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1 PROBLEM STATEMENT

INTRODUCTION

STATEMENT OF THE PROBLEM

The problem addressed by this dissertation is the machine perception of polyphonic music. We
seek to play a piece of music into the computer via an analog-to-digital converter and have the
computer return an abbreviated score of the piece. In order to simplify the task, certain
restrictions have been placed on the goais. First, we do not require the computer to identify the
instruments involved. Second, we do not allow glissandi, fast trills, or exceptionally fast notes
(less than 100 milliseconds duration). Third, the class of instruments that we will accept is
limited to a subset of the orchestral instruments which excludes drums, gongs, cymbals, and
othér instruments with inharmonic overtones. Fourth, vibrato must be non-existent or very
limited. Fifth, the program will only be expected to track a small number of independent voices
(two at most). Sixth and last, we must disallow notes such that the fundamental of one note is
at the same frequency as a harmonic of another note. This rules out notes at octaves, at
tweliths, and many other intervals. Some of these restrictions represent inherent limitations in
the methods used and some merely represent restrictions for the sake of economy. A discussion
of each restriction will accompany its intoduction.

In performing this task, there are some things that we may require of the computer that we
would not require of a human. One is that the pitches be identified with the actual note
relative to the equal tempered scale based on A4 being 440 Hz. This would require the skill of
“absolute pitch™ which is somewhat rare even among trained musicians. Conversely, there are
some things which people do quite well that we cannot at this time reasonably ask the computer
to do, such as identify the instruments involved. The reasons why this is a difficult problem
will be ireatcd later.

A computerized ‘musical scribe probably has its greatest application in the field of
Ethromusicology, where cften hundreds of hours of recorded ethnic music are commonly
transcrib>d by hand. A more long term application is in the field of computer music, where we
might expec: the comput:r to be able to perceive music as well as play it, thus takmg its cues
from the musicians (or other oomputers?) with whom (which?) it is playing.
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ON MUSIC ANALYSIS

Music may be analysed for any number of purposes. There is analysis of a score for form,
motifs, harmony, style, etc. These may be termed Aigh-level analyses because they deal with
concepts which are not rigorously defined, nor are they generally amenable to direct
mathematical analysis. These analysis techniques are commonly taught to undergraduate music
students as regular curriculum sub jects. Some attempt has been made to use the computer to do
high-level analysis from scores which have been typed in by hand [Hiiler 1966, 1967, Jackson
1967; Winograd 1968] with some success. Perhaps the greatest contribution of the computer has
been to the ethnomusicologist who seeks to classify the intervals or frequenciesiof-occurrence of
motifs.

Analysis of the acoustic waveform itself has been done for the purpose of gaining insight into
the physics of music-related hardware (instruments, concert halls, musicians), for the purpose of
simulation of musical tones (a musical "vocoder”), for gaining insight into human perception of
musical sound, and finally, for the purpose of detecting and tracking the pitch of a single-
voiced piece. This analysis might be termed low to intermediate-level analysis because it deals
with musical sound on an acoustical level rather than on the level represented by the score of
the piece. ‘ .

- It is, of course, an impossible task to recreate exactly the score that produced a given piece of
music. When we listen to a piece of music, we cannot tell that a given note duration represents
a quarter note, a half note, or whatever. The composer is free to introduce factors of two in the
‘notation at will, and the conventions in this respect have changed over the years. Also, the
‘amount of voice doubling on a particular line is often quite difficult for people to determine.
Sometimes, a precisely played octave will not be recognized as such.

It is our intention to finesse these difficulties by restricting the range of pieces that will be
accepted. With some restricticns. in effect, the problem is manageable.
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WHAT IS MUSICAL SOUND?

INSTRUMENTS, OVERTONES, AND A
MODEL OF INSTRUMENT WAVEFORMS

Our model of music will consist of the sound pressure wave created by a finite number of
instruments that play notes which begin at some time, have a finite duration, and are nearly
periodic in that interval. For our purposes, an instrument will be defined as something which
produces nearly periodic sound pressure waves. A note will be defined entirely by its pitch,
starting time, duration, and loudness. Before we proceed any further, some definitions are in
order: ' ' ' '

pitch - Pitch is a subjective quality of sound that is not necessarily dependent upon the
existence of a sinusoid at that frequency. A discussion of pitch perception is offered in
later sections (see section entitled Music Perception), so please accept for now that "pitch"
means what we commonly take it to mean, but “frequency” refers to the repetition rate of
a perfectly periodic signal. "Frequency” is a physical quantity which can be measured
ob jectively. "Pitch” is a perceptual phenomenon. '

harmonic - A perfectly periodic waveform can be decomposed by Fourier’s sine and cosine
series into a sum of sinusoids whose frequencies are integral multiples of some base
frequency, which is called the "fundamental” frequency of the sound. These sinusoids
are described as "harmonically related” sinusoids, or more simply as "harmonics.” -

inharmonic - An ad jective meaning "not harmonically related.” -

partial - Many waveforms are not periodic, but may nonetheless be represented by a sum of
sinusoids that are not harmonics. The general term for the sinusoids which make up a
waveform, be they harmonic or otherwise, is a "partial tone,” or more simply, a "partial.”

