ¥, and x,.

Two vectors that are perpendicular are calle
thogonal. We need to generalize the notion of
thogonality to N complex dimensions so that
can talk about projection of one N-dimension:
complex vector onto another. To do this, we it
duce the idea of the inner product. LetX and }
real N-dimensional vectors. Then (X, y) (the i
product of X and y) is defined as

N-1
(%.v) 4 HZO x(n)y(n), (x, y real).

T_LL



(We will have to redefine the inner product for com-
plex vectors. But, for the moment, this definition is
sufficient.) The inner product is not a vector but a
scalar. In intuitive terms, the inner product is a
measure of how “interdependent” two vectors are. If
(X, ¥) = 0, then X and y are orthogonal and “com-
pletely independent.” For example, in the plane, the
vectors {1, —1) and (1, 1) are orthogonal because

(x,y) = x(0)y(0) + x(1)y(1) =

1'1+(-11-1=1-1=0.

X is also orthogonal toZ = (10, 10} because Z lies
along the same line as y. In general, the orthogonal-
ity of two vectors is independent of their length.

Now let us extend the definition of inner product
to include complex numbers. We would like to draw
a graphic representation of two complex vectors that
are obviously orthogonal and then see what we have
to do to the inner product formula to make the
inner product of those vectors equal to zero. Recall
that a complex number can be represented graph-
ically in two dimensions by assigning the real part
to the horizontal axis and the imaginary part to the
vertical axis. In general, we need four spatial dimen-
sions to graph a two-dimensional complex vector
(Re{x{1}}, Im{x(1)}, Re{x(2)}, Im{x(2})}). This causes
trouble because a sheet of paper can represent only
two dimensions well. However, if we constrain each
vector to have a zero imaginary component along
the first dimension and a zero real component along
the second dimension, it can be represented in a
graph of the complex plane. Consider two such
vectorsX = (1, j)and ¥ = (1, —j). It is clear from the
graphic representation (see Fig. 5) that X and y are
perpendicular. The inner product, as defined above,
of these vectors is

(X, ¥) = x(0)y(0) + x(1]y(l) =1 —j2=1+1=2.

We have a problem. Since we know that the vectors
are orthogonal, we would like the inner product to
be equal to zero. A simple change to the inner prod-
uct formula corrects this problem. We take the com-
plex conjugate of the second vector:

(%, ¥) = x{0}y(0] + x(1)y(1) =
MM+ (i=T=1+j2=1-1=0.

16

The process of conjugation does not affect the real
part, so this definition works for real vectors as
well. We choose, therefore, to redefine the inner
product of two N-dimensional complex vectors X
and y as

N-1

(x,y)4 ngo x(n)y(n), (x. y complex).

As a second example, consider the two complex
one-dimensional vectors {1 + j)and {1 — j). These
vectors have an inner product equal to 2jand so are
not orthogonal. This makes sense if the complex
plane is considered as a single “direction.” That is,
just as any two real numbers lie “along the same
line” and are not orthogonal, two complex numbers
lie “along the same plane” and are not orthogonal.

Finally, consider the inner product of a vector with
itself, recalling that a complex number multiplied
by its conjugate is equal to its magnitude squared:

N-1 N-1

(%.%)8 Z x(njxin]= I Ix(n) &F]. (2]

Thus the inner product of a vector with itself is
equal to its norm squared.

A useful property of the inner product is its lin-
earity. An operator L is linear if L{ax) = aL{x) and
L{x + y) = L{x} + L{y). For example, L could be a
graphic equalizer such as is used in recording stu-
dios to color sound or remove unwanted color. A
graphic equalizer is, ideally, linear. This implies
that a sound can be amplified by a scalar « before or
after entering the equalizer with the same effect. It
also implies that two sounds x and y can be mixed
together before or after entering the equalizer with
the same effect. An example of a nonlinear operator
is an automatic gain control, which boosts the gain
when the input is soft and reduces the gain when
the input is loud.

Let us prove that the inner product is a linear
operation by using the distributive property of mul-
tiplication over addition:

N-1
(X, (;I + 3’.2)) é nzo x(n)(y,(n} + y,n))

N-1

2 x(n)ly\(n) + yain])

Comnuter Mncir Innienal



Fig. 5. Vectors (1, i) and
(1, -j)on the comp]ex

plane.
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N-1 N-1 this easier to visualize, let us return to our or
= Eo x(n)y,(n) + ZO x(n)y,{n) two-dimensional example (Fig. 4). We still con
" " to speak in terms of the inner product for the
=(X,¥,) + (X V1) of generality. Recall that the vectors x and x,
Similarl fined to lie along the same line sox, can be expr
Y as ax, where a is real. Also, by definition, (y -
(X, +X,), ) =(X,, ¥) + (X3, ¥) is perpendicular to X so ((y - X,), x) = 0. By t
and linearity of the inner product, (y, x) — (i(.y, X)

(aX,y) = a (X, y)

(%, By) = B (%, ¥)
Due to this linearity in each of its operands, the
inner product is referred to as a bilinear operation.

Using the inner product, we can define projection
for two N-dimensional complex vectors. To make

and (¥, X) = (X,, X). Substituting ¥, = ax,
(7. %) = (X,, X) = (aX, X) = a(X, X) = o]

Thus, a = (¥, X)/|X|?, and the projection of y
is equal to

xy=a§=iz—'-->-§.

|xIP
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Fig. 6. Orthogonal projec-
tion of (2, 3) onto (3, 1).

‘ {2, 3)
. L}
2.5 \
| \
V3, 1)
. T
§ (2.7, .9)
] =
g o- =
=
£
(=]
@)
-25-
-25 0 2.5

The squared norm of the projection vector ||x, |* is
interpreted as a measure of how much energy in the
direction of the vector X is present in the vector y.
The coefficient « is the projection coefficient.

For example, lety = (2, 3) andX = (3, 1) {see Fig. 6).
Then the projection of y onto xis {23 + 3 -1}/
(3:3+1-1x=(6+3)/(9+1)x=.9x=.9(3,1)
= (2.7, .9). If X and y are orthogonal, « is 0. Also, if
y = X then a is 1. As a final example, if y lies along
the same line as X, i.e. if y = BX, then

o= (BX, X) _ 8
x|

and the projection of y onto X is equal to ax = 8x
=Y. Since the length of x has no effect on the re-
sult, we see that the projection onto x is really pro-
jection onto the line implied by ax for all values of
a. In more abstract terms, a vector is orthogonally
projected onto a subspace (one-dimensional, in this
case) spanned by ax.

The definitions of inner product and projection
can easily be transferred from vectors to sequences.
For example, the inner product of two waveforms
x(n)and y(n) can be defined as (x, y) & (X, ).

We will show that the spectrum produced by the

18

DFT is actually a set of complex projection coeffi-
cients, (such as a above, but scaled by N), obtained
by projecting the waveform (a specific vector y)

onto a set of complex sinusoids (each like x above),
each of which is orthogonal to all the others. In this
manner, the DFT measures the energy and phase of .
each sinusoidal component in the waveform.

Orthogonal Bases

Our goal is to view the DFT as a change of orthogo-
nal bases from the standard coordinate system basis
to a basis made up of complex sinusoids. In this
section, we define and examine orthogonal bases
and lay the groundwork for showing that the set of

.complex sinusoids used by the DFT forms such a

basis.

We have seen that any two vectors are orthogo-
nal if their inner product is 0. Similarly, if the in-
ner product of each pair of vectors in a set of M N-
dimensional nonzero vectors {X,} is equal to zero,
the set is called an orthogonal set. Furthermore, if
M (the number of vectors in the set) is equal to N,
then {x,} is called a basis for N-space, and we can
show that every vector y in N-space can be expressed
as a weighted sum of the vectors comprising the set
{X,}. First, let us consider a familiar example, in the
form of a coordinate system. When we plot a vector
{3, 2] in the plane, we are expressing the vector as a
weighted sum of two orthogonal vectors {1, 0] and
|0, 1] so that [3, 2] = 3[1, O] + 2|0, 1]. Note that we
need two orthogonal vectors because we are in a
two-dimensional space. The values a, are simply
the coordinates. Similarly, for N-space, the coordi-
nate system basis is {x,} with k =0,1,2,...,(N - 1)
defined by the condition that kth coordinate of x,
(counting the first coordinate as 0) is 1 and all the
other coordinates are 0. For example, if N = 3, the
basis is composed of the vectorsx, = [1,0, 0], x, =
[0, 1,0], and X, = [0, O, 1]. It is easy to see that the
set {X,} is orthogonal. Therefore, since there are
N vectors in the set and since each has nonzero
length, it forms an orthogonal basis for N-space. To
see that any vector y can be expressed as a weighted
sum of the vectors in the set {x,} observe that, by
the definition of a coordinate system,
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v = [y{0), y{1), y(2), ..., y(N = 1)|
= y(0)X, + y(1IX, + y(2)X, + . ..
+y(N=1)%y_, (4)

We have shown how to determine the o, coeffi-
cients for the familiar coordinate system orthogo-
nal basis. For an arbitrary basis, we need to solve for
a set of complex scalars {a;}, k =0,1,...,(N-1)
such that

N -1
y = kgo apX,. (5).

We shall show that the complex coefficient a, is ac-
tually the orthogonal projection of y onto Xx,.

Let us.form a sequence Y|k} of the inner products
of y with each of the orthogonal basis vectors in the
set {X,}.

N -1

Y(k) = (E’: }O = <(1=20 aI;l):§k>'

By recalling the definitions of the inner product and

summation operations, it is possible to use the dis-

tributive property of multiplication over addition to
move the summation outside of the inner product.