quasi-periodic - This term along with "nearly harmonic™ applies to waveforms which are not
perfectly periodic, but are very close. Stringed instruments show some inharmonicity
.due to effective shortening of the string at higher frequencies, but since the deviation is
just a few percent, they are called "quasi-periadic.”

half-step - This is the square root of a step, or the twelfth root of 2, which is 1.05946309. The.
half-step is the reiation Letween the frequencies of notes which are played on ad jacent
keys on a piano keyboard. The half-step forms the basis of most Western music. This is
also the basis of the equal-tempered scale, which is used thrdughout this thesis.

step - A "step” is a ratio of two frequencies which is defined as the sixth root of 2, or
1.12246205.
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interval - The relation between the frequencies of two simultaneously sounding notes is called
an “interval”. We measure intervals in terms of steps, or half steps. The intervals
consisting of integral numbers of half-steps have names and special meanings in most
western music. If the frequency of one note is f, and the frequency of the other note is -
f, then the “distance” between those two notes in half-steps is simply

. 12%10g,(f,/ f;). This is the interval those two notes represent.

scale - A manner of subdividing a large interval, such as an octave, at definite points in order -
to provide a series of tones suitable for melodic or harmonic use. Two common divisions
of the octave in Western music are the major and the minor scales, each of which divide
the octave into eight notes (including the endpoints). If we number the notes of these
scales from the lowest to the highest, the major scale has a half-step between the 3¢ and
4th.notes, and between the 7" and 8™ notes, and whole steps between the other ad jacent
notes of the scale. The minor scale has half-steps between the 2™ and 3" notes and
between the 5™ and 6™ notes. '

chord - Three or more notes sounding simultaneously. In more common usage, the. intervals
between ad jacent notes is 3 or 4 half-steps (these intervals are called minor and major
thirds, respectively). A more general term for the simultaneous sounding of three or
more notes without regard for the intervals among them is a "cluster”. :

harmony - This is easy to confuse with "harmonic,” but it refers to a sub jective musical quality.
When two or more instruments play different notes at the same time, we refer to the -
relation of the notes as the "harmony” of the music. To be more specific, this is actually
the vertical harmony of the music. We may also define the Aorizontal harmony to be the
relations among the chords as a progression in time. In this dissertation, we shall only be
concerned with vertical harmony, although horizontal harmony is much more important
musicaliy.

Music instruments can be divided into many categories, but we shall only distinguish two: those
that have nearly harmonic partials and those :hat do not. We shall be concerned here with only
those instruments which have nearly harmonic partiais. These instruments can be modeled as a
sum of sinusoids with slowly-varying amplitudes and frequencies. The frequencies of these -
sinusoids are very close to integral multiples of the fundamental frequency cf the note.

With the aid of the heterodyne filter (see section Heterodyne Filter in Low-Level T echnigues), we
can’examine the behavior of the amplitudes and frequencies of notes played in isolation.

With these data availakle, we are in a position to test the validity of the model for describing
the percepiualiy relevant attributes of music instrument tones. We can do this by resynthesizing
the tones and comparing them with th2 original tones. We have done this for the following
instruments: ‘

!
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. violin, viola, cello, double bass, trumpet, trombone, French horn, baritone horn,
" oboe, English horn, bassoon, Bb clarinet, alto clarmet, bass clarinet, flute, alto flute,
alto sax, soprano sax

The synthetic tones are very similar to the originals. When some white noise is added into the
synthetic tones to simulate the effect of tape recorder hiss, most of the synthetic tones are
extremely similar to the original. This affirms the validity of the model and of the heterodyne
filter for representing this class of instruments. Although we have not done this test on every
~ music instrument with nearly harmonic partials, we have no reason to believe that this model
should not be adequate for representing all such instruments, including the human voice
(possibly excepting frication).

That these instruments can be represented in this manner is somewhat curious, because some of
the instruments exhibit inharmonicity. The heterodyne filter is not capable of detecting
inharmonicity directly. It would appear that these effects show up as amplitude and frequency.
modulation on some harmonics. Since the sum of two sinusoids is identical to a single
amplitude-modulated sinusoid, much of the effect of inharmonic partials seems to be captured
in the detail of the amplitude and frequency contours for each harmonic.

A great body of work on music instrument tones in isolation is presented in a companion
dissertation An Exploration of Musical Timbre by John M. Grey [1975]. The heterodyne filter
was used to analyze a number of different instruments as a method of generating
psychoacoustic stimuli for studymg human percepnon of timbre. Figures 26 and 27 were taken
from his work.
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ON MUSICAL HARMONY

There is a well developed body of harmonic practice which is taught as an undergraduate
music course ' [Piston 1941; Forte 1962). This is generally referred to as “classical” or
“traditional” harmony. Again, there is a difference between “vertical” and “horizontal” harmony.
We shall only deal with “vertical® harmony, which does not take contextual information into
account.

We shall discuss the mathematical implications of some aspects of harmony, notably the chord.
The simplest chord is the triad. The triad consists of three notes sounding simultaneously. The
most common triads are the major triad, and the minor triad. These are defined by the ratios
of the frequencies of the notes in the triad. One simpie form of the major triad in "root”
position has the next higher note (which is called the "third" of the chord) located four half-
steps higher than the lowest note, which is called the "root” of the chord. The third of the
chord is so-called because it is the third note of a major scale which begins at the root. The
highest note of the major triad is called the “fifth™ of the chord and is located 8 half-steps
higher than the third which makes a total of seven halif-steps higher than the root. The
"harmony” of a piece of music can be thought of (in an oversimplified manner) as the
progression of chords in a piece of music.

One of the things that makes music interesting is the fact that we may shuffle the notes of a.
chord up or down by some number of octaves and still have the same (in a certain sense) chord.
There are names for many of the arrangements of notes that define a given chord. For instance,
if the thi.d is the lowest note in a chord, the fifth the next higher, and the root the highest, the
chord is said to be in the "first inversion™. Likewise, if the fifth is the lowest, the chord is in
the "second inversion”. This discussion is a bit oversimplified, in that the inversion of a chord
depends only on the lowest sounding note. For instance, a chord can still be in root position if
the third of the chord is raised an octave.

One might ask why & chord such as a major triad is so iniportant in western music. Why
wouldn't any combination of frequencies do? This question has as yet not been answered. It is
not clear, for instance, whether the special nature of the major triad is “universal® or is a
maniiestation of cultural bias. Despite the complexity of the problem, several interesting
observations have been made. One may observe that in the harmonic series for a particular
‘frequency, the 4™, 8™ and 3™ haimonics of a note form a major triad. The 6%, 7™ and ot
harmonics form a minor triad. (We should note here that this definition of the minor triad is

not quite suiiable for musical use, because the 7™ harmonic is actually somewhat lower in

frequency than the usual detinition. The interval between the 6™ and 7™ harmonics is about
2.67 half-steps, rather than the usual 3 half-steps). It might be more relevant io describe the
minor triad in terms of the 4™, 5™ and 15™ harmonics. All unambiguous chords fall in the
harmonic series. soimewhere. While we may speculate on mechanisms in the ear that makes

listening to chords both natural and plzasant, it is more important to note that each chord ran
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be thought of as a manifestation of (harmonics of) a fundamental frequency which may weil
not be present. For each (unambiguous) chord, we can find a frequency whose harmonics will
contain all the notes of the chord. The existence of this “fictitious fundamental” makes it
possible to determine the harmony of a piece of musi¢al sound without determining the notes
that are being played. This can only be done when the harmony is unambiguous. Often
composers use ambiguous chords to great advantage. It is also important to note that any
interval consisting of an integral number of half-steps will imply one or more fictitious
fundamentals. One does not need a full chord.

Methods for determining the harmony of a piece will be discussed in the section on low-level
techniques, specifically, the autocorrelation and the optimum-comb. '
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OVERVIEW OF THE ANALYSIS SYSTEM

The musical scribe has been realized for a limited class of musical inputs. The system begins
with the digitization of the waveform itself by an analog-to-digital converter, operating at
25,600 samples per second to a precision of 14 binary bits. The first processing step uses the
optimum-comb method to determine the harmony of the piece. This step is not really necessary,
but it greatly reduces the amount of computer time used by subsequent steps by reducing the
number of possible riotes that could be present at any given time. For music which contains
notes which do not lie in perfect unamblguous harmonic relauonshxp, more than one possible
harmony will be generated by the programs.

The next phase of the analysis involves bandpass filtering the waveform at frequencies which
represent the frequencies of all the harmonics of all the notes that might be present in the piece, -
given the results of the analysis of harmony from the above step. These filtered waveforms are -
processed to see if a sinusoid is present at or near the expected frequency. If one is found, its
amplitude as a function of time is smoothed and approximated by a polynomial and recorded.

The last phase consists of looking at the results of detecting individual sinusoids and inferring
what notes must have been present to produce those sinusoids. This last step is the least
rigorous, the mast heuristic, and the most sensitive link in the chain.

Except for the original digitization and the "beautification” of the final graphical output, the
entire system is automatic and runs without human aid or intervention. This was a design
criterion. Since the task of taking musical dictation is commonly taught at the freshman and
sophomore levels in college, it seemed pointless to insert a human in the processing path when a
person could do the entire rask much more quickly. The only value the system might have is its
ability to do the process all by itself. .