N-1 N-1i

Y(k) = )Z“ (011;/, }.H = ,20 al(;l';k>-

The set {x,} is defined to be orthogonal, which im-
plies that the inner product of each pair of vectors
in the set is zero. However, in Eq. (2}, we showed
that the inner product of a vector with itself is the
norm squared of that vector. That is,

1#k

(}"’?k):{ Ol =k

1l

So all the terms in the summation disappear except
for the one where k equals /. Thus

(;": ;Ek) = a'k"}k“z

and we can, at last, solve for a,:

a, = .
- (FAR

Substituting {«,} into Eq. (5],

- NVGaR) -
7= 2, T

But we recognize a,Xx, from Eq. (3) as simply the
orthogonal projection of y onto X,. Thus we have
proven that for any orthogonal basis {x,}, it is po
sible to represent y as a sum of orthogonal projec
tions of y onto X, and {X,} is said to span N-spac

Returning to the familiar coordinate system e:
ample given in Eq. (4) we now see it is possible ¢
reinterpret each coordinate value y(n) as the pro;
tion of y on the line collinear with the x,th basi
vector. We can recover y from the sequence of its
coordinates by multiplying each coordinate by tl
appropriate orthogonal basis vector and summin
The coordinate system is not, however, the only
possible orthogonal basis for N-space; there are i
finitely many orthogonal bases. For example, in
dimensions, the vectorsX, = [V2/2, V2/2| and
X, = [V2/2, —=V2/2] form a perfectly adequate «
thogonal basis. In this new coordinate system, w
can find the coordinates of the vector Y that cor
sponds to the vector y = (3, 4] in the original coc
dinate system by projecting y onto each of the n
orthogonal basis vectors:

(v.Xo) _ (13, 4] 1V2/2, V2/2))

O V272, Varnp
- 3V2/2 +4V2/2 _
(V2/2)2 + (V2/2p
yi1) = SBED (13,4 [V3/2, —VA/2))

lx, I

liv2r2, =var2)):

__3V2/2, -4aV2/2  _
(V2/2)2 + (-V2/2)

Vector_:? is thus equal to [3.5V2, —.5V2]. Note |
y and Y are the same length:

Iyl = V3T + 4= V25 =5
171 = V(3.5V2)2 + (-.5V2)P = V245 + 5=

The lengths are the same because the set {x,, X
and the original basis {(1, 0), (0, 1]} are orthonor.
An orthonormal basis is an orthogonal basis in w!
each vector in the set has a norm of 1. In our ex
ample, [|xofl = Ix.|| = L.

-5V
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Similarly, for N-space, a translation of a vector y
from the standard orthonormal coordinate system
{{1,0,0,...,10,1,0,...},.. .} tosome other ortho-
normal basis {Xx,} is given by

? = [(;v ;0>/ (_}-;’_x‘l)l L] G’ —X.N— l)]

N-1

YIk) = G.5%0 = S ylaln)

Let us compare this equation with the equation for
the DFT. If we make the assumption (a wild as-
sumption, at the moment) that the set of sinusoids
{e+"T} forms an orthogonal basis in N-space, we
need only set the basis {x,} equal to the set of sinu-
soids to produce the DFT equation:

N-1

Ykl = Nafkl = 3 ylniglal = 3 ylnle o

n=20

The spectrum can then be seen as the coefficients
resulting from an orthogonal projection of a wave-
form onto a sinusoidal basis set, where each of the
sinusoids is a harmonic in the output spectrum. The
IDFT is the sum of the sinusoidal basis functions,
scaled by the corresponding spectral coefficients.

It remains to be shown that the set of vectors {X,}
= {em"T} does indeed form an orthogonal (though
not orthonormal) basis in N-space.

Orthogonality of Complex Sinusoids

We have almost reached the point where the DFT
can be understood in terms of vector projection. In
this section, we tie up the last loose end by show-
ing that an appropriately chosen set of N complex
sinusoids forms an orthogonal basis in N-space.

A complex sinusoid in N-space with unit ampli-
tude is simply a vector X whose coordinates are
given by the functional definition x(n) = e«"". We
will show that the set of vectors {x,} = e+, where
w, = 27(k/NJf,, forms an orthogonal basis in N-
space. In order to prove this, we must show that the
inner product of every pair of vectors (x,, X,) in {x,}
is zero.

N-1
(}.k' ;]) = 2 e'w«nTgiwnT
n=0

20

N-1

2 ei«.nTe-iulnT-
n=0

1

N-1
Hwy - wiTn
nZO [8 oo

[l

Notice that the summation produces a geometric
series. Thus, we can use the following well-known
theorem (see, for example, Spitzbart 1975}, which
expresses a geometric series in closed form:

1 -2V

N-1
n2=02n= l"Z '

Using this theorem,

1 — [eite-wIT|N | — pile; - wINT
T - eflwi et

N-1

n§=:0 [e”""‘ ) "'”T]" 1 — enwi ~wiT -
We can simplify this expression by expanding w, and
w;. Thus {0, = @, )NT = (27k/NT — 27wl/NTINT =
27w(k — 1} and furthermore:

. 1 = eitalk -1
(x4, X)) = ] = g2mk ~TiN

If k # 1, the numerator is 0 and the denominator is
nonzero, so (X,, x;) = 0 and the vectors X, and X,
are orthogonal. If k = I, we have this expression:

N-1
R %) = [Xlp = T e
N-1 N-1
= 2 e"‘h"T' jwynT = 2 1 = N.
n=0 nTo

The fact that we get an extra factor of N indicates
that the set of complex sinusoidal vectors {x,} is
not an orthonormal set.

Reinterpreting {X,} as a set of waveforms x,(n),
each member of the set is a complex sinusoid re-
sulting from raising e+ 7 to successive integer pow-
ers: x,(n)=e=™ n=0,1,2,...,(N—-1). This
set of sinusoids is the orthogonal basis to which the
DFT translates the time-domain waveform.

It is interesting to note that neither sines alone
nor cosines alone form an orthogonal basis in N-
space. Let us assume that the set of vectors {X,} =
cos(w,nT) = cos(2wkn/N), k=0,1,2,...,(N - 1)
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is an orthogonal basis. But two of the vectors in the
set, cos(w, nT) and cos{wy _ 1T} are equal. This
means that their inner product is not equal to zero,
contradicting our orthogonality hypothesis. Indeed,
N cosines equally spaced in frequency between O Hz
and the sampling rate provide only N/2 orthogonal
vectors. A similar argument shows that sines alone
are insufficient.

The DFT at Last

We have shown that the set of complex sinusoidal
waveforms {x,(n]} = {e/2"kn'N} corresponds to a set

of orthogonal basis vectors {x, }. Therefore, any wave-

form y(n) can be expressed as a linear combination
of {e’™*n'N} This is expressed as follows:

N-1

yin) = 3 awxn), e = »x)

Tl

This is Fourier’s theorem for waveforms of length

~ N. The set of complex coefficients {a,} is the spec-.

trum of y{n}) at frequency w, and is usually viewed
as a sequence a(k).

The DFT is usually defined as the sequence of
projection coefficients multiplied by N {Rabiner
and Gold 1975}. This eliminates a division by N,
the squared norm of the basis vector.

Y(k) & Nalk)
=N (y. X))
ixl?

= (Y' xk)

N-1

2 yln)e et

n=0
DFT,(y).

The extra factor of N requires a corresponding 1/N
scaling term to appear in the inverse DFT:

ne>

yin) =37 = Yikjew

To recapitulate, the DFT values are coefficients of
projection onto a sinusoidal basis, and the inverse
_DFT is just the reconstruction of the original vec-

tor (or waveform) in terms of the sinusoidal basis
functions.

To prove that the IDFT and DFT form an identi
pair, let y(n}, n =0,1,2,...,(N — 1) be any se-
quence of N complex numbers and define the spe
trum of y(n) as Y(k} = DFT,(y). We will show th:
IDFT,(Y) = y(n).

N

IDFT,(Y) é-l{,— g Y(k)ewsnT

N-1 N-1
..-—— 2 [ ZOY‘m}e_""“"'T:‘B“‘“"T,

We can switch the order of the summation, due
to the distributive property of multiplication ove.
addition.

1 N-1 N-1
7\]_ kzo[mzo y(m’e—imlmT]em‘nT
l N-1 N-1
= — ~1w,mT piw;
S, vim) 3, e
1 N-1 N-1
=.N. z_ 2 e:wkm—mlT.

Notice that the rightmost summation in the fina
equation is always equal to N or 0, depending on
the relationship between the values of n and m.

N-1 -
E elwdn - mT = N, n=m
K=o 0, n# m.

We can, therefore, replace this summation with z
delta function 8, , which is equal to 1 when n =
m, and 0 otherwise.

N-1 N-1

IDFT,(Y) = Tlv“ 3, yim|N8, , = 3 ylm)sn,

The effect of the delta function is to pick out the
nth element of y so:

N-1

2 yimlsy =

We have shown that IDFT,(DFT(y)) = y(n).Itcanl
easily shown in a similar manner that DFT, (IDFT
= Y{k).

y(n).

Jaffe



Conclusion and Preview of Coming Attractions

The DFT takes a waveform as input and produces a
spectrum. It does this by projecting the samples of
the waveform, viewed as a vector, onto a set of com-
plex sinusoids. Each element of the spectrumisa
complex number that represents the amplitude and
phase of the corresponding spectral component
{harmonic). The spectral components are equally
spaced in frequency. There are as many spectral
components as there are samples in the original
waveform. The DFT functions by producing the
coefficients of the projection of the waveform onto
each of a set of basis sinusoids. Each spectral coeffi-
cient is the inner product of the waveform with one
of the basis sinusoids.

The IDFT undoes the effect of the DFT. It takes a
spectrum as input and produces a time-domain rep-
resentation of the sound, by multiplying the spec-
tral coefficients by a set of sinusoids.