In fact, the system computes the pitches of the notes much more accurately than a human could.
This is as much a hindrance as it is a blessing when the final score is produced. The human
being perceives the pitches to Le members of the notes of the scale, even if some of the -notes
are mistuned. Humans will tolerate, even admire, large deviations from mathematically precise
rhythm, yet can write down the original score despite the deviations. Computer synthesized
music that does not have this built-in flexibility is often recognizable by the "inhuman"
treatment of rhythm given by the mathematically precise rendering of a piece. It is quite
difficult for the machine to infer what the original scoring was, based on a totally human
. performance. For this reason, the output :cores can not be expected to be identical to the input
score, but wiil reflect the modifications made by the performer.

For a piece of music that is only a single voice, the detection of pitch is a task which has been
treated ex:ensively by the speech understanding and recognition researchers. The topic treated
in this tnesis goes one step further in attempting to deal with more than one simuitaneous voice.
The only reason the present implementation is restricted .to two voices is that the notes-at-
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octaves problem does not appear to have a simple solution. It is not clear how people can
distinguish notes whose harmonics overlap entirely.
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OVERVIEW OF THIS THESIS

In organizing the thesis, many decisions had to be made concerning how much to inciude and
where to include it. Rather than present just the program itself, a more complete description of
the history of music analysis and a discussion of the relation of many common signal-processing
techniques to musical sound is included, at the cost of including a large amount of detail on
methods that were not included in the final realization. Since the failures can be as revealing as
the successes, it is hoped that this additional information will be of use to future researchers
who may avoid some duphca.uon of effort.

Since there has been little effort to produce an automated musical scribe, no literature appears
on the subject. The only effort known to the author is the Melograph, a special-purpose
hardware device built by Inter-Ocean Systems of Santa Barbara. This device makes a graph of
the pitch of the input waveform with time. This graph is in fact not a score, but is enough to
get an idea of what was being played.

The historical review thus does not {(can not) deal extensively with the exact problem at hand.
There are, however, many analyses of music, musical instruments, and even musical sound,
some of which have been done-on the computer. If we temporarily widen our scope to include
analysis for purpose of insight and analysis for the purpose of synthesis, then we have an
abundance of material for discussion. This is, in fact, what was done. The historical review
includes all analyses of musical sound by computer that we found, as well as a review of speech
processing literature, a related sub ject.

While doing the research for this thesis, many techniques were discovered which were not
directly useful for the musical scribe, but which had application in other areas of musical sound
analysis. These techniques (the heterodyne filter especially) will be described, as well as a
discussion of many of the techniques that were not found useful for any aspect of music
processing for one reason or another. The latter were included so that future researchers will
not spend too much time on known dead ends. To some extent, these are divérsions from the
subject at hand, but since they were part of the research done in the course of this thesis, it
seems reasonable to expose them here.

The thesis is civided into four parts. The introduction (this secticn), a section on low-level
techniques, a section on high-level techniques, and a critical review section.

In the introduction, we give background informazion as well as a detailed historical review.
Readers not familiar with the characteristics of musical sounds may be interested in the section
entitled W hat is Musical Sound? The historical review section is followed by a quick summary
of pitch perception theory, which comes from the field of psychoacoustics.

The next section is on low-level techriques. These are the algorithms that operate directly on
the digitized waveforra. They are iargely signal-processing techniques, adapted for this special
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application. In order, we review the autocorrelation function and the optimum-comb technique.
These are useful for periodicity detection and tracking. Their application to the detection of
musical harmony is ‘discussed. The heterodyne filter follows with a method for determining the
amplitudes and frequencies of the harmonics of a single musical note. This technique has
turned out to be very useful for music synthesis, for it can capture all the time-variant
information in a musical tone. Next, we review the bandpass filter. Although it is a very old
device, its application to musical sound has been little explored in the past. We show several
graphs of applications of bandpass filtering to the extraction of a single harmonic from a
polyphonic piece of musical sound. The bandpass filter forms the core of the musical
transcription system. :

In this section we also discuss several signal-processing techniques that were tried but were not
found to be entirely useful for the current problem. These inciude the cepstrum, the discrete
Fourier transform, and the linear predictor. The cepstrum and the linear predictor seem io be
useful only in the monophonic case. The discrete Fourier -transform assumes that the
autocorrelation of the input signal is stationary. If the signal is changing either in amplitude or
frequency, the transform is distorted. This means that 'any system based upon the discrete -
Fourier transform could never be extended to encompass vibrato or hxghly reverberant
environments.

Next, we discuss the way we combine the various signal-processing routines to form a complete
low-level package for musical transcription. Here we discuss the utility of determining the
vertical harmony of the piece as a planning phase for setting up the frequencies of a band of
‘bandpass filters. The filter output is processed with a pitch detector and an energy detector to
produce power and frequency functions for the output of each filter. In the planning phase, we -

assure that every harmonic of every note will be passed by some filter.

The nex: section deals with intermediate-level techniques. Here we past from the world of
digital signal processing into the world of artificial intelligence. These techniques deal with
making sense from the outputs of the bandpass filters, figuring out what notes were present in
the input signal, and how best to print these for readability. Té allow easy comparison of the
filter outnuts, we produce a rating of the quality of a given power-frequency function pair. If
this rating is properly prepared, we can easily separate the spurious traces frcm the meaningfu!
ones. We can then hypothesize the existence of notes from their harmonics. We then discuss
some of the aspects of manuscripting.

The iast section is a critical review of the system. We begin with some 2xamples which show
the viability of the system. We then discuss the weak points of the system with suggestions as to
how they may be improved. This involves the development of adaptive pltch tracking filters
as well as further research in other areas.

i
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HISTORICAL REVIEW

EARLY ANALYSES

There have been fnany analyses done of music instrument tones, usually in order to gain
insight into the physics of a specific instrument. It was not until the advent of electronics that
music analysis on a quantitative basis became practical. One of the first examples we have is
that of Backhaus [1927, 1932] His system consisted of a narrow band-pass filter, using a carbon
microphone and a 5 vacuum-tube amplifier, connected to a pen and drum recorder. The filter
was tuned to the frequency of the harmonic of interest and the bandwidth was set to suppress
‘ad jacent harmonics. The drum assembly was brought up to speed by hand (turning a crank).
Then all at once, the pen was lowered onto the paper, the threaded shaft that the drum turned
on was stopped, leaving the drum to turn and screw itself down (by momentum) and thus cause
the pen to leave a helical trace on the paper, and the musician played a single note on his
instrument. The drum was apparently massive enough to keep its speed for quite a while. The
resulting trace was taken to approximate the behavior of a single harmonic from the
instrument. The process was repeated for many harmonics of many different notes. Needless to
say, the process was cumbersome enough to prevent great volumes of data from being
accumulated. The amplitude of the harmonic with time was then traced and plotted by hand.
Since wire recording techniques were not yet perfected, the note had to be played again and
again to get ail the harmonics. We know now that no two notes are alike in fine structure, thus
casting doubt on the details of the results, but the technique did work adequately on the steady-
state portion of notes. His principal result was an analysis of violin resonances in an attempt to -
find out why the Stradivarius was so revered in the music world. This same theme recurs
constantly throughout the literature.

The advance of the oscilliscope in the 40’s brought about a new wave of research. The steady-
state portion of a waveform could be photographedor drawn from the face of the cathode-ray
tube, and then analyzed by calculating the Fourier sine and cosine series. The Fourier integrals
were often computed by hand, until a mechanical device (the Henrici analyzer) was built to do
just that. The operator would trace the curve with the stylus of the device and then just read
off the amplitudes of the harmonics on the dials. Analyses of this sort are very common in the
literature [Lehman 1964, Parker 1947, Saunders 1946, Fletcher et a/ 1962]. Saunders analysed
wind instrument tones to try to determine if the wind instruments exhibited resonances like the
string instruments do. He found no evidence of the existence of formants in the instruments he
anaiysed (clarinet. oboe, English horn, French horn, and flute). Parker analysed the tones of
wooden and metal clarinets using a mechanical embouchure, finding that there was little
difference between wooa and metal clarinet tones. Lehman analysed the bassoon in great detail,
using the Kay sonagranh, a device consisting of a number of narrow band-pass filters and a
recording system that produced bars on a roll of paper that became thicker in proportion to the
energy output of each bandpass filter. He concluded that there is a strong formant between 440
and 510 Hz in the bassoon, accompanied by a weaker formant around 1220 and 1280 Hz.




B3 HISTORICAL REVIEW
COMPUTER ANALYSES

Let us jump immediately into the computer analysis of music instrument tones, leaving behind
the large number of articles which were done without computers. One of the first computer-
based analyses of music instrument tones was done by David Luce [1963]. Using the 709 at
MIT, he digitized and analyzed tones from a large number of music instruments. Again, this
was done for gaining insight into the behavior of the instrument and its possible perceptual
implications. Since his analysis technique was the basis for several following works, including
our own heterodyne filter, we will describe and analyze it in some detail. ’

LUCE

The object of Luce’s method was to determine the amplitudes and frequencies of each of the
harmonics of a tone as functions of time. These were plotted for further study. The method
used was to approximate the integrals for the Fourier sine and cosine series by discrete
summations. First, the fundamental frequency was determined by filtering the note itself to
remove all harmonics except the fundamental. The fundamental was then digitized and the
zero crossings were used to compute the frequency. This works in most cases, but sometimes
gives errors-of-octave when the energy in the fundamental is very weak. In these cases, the
pitzh of the note was matched by hand with an oscillator and the waveform from the oscillator
was used. This estimate of the fundamental frequency was used to divide up the waveform
from the instrument roughly into separate periods. For each period, 24 equally spaced points
were selected. Since the period of the signal was not necessarily a multiple of 24 points, linear
interpolation was used to generate the values between the sample points. From these 24 points,
the Tourier sine and cosine coefficients were generated. This is represented by the following
formulae:

(1) sy - L & L 1 '-
1) a,im) = 15 2 s[(m-l)T.-t-ﬁ N em(Zm?.—)

L=l

o . 24 o
- 1 LT
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Where 5 (1) is the input waveform,

Tg is the period of the input waveform,

m is the number of the period under analysis,

L is the sample number within the period which is f-om 1 to 24,
and N is the harmonic number.

The result was one pair of coefficients for every period throughout the duration of the
waveform. The pair of coefficients were converted to radial form and the magnitudes and
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angles were then plotted. To test the validity of the analysis procedure, the magnitudes and
angles were used to synthesize a tone. This tone was played through a digital-to-analog
converter (DAC) and compared to the original tone. The first problem encountered was the
fact that the magnitudes and phases that were sampled once per period lead to a discontinuous
waveform. This is because at the beginning of each period, the phasek and magnitudes were
. suddenly changed to the values for that period. If the parameters for this period were
significantly different for the previous period, a discontinuity results. This is often the case
during the attack and decay portions of a note. This was remedied in part by filtering
(digitally) the waveform at' a frequency higher than the frequency of the highest harmonic to
remove spurious harmonic distortion. The results of listening tests were that the string family -
was well reproduced, but the brasses suffered-a bit.'T he lowest octaves trumpet,-trombone, tuba,
and French horn were all noticeably different than the original notes. The notes sounded very
. rough. This was explained by the insufficiency of using 24 points per period. Since the brass
tones have a pulsz-like waveform, sometimes the pulse itself occurred between two selected
points, thus reducing the magnitudes of the Forier components for that period. This hit-or-miss
behavior created great jitter in the magnitudes as functions of time, thus contributing to a
rough sound. Similar difficulties were encountered with the clarinet tone.

What we mean by "pulse-like” is that the waveform, in-each period, has an initial strong
maximum followed by activity of lesser amplitudes throughout the remainder of the period. -
This can occur if the harmonics of the waveform are all cosines, such that their maxima
coincide and reinforce, producing one strong maximum per period.

FREEDMAN
The next set of analysis programs were written by Morris David Freedman at the University of

INinois [1965, 1967, 1968]. In his system, music instrument tones are modeled by the following
equation: : : ' :
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Where U (t) is the unit step function,

k is the harmonic number, - - -

Wy is the radian frequancy of the k" harmonic,

r, is, the phase of the k™ harmonic,

Tk is the beginning time of the k'™ harmonic,

h(t) is the amplitude envelope of the k'™ harmonic.

A,* is the amplitude of the rth compovncnt of the amplitude envelope of
the k™ harmonic,

T is the beginning time of the rth component of the amplitude envelope
of the k" harmonic, )

a,y is the time constant of the r'» component of the amplitude envelope
of the k" harmonic,

g(t) is the signal that is to model the music instrument tone.

This is a sum of sinusoids, not necessarily harmonically related, with piecewise-constant
frequencies. The amplitudes of the sinusoids are piecewise sums of exponentials and constants.
For synthesis, linear interpolation was used to smoothly change from one frequency value to the
next, thus eliminating Luce’s problem of discontinuities.. To get the parameters of the model
from an actual music instrument tone, a three step process was used. The first step gets the
pnase differences of the harmanics and the average frequency of each harmonic. The secand
step determins the amplitudes and phases of each of the harmonics as functions of time, guided
by the frequencies of the harmonics as computed in the first step. The second step can then be
repeated with the new frequency data for a better approximation. This completed the analysis.
The amplitude functions of the harmonics were examined fer places of greai chaage of slope
and these piaces were taken to be the "breakpoints” for the piecewise-exponential amplitudes as
shown above.

The first step of the analysis usec what he called the "D-transform.” It is defined as follows:

; :
() D(t,w) = %g‘ fir1g %y,

where f (T) is the input waveform
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This is a Fourier integral of a function that is limited in time to positive values less than t. The
second and third steps of the analysis used what he called the "G-transform” which is defined
as follows:

t+T "
®) Gt,w = [ fine 9Ty
t-T

Where T is the period of the input waveform.

This is a Fourier mtegral over one period of the input waveform, This returns the quadrature
components which can be used to derive the magnitudes and phases of the harmonics as
functions of time. Freedman does not say how often the integral is evaluated, but we assume it .
is evaluated once per period of the input signal, as Luce did.