. We are now in a position to examine the behavior
of the DFT and IDFT under various types of inputs.
In the second part of this tutorial, we examine sev-
eral important properties of the DFT, and examine
concepts useful for understanding operations on
sound such as sampling-rate conversion and convo-
lution. We also define the Z-transform and extend
the DFT to the continuous domain. Since our pri-
mary interest is sound rather than N-dimensional
vectors, we drop the vector notation and return to
waveforms. It is hoped that the reader is now suffi-
ciently familiar with the two representations to feel
comfortable moving between them.
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Appendix A: Motivation behind the Invention of
Complex Numbers

Historically, the need for complex numbers arose
out of attempts to factor polynomials such as f{x)
= x? — 2x + 2. To find the roots of f(x), we use the
quadratic formula. The quadratic formula gives the
roots of a quadratic equation ax? + bx + ¢ as:

-b + Vb? ~ 4ac
2a )

Applying the quadratic formula to determine the
roots of f(x) gives:

2:V4—8=2:V—4
2 2 ’

This equation cannot be solved because the expres-
sion \7——4 is undefined. To remedy this situation,
let us define a number j £ V=1 such that j2 £ —1.
This allows us to simplify any expression of the
form V—n where n = 0 by factoring out j and trans-
forming the expression into the form jVn. The
roots of f(x) are thus *2j. Having added a single
number j to our number system, we can now find
the roots of any quadratic equation.
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Trigonometric Identities (cont'd)

cos(A) + cos(B) = 2 cos( 4 ; B )cos( A-B

2

cos(A) - cos(B) = —2 sin( A+B )sin( A_B

2 2
cos}A) — cos}B) = —sin{A + B)sin(A — B)

cosA) — sin}B) = cos{A + B)cos(A — B)

tan(4) 4 sin(6)

cos(8)
tan i) _1- cos(8)
2 sin{6)
1 - ¢?
cos(f) = T+
2t
tan(6) = -

sin{A) + sin(B)= 2 sin( 4 ; B )cos( A ;

2
sin?(A) — sin}B) = sin(A + B|)sin(A — B)

tan(A) + tan(B) = SlA* B]

sin(A) - sin(B) = 2 cos( 4 ; B )sin( A -

cos{A)cos(B|
6\ _1=cos(f)
tanz(i-) ~ 1+ cos(6)
6\ _ _sin(6
tan(-f) = '1_+E§(L0—)
sin(6) = 1—2+—t—t{, [t a tan(—g—)}
ta‘n(,q 4 B] = tan{A) + tan(B)

1 — tan{A)tan(B)



Appendix B: Complex Arithmetic and
Trigonometric Identities

The symbol 4 means “is defined as”; z stands for a

complex number; and r, 6, x, and y are real numbers.

Complex Number Identities

idVv=l

XxX=r7 cos(e).

|2,z = |z)llz)]

LZ2,2y= L2+ L2,y
r=lzl = Vxi+y?

xA 1 l(_ = = _X_n-
ex 8 llm,,_,,(l + 2 T— D=0 oy
le] = 1

|2l = Irle”} = 1

z,z; = (x, + jy\llxy + jy,)

= (x,X, =y ¥l +ilx,y,+ X35,
Z_Q_x-iy=re"’

Trigonometric Identities

e’® = cos(8) + j sin{é)

Vet = el0/2

. ew —_ e-—io
sin{g) = 7
sin(—@) = —sin|(8)

cos(A + B) = cos|A)cos(B) — sin{A)sin{B)
cos}g) = —;‘-[1 + cos(246)

cos{A)cos(B) = %lcos(A + B) + cos{A — BJ]

sin(A)cos(B) = é—lsin(A + B} + sin{A — B]]

zA8x+jydrer

y = rsin(8)
Zi| |z,
Z, [z,

Z,
LEZ—=L21_‘422

0=¢1z= tan"(-z—)
X
e=127182818284 ...

Zr=0
Lz=Lr+ Le® =6

(rie®)(r,e)

2,2, =
= (T:Iz’e’w' + 6y}

22 =|z) = x* + yt = r?

e = cos(né) + j sin(né)
cos?f + sin20 = 1

erﬂ + e—ia
2

cos(—8) = cos(8) '
sin{A + B) = sin{A)cos(B) + cos(A}sin(B)

cos{d) =

sin?(8) = —?{—ll — cos{26)]

sin(A)sin(B) = —é—lcos(A — B) ~ cos{A + B))

cos|Alsin(B] = -;—Isin(A + B) - sin(A - B)|
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David A. Jaffe

Center for Computer Research in Music and
Acoustics

Stanford University

Stanford, California 94305 USA

Review of Part One

In part one of this tutorial (Jaffe 1987), we intro-
duced the discrete Fourier transform (DFT). To re-
view, the DFT takes a waveform as input and pro-
duces as output the spectrum of that waveform.
One way to understand this process is to consider
the samples of the waveform as a vector and to see
the DFT as the projection of this vector onto a set
of complex sinusoidal basis vectors. In this manner,
the DFT produces a sequence of spectral compo-
nents equally spaced in frequency, with a length
equal to that of the original waveform. Each ele-
ment of the spectrum is a coefficient of the projec-
tion given by the inner product of the waveform
with one of the basis sinusoids. This coefficient can
be represented in polar coordinates to give the am-
plitude and phase of the corresponding sinusoid.
The equation for the DFT is:

N-1
DFTdy) 8 Y(k) & 3 ylnle-=nT,
k=0,1,...,N-1,

where w, = 27kf/N, f, is the sampling rate T=
1/f,is the sampling period, and the symbol means
“is defined as.” This equation was explained in
depth in the first part of this tutorial.

The inverse discrete Fourier transform (IDFT) un-
does the effect of the DFT. It takes a spectrum as
input and produces a time-domain representation of

Computer Music Journal, Vol. 11, No. 3, Fall 1987,
© 1987 Massachusetts Institute of Technology.

Spectrum Analysis
Tutorial, Part 2:
Properties and
Applications of the
Discrete Fourier
Transform

the sound, by multiplying the spectral coefficien
by a set of sinusoids. The equation for the IDFT

N-1

IDFT,(Y) & yin) 8 3 Yiklewor,
k=01,...,N-1,

We are now in a position to examine the relatic
ship between the time- and frequency-domain rej
sentations. We examine several important proper
ties of the DFT and discuss their implications fo
applications such as sampling-rate conversion ar.
linear digital filtering. We also discuss two relati
of the DFT, the Z-transform and the continuous
Fourier transform. We begin by reexamining how
the input and output of the DFT can be interpre:

Physical Interpretations of the Input and
Output of the DFT

The input and output of the DFT are defined as

quences of length N. More precisely, they are int
preted as N-sequences. N-sequences have two al
native physical interpretations. One possibility i
interpret an N-sequence as N points of a sequen
of finite duration, preceded and followed by infi-
nitely many zeros. Alternatively, it is possible tc
terpret an N-sequence as one period of an infini
periodic sequence. For the second interpretation
the value of the N-sequence y at the nth point i
y(n MOD N), where x MOD vy is the remainder
an integer divide of x by y. Both interpretations

equally valid. We choose the interpretation appr
priate to a given context.

Inffe



Fig. 1. Complex conjugate
pair.

Complex Plane
2

A a1

xé-mm

When considering the output of the DFT, it is
customary to use the periodic interpretation. The
periodicity of the spectrum is a direct result of the
sampling process, which maps sinusoids of the
form e/2=iN + aVN ¢ the sinusoid e2™’N, with I equal
to any integer. Because e = |,

ell.(lN*kl/N = erllﬂeilvk/N = ellrk/N,

foralll=-=,...,-1,0,1,...,=

That is, any integer multiple of N may be added to
or subtracted from a frequency with no effect. In
part one we defined the range of the spectrum as
extending from O to f,. Because the spectrum is pe-
riodic, it is just as valid to use any range that ex-
tends over a total of f, Hz. We often choose to view
the spectrum from —f,/2 to f,/2 {not including f,/2,
because it is equivalent to —f,/2), which corre-
sponds to a radian frequency w, T ranging from —x
to 7 (not including 7). Notice that the point corre-
sponding to a frequency of O lies in the middle of
this range, which makes explicit the relationship
between the sinusoids at w, and w_,. The two are
symmetrically placed about the real axis. That
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Fig. 2. Implied discon-
tinuity of DFT periodicity
assumption.
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is, the two are simply a complex conjugate pair:
g+ = g=/w = giwi, (See Fig. 1.) The periodicity of
the spectrum requires that care be taken when
doing sampling rate conversion, digital-to-analog
conversion (DAC)} and analog-to-digital conversion
[ADC). For example, when digitizing a sound with
an ADC, it is necessary to filter at half the sam-
pling rate before sampling. Otherwise, all frequen-
cies above f£,/2 and below —f,/2 alias into the range
—f/2 to f,/2. A detailed discussion of this issue ap-
pears in subsequent sections of this tutorial.

Similarly, it is often convenient to place the origin
of the time axis in the middle of the N-sequence. Al-
though it may seem strange to move samples from
the future to the past, it is perfectly reasonable in
light of the fact that the DFT input can be assumed
periodic with period N. Thus, for odd N, y can be
represented as y = |y((N ~ 1)/2 + 1), y{(N - 1)/2 +
2), ..., ¥yIN=1), (0}, y(1), . . ., yl(N = 1)/2)].

This brings us to the question: What happens if
the input is N samples of an aperiodic sound? A
sound produced by a musical instrument is never
truly periodic, although it is often quasi-periodic.
The DFT simple assumes that its input is truly pe-
riodic, and the output samples of the DFT are then
proportional to the “Fourier-series coefficients” of
the periodic signal. (In this case, the spectrum is
assumed to be zero between DFT samples.) This
causes problems if the sequence is periodic with a
period other than N, or is not periodic. In particu-
lar, if N does not equal a multiple of the period
length, or if there is no period, then the DFT coeffi-
cients can no longer be interpreted as the ampli-
tude and phase of the waveform harmonics. For
example, suppose y has period P = 86 and we take a
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Fig. 3. DFT of the wave-
form shown in Fig. 2.
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DFT of size N = 128. When the sequence is viewed as
an N-sequence, the first sample {y{0)) is assumed to
follow the 128th sample {y{128 MOD 86) = y(42}},
forming a discontinuity in the resulting waveform
{(Fig. 2). The discontinuity shows up in the spec-
trum as a kind of broadband noise known as cross-
talk or spectral splatter. Figure 3 shows the magni-
tude spectrum of this waveform. It has a peak near
the original frequency, but the rest of the spectrum
is not zero. Also notice that, since the original fre-
quency is between two DFT points, the energy for
that frequency is split between the two points. In
practice, it is often difficult to determine the period
length. Therefore, a technique known as window-
ing is used to smooth the ends of the sequence, re-
ducing the spectral splatter.

Windowing

Windowing involves scaling the nth sample y(n) of
a waveform by the nth sample of an N-sequence
w(n), called a window. The windowed sequence is
then win)y(n),n=0,1,..., N — 1. The window
usually begins and ends at or near zero and rises
gradually to a peak between these points. It has the
effect of smoothing the discontinuity that is pro-
duced by viewing the input as a periodic N-sequence.
Windowing with an appropriately chosen window
reduces the broadband energy caused by the discon-
tinuity described previously. However, it has the dis-
advantage of spreading energy to neighboring points
in the spectrum. These spreads are called sidelobes
of each partial. For many applications, windowing is
advantageous because such local spreading is con-
sidered less objectionable than broadband spreading.

To see why the sidelobes occur, windowing can
be viewed as a linear digital filtering operation,
where the filtering is done not in the time domain,
but in the frequency domain. Multiplication in the
time domain, such as is done in the process of win-
dowing, is equivalent to filtering (or convolution)
in the frequency domain. {This equivalence is ex-
plained in the section on “The Convolution Theo-
rem.”) Most useful windows are lowpass filters in
the frequency domain. The local spreading of en-
ergy and the suppression of remote spreading can
thus be seen as a smoothing caused by a lowpass
filtering of the spectral samples.

There are two main classes of windows in com-
mon use. One class is designed to give maximal
resolution of individual spectral components. That
is, the worst-case sidelobe is minimized. An ex-
ample of this type of window is the Hamming win-
dow. The other class is designed to minimize broad-
band spectral splatter. That is, the rolloff on either
side of each spectral component is maximized. An
example of this type of window is the Hanning
window. The Hamming window has a rolloff of —6
db per octave, whereas the Hanning window has a
rolloff of —12 db per octave. Nevertheless, the first
sidelobe of the Hamming window is more attenu-
ated than that of the Hanning window. Therefore,
the Hamming window is considered preferable for
musical applications. The Hamming window is de-
fined (for odd N} as:

27n

wyln) = .54 + 46 Cos(r—l—), |n| =

N-1
5
where n is interpreted in terms of the convention o
placing the time origin in the center. (Note that
some authors use (27n/N) instead of (27rn/(N —
1)}.) Figure 4 illustrates a block of data multiplied
by a Hamming window. Note how multiplication
by the window smooths the discontinuity between
the last and first samples in the original waveform.
Figure 5 compares the spectrum of the cosine wave
of Fig. 2, but windowed with a Hamming window,
to the same data windowed with a Hanning win-
dow. {Note that, although these figures appear quite
smooth, if we were to insert zeros before and after
the window (i.e., zero-pad) and take a larger trans-
form, we would see a ripple characteristic of win-
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Fig. 4. An example of Ham-
ming windowing: (a) origi-
nal signal, (b) Hamming
window, (c) windowed

signal.
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Fig. 5. Comparison of - DFT with a Hanning win-
Hanning and Hamming dow, (b) DFT with a Ham-
windows using the wave- ming window.
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dowing.) It is interesting that the Hanning window
looks much better than the Hamming, except in
the immediate vicinity of the significant spectral
component.

For high-quality audio applications, a more so-
phisticated window such as the Blackman or Kaiser
window is preferable, although a bit more expensive
to implement. For more information on windows,
see {Oppenheim and Schafer 1975) or (Rabiner and
Gold 1975).

When windows are used, it is implicitly acknowl-
edged that the DFT input is not periodic at the win-
dow length. In this case, the output samples of the
DFT are interpreted as weightings for complicated
functions, which do not concern us here.

Transform Pairs and the Conjugate Symmetry
Theorem

In part one we explained that the DFT is simply an

operation that converts from the time domain to
the frequency domain, and the IDFT reverses this
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process. This suggests the notion of a transform
pair. A waveform y and a spectrum Y form a trans-
form pair if DFT(y) = Y, which implies IDFT(Y) = y.
The transform pair relationship is notated as y < Y.
In this section we examine several examples of
transform pairs and conclude with a theorem about
the DFT of real (that is, not complex) waveforms.
Consider the transform pair y < Y consisting of
the unit impulse waveform y = (1,0,0,0, ..., 0]
and the constant spectrum Y=[1,1,1,1,...,1].
In terms of sound, this says that an impulse signal,
a “click,” transforms into a spectrum with equal
energy everywhere. (In this example, we assume
that the waveform N-sequence is a finite-duration
waveform preceded and followed by zeros, and that
the spectrum N-sequence is periodic.) Since a click
sounds like a broadband signal, this transform pair
corresponds well with our intuitive expectation. It
is easy to see that y — Y. The single impulse picks
out only the sample of the sinusoid e -««"T for which
n equals zero. But this is equal to 1 for all w, (re-
calling that e® = cos(0) + jsin(0) = 1). That is,

N-1

Y(k)2 3 [1,0,0,...,0],e- T
n=0

| >

DFTi(y)

= g wnT | o =1 for all w,,

where {1, 0,0, ..., 0], means “the nth sample of
the sequence {1, 0,0, . . ., 0].” Since the spectrum
is real, the magnitude of each component is simply
the absolute value of that component. The result-
ing magnitude vector is Y(k) = 1 for all k. We have
shown that the impulse waveform transforms into a
spectrum with equal energy everywhere. A similar
process shows y « Y. The spectrum Y is in this
case a constant value of 1, so the IDFT is simply
the sum over k of e"T. For n = 0, this sums to N,
but the factor of 1/N makes the result equal 1. For
n # 0 the sum is zero because a sine wave summed
over an integral number of periods always equals
zero. If this seems unlikely, think of the sine wave
in terms of the cos(w,nT) + jsin(w,nT) representa-
tion. Both the cosine and sine functions sum to
zero. (For a further explanation of this phenomenon,
see Moorer 1978.) The IDFT of the constant spec-
trum is, therefore, a single impulse followed by
ZEros:

1 N 1, n=0
A _ wnT =
IDFT,(Y) 2 7,2, lef 0, n#0.

As asecond example, let us find the DFT of y(n
1, a waveform that is a constant for all n. Since
there is no variation in the waveform, our intuit
tells us the spectrum can have energy only at 0
or DC. (Here we assume that the N-sequence is
peated infinitely.) Using the same reasoning as t
fore, the DFT is:

N, k={(

N-1
A A “lwgnl =
DFTy] 4Y(k] & 3 1ee [ o k%

The IDFT retrieves the original waveform:
1 N-1
IDFT,(Y) & y(n) & - kZO IN.0,0,...,0].e"

=N jiorT = 1 for all n.
N

Thus, a constant waveform corresponding to D(
transforms into a spectrum with energy only at k
(0 Hz), confirming our intuitive expectation.

These two examples illustrate aninteresting sy
metry {ignoring the factor of 1/N which is a rest
of not using an orthonormal basis, as explained |
part one). In the first example, an impulse wave-
form with amplitude 1 transforms into a spectn
equal to 1 for all k. In the second example, an ir
pulse spectrum with amplitude N transforms in
waveform equal to 1 for all n. Such symmetry is
the rule, however, but is a special case that arise
only when both the spectrum and the wavetorm
real (and “even”—see later). A case such as this
possible because the DFT and IDFT, although si
lar, differ in the sign of the imaginary part. That
they exhibit conjugate symmetry with DFT,(Y
N - IDFT,{Y). (We use the index m rather than !
k purposely to blur the distinction between fre-
quency and time domain.) Conjugate symmetry,
while not a pure symmetry, is nevertheless pow:
ful enough to cause many theorems to have pai:
cases that differ only by a factor of N or by the
of the power to which e is raised. For example, |
shift theorem (explained later) appears in two for

el Ty o Shift,(Y)
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and
Shift,(y] « e «ikTY.

(In this example, we follow the literature in being a
bit sloppy about when to include and when not to
include a sample counter. That is, we really should
represent e"Ty as either e/Ty or e™"Ty(n). How-
ever, the above convention is customary, and we
hope it does not cause any confusion.) It turns out
that a real spectrum, as in the previous examples
occurs whenever the waveform is even. An even N-
sequence y is one for which y(n} = y(N — n). In
other words, the graph of the sequence is symmetrical
about the y-axis (assuming the sequence is real and
using the convention that the origin is the middle
of the N-sequence). A simple example of an even
sequence is the cosine wave. For a real even wave-
form, there is no imaginary part in the spectrum
and the factor of 1/N is the only difference between
the DFT and IDFT.

Most real waveforms are not even, however, and
their spectra are therefore complex and may even be
purely imaginary. As an example, consider the wave-
form y = [0, 1, 0, —1], corresponding to a sine wave
at a frequency of wy,. Let us take its DFT. Recall
that the DFT is simply an inner product of the in-
put waveform y with a set of sinusoidal basis vec-
tors {x,}. That is,

N-1

DFT,(y) é _j}:..o y(nle T = (y, x,), X, (n) é giwnT,

Let us expand out the vectors {x,} to produce the
sequence of inner products:

‘(y’ [1I xl ll ll)l (Y' lll j' -l‘l -i])l (y-' (ll —ll ll —ll)l
(. (1, =i =1, iDlk

Finally, evaluating each inner product gives the
spectral samples

(0+1+0-1,0-j+0-j),{0-1+0+1),
(0+j+0+j)]=10,-250,2j]

The spectrum 1is, therefore, purely imaginary. This
transform pair is an example of another special
case. The waveform is odd and transforms into a
purely imaginary spectrum. An odd N-sequence y
is one for which y(n) = —y(N — n); its graph is

22

anti-symmetrical about the y-axis. The sine wave is
a simple example of an odd sequence.