Again, the tones were synthesized using the data from the analysis. The trumpet and
saxophone tones were judged to be nearly indistinguishable from the originals. The violin was
judged the poorest, although it was judged as quite good. In each case, the synthetic tone
showed the characteristic quality of the instrument. ‘The vwhn sounded bowed and the flute
sounded "breathy.”

BEAUCHAMP, KEELER

Beauchamp, also at University of Iilinois, built upon the work of Freedman by using only the
G-transform, adding a filtering operation, and using piecewise linear functions to represent the
amplitude functions [Beauchamp 1969]. The amplitude functions were filtered with a low-pass
filter to remove a characteristic ripple in the functions that was at the frequency of the
fundamental. He evaluated the functions "a few" times per period. The amplitude functions
were then approxiinated with piecewise-linear functions. For synthesis, the frequencies (phases)
of the harmonics were not varied with time. Just the initial phase angles were preserved. The
frequency of the entire tone was allowed to vary in a piecewise-linear fashion, with the ratios
between the frequencies of harmonics held constant, as with Luce and Freedman, but explicit
and separate control over the frequencies of each of the harmonics was not used. -

Since the publication of the above described paper, Beauchamp [personal communication,
1974] has applied the Fast Fourier Transform algorithm (FFT) to the evaluation of the G-
transform. This is done by first reducing each period of the input signal to 64 points by linear
interpolation, much like Luce, maltiplying the signal by a Hamming "window” function
[Blackman and Tukey 1959], and then taking the discrete Fourier transform of each period
using the FFT algorirthm for efficiency.

Keeler [1672] analyzed tones from organ pipes using techniques similar to Beauchamp's
publishec method. Ha evaluated the Fourier integral numerically using quadratic
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approximation by Simpson’s rule and Lagrangian interpolation to improve the accuracy. In his
methaod, the worst-case error in the amplitude estimate for a given harmonic was less than 1.25
percent. He was not concerned about the phase as a function of time and thus did not carry
along that information. He did not attempt a synthesis of the tones from the analysis data.

THE MELOGRAPH

The computer analysis techniques described above were for the purpose of gaining insight into
the properties of instruments or musical waveforms, and simulation of music instrument tones.
We have still not de‘scribed--ari'rmethodvof'lrmibing@pieceoﬁmusic: This-is because, to our
knowledge, no such analysis has ever been done. The closest we have found is work in.speech
understanding and recognition, and a peculiar device called the Melograph.

The Melograph is a special-purpose piece of mostly analog hardware and a chart recording
scheme which has two purposes. One function it can perform is that of a high-resolution
spectrograph. It can simulate 100 bandpass filters and record the energy output of each on the
graph. The second function is that of detecting, tracking, and graphing the fundamental
frequency of an input waveform with time. It can only operate on a monophonic (one-voice)
input signal in a relatively noise-free environment. It accomplishes this by realizing a band of
1/3 octave band-pass filters. The outputs of the filters are scanned every 4 milliseconds from
lowest frequency to highest, searching for a maximum in the energy output of a particular filter
relative to its neighbors. When the first maximum is found, the output of*that filter is assumed
to -ontain the fundamental of the tone. The zero crossings of the output of that fiiter are
counted and that number is used to compute the pitch. This pitch is then plotted on the chart..
Since there is no documentation on the operation of the device, this information was obtained
by verbal contact. The device belongs to the Ethnomusicology department of the University of
Los Angeles and is used for transcribing single-voiced ethnic music, usually human voice. The
device was built by Inter-Ocean systems of Santa Barbara.

To comment on the operation of the Melograph, let us quote from an article by M.R. Schroeder
(1970} ‘ : '

The oldest approach [to pitch detection] simply isolates the fundamental frequency
of the signal by means of a low-pass or band-pass filter and *hen determines the
frequency or period of the fundamental by means of measuring the rate of or the
distance between axis crossings. Unfortunately, in many speech signals the
fundamental is weak or even absent (as in mos! telephone signalis).

In general, we cannot rely on the presence of the fundamental, or on the hope that the
fundamental will be stronger than the second harmonic. ’




INTRODUCTION 18
SPEECH TECHNIQUES

The' research in speech understanding has contributed a great deal of work in pitch detection
and system estimation. Since any musical scribe must detect the pitch of the incoming .
waveform, much of this may be useful. Let us describe some of these techniques in detail:

FOURIER METHODS

Our old standards, the Fourier transform and autocorrelation, were among the first to be tried
[Harris and Weiss 1963]. These techniques were useful but had certain problems. In either the
spectrum or the autocorrelation, there is- a -peak- in -the- output-at-every multiple-of the
fundamental frequ=ncy (for autocorrelation, there is a peak at each multiple of the fundamental
period). One could not just take the lowest peak because it is sometimes not there. Harris and
Weiss developed a method of looking at several peaks in a row and forming an estimate of the
fundamental frequency by averaging the contributions from the two strongest ad jacent peaks.
Rife and Vincent [1970), aithough not working directly with the pitch detection problem,
developed a method of interpolating to get the position of the peak quite accurately by using
weighting functions which had known effects on the transforms.