Finally, consider a sinusoidal waveform of fre-
quency wy,,, which has an initial phase of wy,;.
Such a sinusoid is “in between” a cosine and a sine
with respect to phase. One would expect that it
would be neither even nor odd, and would have a
spectrum with both a real and an imaginary part.
Such a waveform, for N = 4 is, approximately |.7,
.7, =.7, =.7]. Its spectrum works out to be [0, 1.4 +
1.4/, 0, 1.4 — 1.4j] and has both a real and an imagi-
nary part, as we suspected. Most waveforms are nei-
ther even nor odd but can be broken down into a
sum of an even and an odd part (as proved in Appen-
dix A). A

Notice that the spectrum in the previous example,
while not perfectly symmetrical as the prior ex-
ample was, does exhibit a kind of symmetry. Pre-
cisely, it is conjugate symmetric or Hermitian. That
is, Y(k) = Y[N = kJ. Our first major theorem is the
conjugate symmetry theorem. It states that any
real waveform has a conjugate symmetric spectrum.
(A proof is given in Appendix A.) The conjugate
symmetry theorem implies that the magnitude
spectrum of a real waveform is even whereas the
phase of the spectrum is odd. That is, |Y(k)| = |Y(N
— k) and £ Y(k) = =L Y{N - k).

Since digitized and synthesized sound waveforms
are ordinarily real, the conjugate symmetry theo-
rem ensures that fast Fourier transform (FFT) pro-
grams can ignore the frequencies between —f,/2
and 0. This is because these frequencies have the
same magnitude and opposite phase as those be-
tween 0 and f,/2 {due to conjugate symmetry) and
thus offer no new information.

We now proceed to discuss a number of other im-
portant Fourier theorems.

The Linearity Theorem

We begin with a basic but essential theorem, the
linearity theorem. Linearity makes it possible to do
additive synthesis, the construction of waveforms
by adding sine waves of different frequencies and
amplitudes. This theorem has two parts. The first
part states: The DFT of a sum of waveforms is equal
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to the sum of the DFTs of each waveform. The sec-
ond part states: Scaling a waveform scales its DFT
by the same amount. Both parts can be represented,
mathematically, by the single assertion: ay, + By,
© aY, + BY, for any complex constants a and S.
The proof follows directly from the fact that the
DFT is a special case of the inner product which we
showed to be bilinear in part one.

Linearity is why we can have several sounds at
once and still recognize them individually, and why
we can recognize the same timbre at different vol-
ume levels.

The Shift Theorem

The shift theorem describes a phenomenon familiar
to anyone who has used a ring modulator. A ring
modulator multiplies a waveform y by a sine wave.
The effect is to shift the frequency of the waveform
up and down by a certain amount. The shift theo-
rem describes this in mathematical terms as fol-
lows (a proof is given in Appendix A):

em,nTy(n) > Shlft[( Y’;

where the Shift, of an N-sequence is simply a cir-
cular rotation of the sequence. The nth compo-
nent of an N-sequence y shifted by I is written as
Shift,; ,(y) and is equal to y(n — I}. The entire se-
quence is:

Shift, ,(y) & [y(N = 1), yin =1+1),..
o) Y(—I + (N_ 1)”n

., yl0),

(see Fig. 6).If y is a time waveform, a shift by I samples
is similar to a delay of I samples, except that in the
case of a shift, samples that are shifted off the end
of the waveform (n > {—1 + {N —1)}}) “wrap around"”
to the beginning. To make a shift behave as a true
delay, a sequence of length M can be extended or
padded with M or more samples of zero value, pro-
ducing a sequence of length N = 2M. Precisely, a
zero-padded waveform, y, is defined as y(m) = 0,
(N/2) < m < (N — 1). We are then assured that a
delay of 1 = M will not bring any nonzero samples
into the beginning of the waveform.

If we change domains, we find that a shift in the

Fig. 6. Representation of
the shift operation.
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Shiftll‘ m!{y}

time domain corresponds to a multiplication by a
sinusoid in the frequency domain:

Shift,(y) < e-=*TY(k).

(The term e~"iT js often represented as e~/«/7.) A
shift in the time domain corresponds to an additive
linear phase shift by the variable 1. The higher the
frequency of the component, the more severe the
phase shift with respect to the period. For example,
for an N = 8-point DFT, the shift theorem gives the
shift factor of a waveform delayed by I = 1 sample
as e kT = g-iwlk/8 = g-ike/4 Recalling that a multi-
plication by e* corresponds to a phase shift of x, the
shift of the component k = 1 is thus —z/4. But for
the component k = 2, the exponent of e is doubled
and the phase shift is —#/2. In summary, if the input
to the DFT is a delayed waveform with all harmonics
in phase, the angle of the DFT, £DFT,(Shift,(y}), is an
increasing linear function with a slope proportional
to 1. Note that if Y is a conjugate-symmetric spec-
trum corresponding to a real waveform y, the shift-
ing process in the frequency domain can destroy the
conjugate symmetry, introducing an imaginary com-
ponent to the waveform.

The functioning of the phase vocoder (Dolson
1986) can be thought of as performing a shift in the
frequency domain. Heterodyning, or multiplying a
waveform by a complex sinusoid e~i*7, for k = 0,
1,2,..., N -1, moves any partial near I to a point
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Fig. 7. Convolution of [1,
.5, 0f and [.25, .1, 0] equals
[.25, .225, .05).

y0)=1-25+.5-0+.1-0=.25

y(ll=.5-25+0-0+1-.1 =225

y(2)=0-25+1-0+5-.1 =.05

Convolution of {1, .5, 0] and [.25, .1, 0} = [.25, .225, .05}

near 0 Hz. This partial is then “picked out” by a
-window functioning as a lowpass filter.

Another use of the shift theorem occurs in the
proof of one of the most important theorems in
spectrum analysis, the convolution theorem.

The Convolution Theorem

The convolution theorem forms the basis for much
of digital filter theory. It explains the relationship
between multiplication in one domain and con-
volution in the other. The operation known as cir-
cular convolution is denoted x * y, and is defined as

N-1
Conv,(x, y) = x* y(n| & 3 x(mly(n - m).

Convolution is commutative. That is,

x*y(n) & ,.,210""””"" -m| =

N-1
2, vimix{n — m| = y * x(n].

Convolution assumes that its inputs are N-sequence
and it produces an N-sequence as output. In order
to visualize convolution, think of two disks, one in-
side the other. Figure 7 illustrates this viewpoint.
The two sequences to be convolved, [1, .5, 0] and
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[:25, .1, 0], are drawn around the circumference of
the disks. To obtain each output sample, multiply
the samples that line up and add the products. Then
rotate the outer disk one sample and repeat the pro-
cess. The result is the sequence [.25, .225, .05]. Note
that, while the input sequences each have one zero
sample, the output sequence has none. This is be-
cause convolution has the effect of “spreading” the
waveform. If the input sequences do not have enough
zeros at the end, this spreading has the effect of
causing a “wrap around.” Thus convolution is a pe-
riodic or circular operation. We have already dis-
cussed another circular operation, the shift. Recall
that in order to yield a delay when applying the
shift operator to a finite-duration sequence, the se-
quence should be zero-padded. Similarly, for con-
volution, it is often advantageous to arrange for the
inputs to be zero-padded.

Convolution is what happens when an N-sequence
is filtered with a finite impulse response (FIR) filter.
For example, a simple lowpass FIR filter is given by
y(n) = (.4x(n} + .6x{n — 1)), where y(n) is the out-
put and x(n) is the input at time n. Consider what
happens if x(n) is an impulse. For n = 0, the im-
pulse picks out the first term of the filter and the
filter’s output is .4. For n = 1, the first term con-
tributes nothing, since the new input sample is 0.
But the second term is multiplied by the original
impulse and the filter’s output is .6. On the third
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sample, both terms contribute nothing and the out-
put of the filter is 0. The sequence [.4, .6, 0, . . .|, is
thus the output of the filter. Since the input is an
impulse, this is called the impulse response of the
filter. Note that it is identical to the convolution of
the impulse sequence [1, 0, O, . . .], with the se-
quence [.4,.6,0,0,0, .. .],, formed by the coeffi-
cients of the two terms. It is also identical to the
coefficient vector itself. Thus, the coefficients of an
FIR filter can be obtained by exciting the filter with
an impulse and reading off the output samples. If
the input impulse is a instead of 1, the output is
scaled by a, since we are considering only linear
digital filters. A sequence can be thought of as a set
of scaled, delayed impulses. For example, the se-
quence [.5,.1,.2,0,0,0, .. ], is the sum of three
impulse sequences, one scaled by .5, another de-
layed by one sample and scaled by .1 and, the third
delayed by two samples and scaled by .2. An exami-
nation of the definition of convolution shows that
linear time-invariant filtering is simply the con-
volution of the input with the impulse response of
the filter. (See Smith 1981 for further information
on convolution and digital filtering.)

Convolution is a computationally intensive pro-
cess. Its compute time grows proportional to N2. It
is therefore impractical for most applications. But,
this is not the case for the FFT implementation of
the DFT. Here the compute time grows propor-
tional to N log,(N). Luckily, the convolution theo-
rem gives a way to express convolution as a product
of FFTs.

The convolution theorem states that the convolu-
tion of two waveforms x and y is the IDFT of the
product of the corresponding spectra X and Y. That
is, x * y & X - Y. |A proof of the convolution theo-
rem is given in Appendix A.) The convolution theo-
rem suggests an implementation of the convolution
of x and y as follows: First take the FFTs of x and y.
Then multiply the resulting spectra. Then obtain
the result by taking the inverse FFT of the product.

The use of the FFT-based method of convolu-
tion provides a drastic improvement in computa-
tion speed over the direct implementation. For ex-
ample, to convolve two 1-sec waveforms at a sample
rate of 30000 Hz, it is necessary to perform 30000
= 9 x 10* multiplics. To take the FFT of each wave-

form requires only approximately N log,(N) = 4.2
x 10° multiplies. Thus the total number of multi-
plies to perform convolution using the algorithm
IFFT(FFT(x)FFT(y)), where IFFT is the inverse FFT,
is only 1.29 x 108, an improvement of nearly three
orders of magnitude over direct convolution.

A related theorem states that the spectrum of the
product of two waveforms is the convolution of
their spectra, with a factor of 1/N thrown in to re-
mind us that we are not using an orthonormal basis:
Xy« (1/N})X* Y. {The proof is left to the reader.;
This form of the convolution theorem is useful in
understanding the effect of a window function on a
spectrum. The spectrum of the window is con-
volved with that of the original data.

The Stretch Theorem

The stretch theorem comes into play when sampling
rate conversion from a lower to a higher sampling-
rate is performed. If the ratio between the two rates
is an integer, the conversion is ordinarily performed
by inserting some number of zeros between adja-
cent samples of the original waveform and then
lowpass filtering. The operation of inserting zeros i
called the stretch of a waveform and produces the
waveform at the desired sampling rate. It also pro-
duces artifacts in the frequency domain that can be
removed with an appropriate filter.

The reader may be surprised that inserting zeros
is the preferred method for upsampling by an in-
teger multiple. Inserting samples interpolated in
some other way may make more sense intuitively.
However, if linear interpolation is used, significant
distortion of the original waveform results. Qua-
dratic interpolation also introduces some distor- -
tion. It.is bandlimited interpolation, described
in this section, which introduces the minimum
amount of distortion. ({The distortion depends on
the filter chosen.)

We proceed in our quest toward understanding th:
effect of stretching by introducing a precise defini-
tion of stretching, followed by a definition of another
important operation, the repeat of an N-sequence.
The Stretch, of an N-sequence {Fig. 8a) is a sequence
of length M = NL obtained by inserting L — 1 zero:



Fig. 8. Representations
of signal processing op-
erations. {a) original sig-

and Length N = 3, (b}
Stretch {x] withL = 4,
(c) Repeat {xjwithL = 4.
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after each sample of the original sequence, as shown
in Fig. 8b. Let I & (n DIV L), where DIV is an in-
teger divide with the remainder discarded. Then

Stretch, oY) Q{Y”lr (nMOD L) =0
| 0, (nMOD L) # 0.

The Repeat, of an N-sequence is a sequence of length
M = NL consisting of L copies of the original se-
quence as shown in Fig. 8c.

Repeat,, ,{y) & yin MOD N} =

[y(0), y(1), ..., yIN = 1), y(0), ..., ¥(N = 1),
L,yl0),...,viIN=-1}|,,n=01,...,LN-1

The stretch theorem states that the DFT of the
stretch of a waveform is a repeated version of the spec-
trum of the original waveform. That is, Stretch,(y)
© Repeat,(Y). {A proof is given in Appendix A.) In
terms of our upsampling example, the process of in-
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serting zeros between the samples of the original
waveform causes spectral copies to be created. These
spectral copies are in most cases inharmonic and,
in any case, are not part of the original waveform.
They must therefore be filtered out using a lowpass
filter whose cutoff is at or near the original Nyquist
frequency (f,/2, where f, is the original sampling
rate). It is this process, stretching followed by filter-
ing at the original sampling rate over two, which
constitutes bandlimited interpolation.

Digital-to-analog conversion can be thought of as
upsampling to a sampling rate of infinity. A DAC
performs two operations. First it converts asequence
of samples to a sequence of voltages. This is similar
to inserting an infinite number of zeros between ad-
jacent samples and convolving with a one-sample-
wide rectangular pulse. Then it filters the result at
the original Nyquist limit, producing a bandlimited
analog signal.

Similar to the stretch theorem is the repeat theo-
rem. This states that taking the DFT of Repeat,(y)
has the effect of inserting L — 1 zeros between each
point in Y, the spectrum of y. This theorem helps
motivate one of the two interpretations of the input
to the DFT. Recall that one interpretation assumes
that the DFT's input is periodic. This is the same
as Repeat,{y), where L is infinitely large. It corre-
sponds to a DFT spectrum having an infinite num-
ber of zeros between the sample points.

The alternative view of the input to the DFT is
that it is a waveform preceded and followed by an
infinite number of zeros. This is the same as saying
that an infinitely long waveform is windowed with a
rectangular window that sets all samples outside the
window to zero, while leaving all samples inside the
window alone. Using the convolution theorem, we
know that windowing, which is a muitiplication
in the time domain, corresponds to a convolution
in the frequency domain. Thus, the spectrum, us-
ing this interpretation, consists of the convolution
of the transform of the window with the transform
of the original waveform. The transform of the rect-
angular window turns out to be a function of the
form sin(x)/x, called a sinc function (see Fig. 9).

We next consider the case of dividing the sam-
pling rate by an integer divisor, M.
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Fig. 9. The sinc function,
sin(x)/x.
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The Decimation Theorem

Downsampling is analogous to upsampling. Instead
of inserting L — 1 zeros between adjacent samples,
all samples whose position is not a multiple of M
are removed. This is called the decimation of a
waveform. The decimation Dec,, of an N-sequence
is of length L = N/M. It is obtained by taking every
Mth sample of the original sequence, beginning
with the first sample.

Dec iy, mly) é y(nM)

wheren =0, 1, ..., L. As with stretching, decima-
tion has ramifications in the frequency domain
which must be accounted for in order to avoid un-
wanted artifacts.

We will show that decimating 2 waveform causes
an aliasing of its spectrum. The Alias,, of an N-
sequence is a sequence of length L = N/M, where
M divides N evenly, obtained by partitioning the se-
quence into M pieces of length L, and then adding
up the pieces. Then

M-1
Alias,, ,(Y) A 2 Yin+mL)
wheren =0, 1,..., L - 1. For example, a partial

present at .6f, will be aliased down to —.4f, (see Fig.
10). Notice that Repeat,, lengthens a sequence by a
factor of M while Alias,, shortens it by a factor of
1/M.

The decimation theorem states that the DFT of a
waveform decimated by M is the Alias, of the spec-

Fig. 10. The effect of alias-
ing, shown in the linear
spectrum and on the com-
plex plane.
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trum of the original waveform scaled by a factor of
1/M. That is, Decy(y) « (1/M)Alias,(Y). (A proof
is given in Appendix A.) Aliasing is almost always
an undesired effect because, in general, it cannot be
undone. The remedy is to lowpass filter the wave-
form, before performing the decimation, with a fil-
ter whose cutoff is at the new (lower) Nyquist rate.
This ensures that the aliased frequencies will have
no significant energy and thus will cause no audible
distortion. Notice that the filtering operation is
done before the decimation, whereas in the case of
upsampling, it is done after the stretching.

The decimation theorem helps us understand
analog-to-digital conversion (ADC) as analogous to
a downsampling from a sampling rate of infinity.
An ADC performs two operations. First it filters at
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half the new sampling rate to remove any spectral
components that would otherwise alias. The filter
is appropriately called an anti-aliasing filter. Then
it does a sample-and-hold process and generates a
sequence of samples from the sequence of voltages.
This can be thought of as a decimation of the origi-
nal signal.

Up to this point we have considered resampling
only by integer conversion factors. It is easy to im-
plement arbitrary resampling by combining an up-
sampling operation followed by a downsampling
operation. For example, to get a sampling rate change
of .75, the sampling-rate conversion is accomplished
by upsampling by a factor of 3 followed by down-
sampling by a factor of 4.

A related theorem states that decimation in the
frequency domain causes aliasing in the time do-
main. This phenomenon, called time-aliasing, is
usually undesirable. It can be avoided by lowpass
filtering the spectrum before performing the deci-
mation. It can also be avoided by first zero-padding
in the time domain before performing time-spreading
operations such as convolution.

The Flip Theorem

We now move to what may seem like a rather odd op-
eration, the flip of an N-sequence. The flip is the com-
plex conjugate of the reverse of the sequence, with
the first component held in its original position. Pre-
cisely, theflipof yis[y{O), y(IN- 1), ¥(N=2), . . .,
y(1]]. By the assumed periodicity of the N-sequence
v. ¥IN + n) = y{n) so Flip,{y) & y(N — n) = y(-n).
Figure 11 shows the flip of the sequence [, .5, .25,
.125], which is [1, .125, .25, .5].

Flip is used to eliminate phase distortion in digi-
tal filters. The convolution theorem tells us that a
convolution (filtering) in the time domain is a mul-
tiplication in the frequency domain. Filtering a sig-
nal is the convolution of that signal with the im-
pulse response of the filter, and corresponds, in the
frequency domain, to the multiplication of the DFT
of the input signal by the DFT of the impulse re-
sponse. (The DFT of the impulse response is called
the frequency response of the filter.) The filtering
operation produces no phase distortion only if the
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Fig. 11. The flip of the
sequence [1, 0.5, 0.25,
0.125], which is {1, 0.125,

0.25, 0.5].
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The sequence (1, .5, .25, .125],
(above} and its flip.{1, .125, .25, .5], (bclow).

filter’s frequency response has a phase of zero for all
frequencies. This is the same as saying the complex
phase term is e® = 1 and is only true if the spec-
trum is real and nonnegative. Recall from the sec-
tion “Transform Pairs and the Conjugate Symmetry
Theorem” that a real spectrum results from an even
waveform. Therefore, in order to eliminate phase
distortion, we must design a filter whose impulse
response is even. The flip comes in handy in this
context.

In order to design a filter whose impulse response
is even, we first design the filter with the frequency
response we desire, using any method. Then we flip
this impulse response and convolve it with the origi-
nal impulse response, producing a filter with an im-
pulse response whose length is approximately twice
that of the original. Since this is a symmetrical real
impulse response, its DFT is real. Thus the filter
can introduce no phase distortion, except by mul-
tiples of 7. The resulting filter has the square of
the desired magnitude frequency response. This
double filter can be thought of as two single-length
filters in series. In order to see how the magnitude
frequency response must be adjusted, we need a
theorem that tells us the spectral effect of flipping
the samples of a waveform.

The flip theorem states that the DFT of the flip
of y is the complex conjugate of the spectrum of y.
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That is, Flip,(y} < Y. (A proof is given in Appen-
dix A.)

In our example, the effect of flipping the impulse
response is to conjugate its spectrum. But conjugat-
ing the spectrum has no effect on the magnitude of
the spectrum. The effect of doubling the filter is the
same as having two filters in series. In other words,
it is the same as filtering the filtered signal. But fil-
tering is convolution. Let y, be the original im-
pulse response, y, be the flipped impulse response,
and x be the input to the filter. Then the effect of
filtering by both filters is to convolve x with y,,
and then convolve the result with y,. But since con-
volution is commutative, this is the same as first
convolving y, with y, and then convolving with x.
The effect of convolving y, with y, is, by the con-
volution theorem, to multiply the magnitude fre-
quency response by itself. Therefore, in order to
come out with the desired magnitude frequency re-
sponse and zero-phase, we must first design a filter
with the square root of the desired magnitude fre-
quency response, and then convolve with another
filter whose frequency response is the conjugate of
that of the first filter. The combined filter is zero-
phase and has the desired frequency response.

In summary, an even waveform can be produced
by convolving any waveform y with its flip. This,
scaled by 1/N is called the autocorrelation of y.
(The autocorrelation function used by statisticians
has a different definition, but is related in spirit.)
That is,

N-1

Autocorrelation,(y) & 1/N 20 y(n + m)y(m)

(Shift_,(y), )

Its spectrum differs from the spectrum of y in that the
phase of each partial is zero, because the autocorre-
lation i$ an even function. In addition, by the convo-
lution theorem, the magnitude has been squared.
Finally, the factor of 1/N scales the spectrum.

The Correlation Theorem

The autocorrelation is important in statistical spec-
trum analysis (the study of statistically defined or

stochastic waveforms), a subject that is beyond the
scope of this tutorial. We give only a brief introduc-
tion here to familiarize the reader with the con-
cepts of autocorrelation, power spectral density, and
correlation.

Consider taking the DFT of white noise. We
commonly think of white noise as having a flat
“spectrum,” and one might expect the magnitude
spectrum of white noise to be a constant at all fre-
quencies. It turns out that what we are actually
imagining is not the spectrum but what is called
the power spectral density, a measure of the statis-
tical variance per unit frequency interval. Taking
a DFT of white noise produces a random magni-
tude spectrum, no matter how large a time window
is taken. The larger window introduces more fre-
quency points but each still has random magnitude
and phase. If, on the other hand, we take a series of
DFTs, moving along in time one window-size for
each DFT, and then average the successive win-
dows, the spectrum approaches zero as the number
of windows goes to infinity. This happens because
the phases are random and, therefore, the set of
spectral coefficients for each value of k averages to
zero. In statistical terms, each spectral coefficient i
a random variable whose standard deviation over
successive windows can be greater than its mean.
Thus the power spectral density is not estimated
very well by using DFTs alone. On the other hand,
it is possible to obtain a good power spectral den-
sity estimate by averaging the squared magnitude
of DFTs of successive windows.

The expected flat spectrum can, equivalently,
be obtained by taking the DFT of the autocorrela-
tion of the waveform. By setting all phases to zero,
the autocorrelation function has the effect of pro-
ducing a deterministic waveform from a stochas-
tic one. In this manner, it can be thought of as an
information-destroying process. (But phase carries
no information in a stochastic process, so this is
not a problem. It does mean, however, that there is
no “de-autocorrelation” function. Once an autocor
relation has been performed, it can not be undone.)
The autocorrelation maps all possible phase com-
binations onto a single, zero-phase, representation.
In the case of white noise, the resulting autocor-
relation waveform, as N goes to infinity is an im-
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pulse of height equal to 1 because only at n = 0 do
all sinusoids of zero-phase “line-up.” In the limit,
as N goes to infinity, this value swamps all other
values and the function goes to an impulse at n = 0.
We showed previously that taking the DFT of the
impulse sequence produces a flat spectrum. Thus,
as N goes to infinity, the DFT of the autocorrela-
tion of white noise approaches an estimate of the
flat power spectrum we expect.

Autocorrelation is a special case of the cross-
correlation or correlation of two sequences. Cor-
relation is defined as:

N-1 —_—
Cormm,(x, y) = 2 xln + m)y(m) = (Shift_,[x), y)
where the angle brackets ( ) denote the inner prod-
uct {see part one of this tutorial). Note that the auto-
correlation is the correlation of a waveform with
itself. This equation for correlation differs from
convolution by a mere flip:

N-1
2 x(m)y(n — m)

Conv,(x, y) DN

N-1-n

- 2
. x{n + k)y[—k)

mﬁz,ox(n + m)y{—m)

smie_y{x), Flip(y)) = Corr,(x, Flip(y)).

The correlation theorem is similar to the con-
volution theorem. It states that the DFT of the cor-
relation of a sequence x with a sequence y is equal
to the conjugate of the DFT of x multiplied by the
DFT of y. That is, Corr(x, y) « XY. (A proof is given
in Appendix A.} The correlation theorem helps us
prove the energy theorem.

The Energy Theorem

The energy theorem makes it possible to construct
devices such as graphic equalizers by ensuring con-
servation of energy over the DFT operation. The en-
ergy theorem states that the inner product of two
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waveforms of length N is equal to the inner product
of the transforms of the two waveforms scaled by
1/N, and defines the cross-energy of the transform
pair as that value. That is, Energy(x, y) & (x, y) =
1/N (X, Y). The average power is defined as the
cross-energy divided by N. Let us return to the vec-
tor notation used in part one of this tutorial. Taking
the DFT of two N-dimensional vectors ¥ and y is
equivalent to finding two corresponding vectors X’
and y”' in a different coordinate system. This opera-
tion does not change the relative angle in space of
one vector with respect to the other. Thus, the inner
product of the two vectors will be the same if the
coordinate system is merely stretched and rotated,
except for a constant factor D. D is defined as the
square of the ratio between the norm of a vector of
the original coordinate system and the norm of that
vector in the new coordinate system. In the case of
the DFT, the norm of the spectrum over the norm
of the time-domain waveform is VN. Thus a factor
1/N must be included in the energy theorem. (A
proof of the energy theorem is given in Appendix
A.) Note that the Energy(x, x) or total energy of a
waveform x is its norm squared. Therefore, [xj|2 =
(1/N | X||2. This is called Parseval’s theorem or the
Rayleigh energy theorem.

Generalization of the DFT: The Z-transform

The DFT can be generalized into a form known as
the Z-transform that is particularly useful in digital
filter theory. The Z-transform of a filter is a function
of a single complex variable z. The Z-transform helps
in locating the filter’s poles (values of z at which
the filter’s magnitude frequency response is infinite)
and zeros values of zat which the filter's magnitude
frequency response is zero). The Z-transform of an
FIR filter can be obtained by taking the samples of
the filter’s impulse response as coefficients for in-
creasing powers of z-!. For example, the impulse re-
sponse [1, 1, .25, 0, . . .] has the Z-transform of 1 +
z~! + .25z-2 This polynomial can be factored into
(1 +.5z-1)1 + .5z"!). The zeros of this polynomial
are determined by setting each term to zero and solv-
ing for z. In this case there are two zeros at z = —.5.
In this example, there are no poles because this is
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an FIR filter and poles only occur for infinite im-
pulse response (IIR] filters. For IIR filters, the Z-
transform is obtained from the difference equation
of the filter. See ({Smith 1981) for details.

In order to show that the Z-transform is a gener-
alization of the DFT, recall that the DFT is simply
an inner product {y, x, ) where x,(n) 8 gwnT A zp
with z, = e’2"»N_ We can denote the DFT as a func-
tion of z,:

N-1
Yiz,) =y z) = nzo yin)zgm

This is the Z-transform Y|z} evaluated at z,. The
DFT is the Z-transform evaluated on the unit circle
z, = e?™'N,_The Z-transform evaluated at an arbi-
trary point on the complex plane z, rather than at a
set of N points {z,}, is simply

Y(z) =(y.2) = ZO yln)z™.

How can we interpret the Z-transform of an arbi-
trary point on the z-plane? We know that raising any
complex number to successive integer powers pro-
duces a spiral. Thus the Z-transform of a waveform
evaluated at z can be thought of as a measure of the
exponentially increasing (if |z| > 1}, decreasing (if
|z < 1), or constant (if |z| = 1) complex sinusoidal
energy at a frequency £z radians per sample. A
circle (used as the domain of the DFT) is a special
case of a spiral {used as the domain of the Z-trans-
form), one for which the radius remains constant.

The Fourier Transform

Finally, we extend the DFT from the discrete, or
digital, to the continuous domain. We shall do this
in two steps. First, we allow the number of time-
domain samples to go to infinity. Then we allow the
sampling rate to go to infinity. In order to do so, we
need to introduce the integral of calculus as a re-
placement for the summation that we have been
using for the DFT. The definite integral of the func-
tion f{x) with x ranging from —m to = is notated
f*.flx)dx, where dx is the differential of the inte-
gration. An integral can be thought of as a summa-

tion over an infinite set of points comprising an
interval. The integral adds the value of the function
at every point in the interval and the differential
multiplies this value by the distance between adja-
cent points in the interval. Since the points are in-
finitely close, the differential goes to 0 in the limit.
The definite integral can be thought of as the area
under the curve f(x).

Recall that the spectrum produced by the DFT
is a function over N points w, = 27f,k/N equally
spaced around the unit circle. As N gets larger, these
points get closer together. Let Aw = 27f,/N equal the
difference in frequency between successive points.
The points can be made arbitrarily close by select-
ing an appropriate value of N. If N is allowed to go
to infinity, the unit circle is divided into an infinite
number of divisions, and Aw goes to 0. In this case,
the variable w, & 27kf,/N is replaced with a continu
ous variable w. Let the waveform y(n) be defined
over all positive time. Then the DFT, of continuou:
w and infinite discrete positive time becomes:

DFT,(y) 4 Y(w) & nzo y(n)e-renT.

This is a continuous function of an infinite se-
quence. Notice that the sampling rate has not been
changed and the spectrum is still a periodic func-
tion of w with period 27f,. As N goes to infinity,
the IDFT becomes an integral.

IDFT,(Y) & y(n) & El;f _ YlwlenTdo,

(Note that many texts include a factor of T in the
DFT definition. That is, their DFT is our DFT mu
tiplied by T. This makes the extension to the con-
tinuous domain a bit cleaner.)

Now consider the case where the sampling rate
increases along with N. As the sampling rate goes
to infinity, the period of the spectrum becomes in-
finite. That is, the spectrum ceases to be a periodi
function and w is redefined as a continuous variab!
on the interval {—=x, x).

What must we alter in the DFT equation to ac-
commodate the infinite sampling rate? First, it no
no longer makes sense to think of frequency as a
fraction of the sampling rate. Second, as the sam-
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pling rate goes to infinity, the sampling interval
goes to 0 and it no longer makes sense to speak of
the nth sample. The index variable n is replaced
with a continuous variable t and the summation is
replaced with an integration over t. Thus the basis
set becomes {e*'}, which contains an infinite num-
ber of basis functions, one for each value of w. The
continuous Fourier transform of a function y(t) is
therefore defined as:

FT.Iy) & Yiw) 4 ] lyme-mdt.

Similarly, the inverse Fourier transform is given by:

IFT(Y) & yit] 4 | Yiwlemda

Many of the theorems we have covered have anal-
ogs in the continuous domain. One major differ-
ence, however, is that in the continuous domain,
frequency is no longer cyclical. There is, for ex-
ample, no aliasing.

Conclusion

The spectrum analysis perspective provides insight
into the relationship between the frequency and
time domains. It also allows a deep understanding
of such familiar operations as sampling-rate conver-
sion, filtering, and modulation. One of the beauties
of spectrum analysis is that it stems from one simple
formula, the Fourier transform. {To pursue the study
of spectrum analysis in more depth, we recommend
Kesler 1986.)
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Appendix A: Proof of Theorems

The Conjugate Symmetry Theorem

The conjugate symmetry theorem states: if y is
real, Y = DFT|(y]) is conjugate symmetric. In order
to prove this, we must delve further into the notion
of symmetry. Recall that a real sequence y is said to
be even or symmetric if y(n) = y(N — n). In con-
trast, a real sequence is said to be odd or antisymme:-
ricif y(n) = —y(N - n). Although many sequences
are neither even nor odd, an arbitrary N-length se-
quence y can be expressed as a sum of a unique
even and a unique odd part. In order to prove this,
we guess a solution and then show that it works.

Let y,(n) - yln)+ };(N —n) and

let y,(n) =

y{n} = y(N = n)
) .

The sequence y, is even because y,(N — n) = y,(n).
The sequence y, is odd because y, (N — n) = -y, (n).
Since y{n} = y.(n) + y,(n) and y(n) was chosen
arbitrarily, it has been shown that any sequence
can be represented as a sum of an even and an odd
sequence.
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An example of an even sequence is y(n} =
cos{2mkn/N). The evenness of this sequence is
clear from looking at the exponential form of the
cosine function and comparing it with the defini-
tion of y, just given:
eiO + e-iﬂ

2
Alternatively, one can recall the identity cos(—6) =
cos(6). Similarly, the sequence y{n) = sin{27kn/N)
can be shown to be odd, since sin(—8) = —sin(6).

Armed with this insight, we are in a position to
prove the conjugate symmetry theorem. We need
only show that the real part of the spectrum is sym-

cos{@) =

metrical (even) while the imaginary part is antisym-

metrical (odd). That is, Re{Y(n)} = Re{Y(N — nj}
and Im{Y(n)} = —Im{Y(N — n}}. The real and imagi-
nary parts of the DFT are obtained, for real y, by
using Euler’s identity (introduced in part one):

N-1

DFT,(y) = nZ‘o y(n)cos(w,nT) +

.»néo y(n)sin{w,nT)

It can be shown that a linear combination of odd
sequences is an odd sequence and a linear combina-
tion of even sequences is an even sequence. (The
proof of this is left to the reader.) Therefore, since
the DFT of y is a sequence in k, and y(n) serves
simply as a real coefficient on the cosine and sine
functions, y(n) does not affect the symmetry of
these functions. Similarly, since neither of the sum-
mations affect the symmetry,

N-1
Re{Y} = ..Zo y({n)cos(w,nT) is even, and

N-1

Im{Y} = '20 y{n)sin{w,nT) is odd.
The spectrum Y(k] is, therefore, conjugate
symmetric.
The Shift Theorem

The shift theorem states e«"Ty(n) «> Shift,(Y). To
prove it, we use the variable substitution m Ak-1

N-1

kzﬂ Y(k — I)ernT

IDFT,(Shift,(Y))

N-1-1
> Y{m)ewm-mT
m= -]

"

N-1-1
et ¥ Y{m)ewnnT
m= -]

= emTy(n).

The related theorem states Shift,(y) « e~ TY(k)
and is proved in a similar manner.

The Convolution Theorem

The convolution theorem states IDFT,(XY] =
Conv,|x, y). Proof:

IDFT,(XY)

N-1 N-1

= IDFT,,(ME; o x(m)e-r’u.mT ]Zo Y{”e”“"")

N-1 N-1
= IDFT,,(mZ . x(m)[ g -lmmT ,Z:O y(”e_,.,*,-r]

The key to simplifying this expression is to recog-
nize that the expression in square brackets is the
transform of y shifted by m. Using the shift theorem

N-1

N-1
IDFT,,( 2=0 x(m)[e-immT IZO yu’e-,',,krr:l)

N-1

IDFT,,(mZ_O x(m) :,2_0 yll - m}e"’-k’f)

N-1N-1
= IDPT,,(ME_:O 2, x(mly(l - m)e-:..n)

- DF,(3 | 2, stmiyt - ml] e

N-1

= IDFT,,( ’20 (x * y,e-mlr)

IDET, (DFT(x * y))

X*y.
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The Stretch Theorem

The stretch theorem states: Stretch,(y) <> Re-
peat,{Y). To prove it, let y(n) = Stretch, ,(x), where
x is length M and y is length N = LM. Since x(m)
consists of all the nonzero points of y(n), we can
omit all the other points from the summation and
sum over only M points.

N-1 M-1

Y(k) = ,,2.0 y(n)e—lwknT = mzso x(m)e-m.mLT'

where m 2 n/L But w,L = 27kf,/N)L = 2mkf,/M.
Thus

M-1 M-

mzo x(m)e-m,mn = mz_ . x(m)e-llﬂk/M= DFTk(x)

= X(k), k=0,1,2,...,(M-1).

However, we started with Y(k) where k =0, 1, 2,
...,IN-1).5 X(k)= Y(k)fork=0,1,2,...,
(M = 1). What about the values of X(k) for k = M!?
Since the spectrum X(k] is a periodic function with
a period of M, Y(k] is equivalent to traveling around
the unit circle L times, evaluating X(k}at k =0, 1,
2,...,iM-1,0,1,2,...,(M-1),...,0,1,2,
..., |M = 1). Thus the spectrum Y(Kk) is equal to
repeat ((DFT{x)}.

The Decimation Theorem

The decimation theorem states: Dec,(y) «
(1/M)Alias(Y). To demonstrate this, let X &
Alias,,(Y), where X is length L, Y is length N, M is
the decimation factor and N = LM. Then

M-1
x() 4 kgo Y(I + kL)

M-IN-1

kzo nzgo y‘n)e—m,,..“nT

N-1 M-1

"z:o y(n) *Zo e -1winTg -iwunT
N-1 M-

~i2min/Np -j2nkln/N

N-1 M-
= z y(n’e-ilnln/N 2 e-iimkn/M,
(1] k=0

n=
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We again invoke the theorem that a sinusoid summed
over an integral number of periods is equal to zero.

M, n=Mpp=012 ..., =
0, n+ Mp.

Since only every Mth point is nonzero, let i = nM.
Then

N-1 M- L-1
n e-i?.iln/N ~i2wkn/M = i1p-12aiIM'N
3, inle-nein S e = M il

M-1
2 e-itvkn/M
K=o

L-1

=M Zo y[j)e—llnh L

= M - DFT(Decpuly))-

The result of decimating a waveform is, therefore,
to alias the spectrum.

The Flip Theorem

The flip theorem states Flip,(y} « Y. Proof:
N-1

DFTk(Fllp(y” = 2 Y(N - n)e-lw.nT'

n=0

Let m & N - n. Then

1
DFTAF’JP{;)) = m2= N Y(m)e_l“A(N -miT

N-1
z y‘m)e‘lﬂklN - miT
m=0

N-1
= 2 y(m)e"lu,lm - NIT
m=0

N-1
S yimlemnr

= Y(k).

The Correlation Theorem

The correlation theorem states Corr(x, y) « XY.
To prove it, we invoke the convolution and flip
theorems:

DFT,(Corr(x, y)) = DFT(x * Flip(y)) = X(k)Y(k]
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The Energy Theorem

The energy theorem states Energy|(x, y) Aix,y)=
1/N (X, Y). It can be proven using the definition of
correlation:

N -

(x.y)& T xinly(n] = Comx, y) = IDFT{X¥)

N

1

X(k)Y(k)

0

1]

WM

k

1
N
L x v
N ™"

The factor of 1/N is, as usual, a result of our using
a nonorthonormal basis.

Appendix B: Correction to Part One

The inner product of (I + j) and (I — j) was errone-
ously given as 2, rather than the correct value of 2.