THE CEPSTRUM

With the advent of the cepstrum, probably first used by Bogert working on a suggestion by
Tukey {Bogert, Healy, and Tukey, 1963}, a new tool for speech research was opened up. Noll's
" classic article (1967] gave detailed instructions on the use of the cepstrum for the detection of
fundamental frequency. This system had the advantage that the maximum of the cepstrum was
often unique. When there was another peak, it was generally at twice the period of the
fundamental, and rarely did it exceed the strength of the peak representing the fundamentai.
The cepstrum consists of the inverse Fourier transform of the log-magnitude Fourier transform
of the input waveform. Since the autocorrelation is the inverse Fourier transform of the
magritude Fourier transform of the input waveform, the two processes are related. They boti -
have time as tie independent variable; they plot period rather than frequency. The theoretical
basis of the method was developed in great detail by Oppenheim [1968, 1969}, and Schafer
(1969). Roughly, the way it works'in speech analysis is as follows: the speech waveform is taken
to be the result of an excitation function (the. glottal pulse) and a realizable filter {the vocal
tract). It then follows that the log-magnituce Fourier transform of a segment of 2 speech
waveform is the sum of the loz-magnitude Fourier transforms of the glottal pulse waveform
and the vocal tract impulse response. This being true, one can compute what the Fourier
transform of this log-magnitude spectrum will be by superposition, since the signals add in the
log-magnitude domain. Since the vocal tract is a filter, its frequency response is usually a
broad, smooth curve with a small number of peaks (formants). The glottal puise, however, is a
nea:ly-periodic wavsform which consequently has many harmonics. Its iransform has a peak at
the frequency of every harmonic. The transform is roughly periodic with a period equal to the
fundamental frequency of the signal. If we take the transform of this quasi-periodic log-
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magnitude spectrum, we would then expect to get a strong peak at the period representing the
repetition rate in the frequency (or time) domain. When we take the transform of the log-
magnitude frequency response of the vocal tract, however, we would expect to get something
concentrated around the short periods, since the frequency response of the vocal tract is broad

" and slowly varying. This is, in fact, generally the case. The peak due to the periodicity of the
glottal pulse tends to stand out from the activity due to the vocal tract. In fact, this separation
of repetition from system response (excitation from filtering) was the basis of several ingenious
techniques for removing echos [Schafer 1969] and for estimating the impulse response of the
vocal tract. This estimation led to the development of the homomorphic vocoder [Oppenheim
1969, Miller 1973}, where the cepstrum.was.used.to determine.the. pitch. of-the speech signal as
well as the impulse response. The signal could then be synthesized by convolving the derived
impulse response with an impulse train at the original pitch. The impulse response was
determined by eliminating the peak from the cepstrum and then inverting the process to yield a
time series which was, in fact, an estimate of the impuise response of .the filter. The peak was
eliminated by simply setting the cepstrum to zero from the peak on, leaving only the short-time
values of the cepstrum. Miller [1973] made extensive use of this technique to extract singing
voice from orchestral background. Since the cepstrum just picked up whatever was loudest,
there was quite a bit of error in the analysis Which was subsequently corrected by hand. The
ceps:rum would just as happily track an orchestral instrument as the voice, if it happened to be
dominant at the -time. The result was synthesized with good results. The singing was highly
intelligible and preserved weil the character of the singer. One innovation in the synthesis is
worth noting. Since the analysis is somewhat noisy, the impulse response estimate tended to vary
from one estimate to the next. This produced- some undesirable variation in the synthesis which
sounded like roughness in the tone. This was eliminated by repeating each impulse response not
just once. but five times with amplitudes which built up to a maximum and then f. This had
the result of interpolating smoothly between one impulse response and the next and thus
eliminated any roughness in the sound. Schafer’s thesis gives an excellent review of
homomorphic filter techniques.

THE LINEAR PREDICTOR

Another technique of system estimation which has been shown useful in pitch detection is the
linear predictor (ltakura and Saito 1968, 1970, 1971; Markel 1972; Makhoul and Wolf 1972;
Makhoul 1975; Boll 1973]. The idea here is to again model the signal as an excitation function,
and a filter. We use the discrete analog of the Wiener-Hopf integral (Wiener 1947; Levinson
1247, Robinson 1967, Lee 1960] to estimate a non-recursive digital filter that approximates a
filter which corresponds to the inverse of the filter that produced the sound. In other worcs, the
filter we calculate has an anti-resonance everywhere the vocal tract has a resonance. If we filter
the speech waveform with this filter that we have computed, the output will approach an
impulse train. The better the estimation of the filter, the closer to an impulse train the output
will be. This is because this filter, called an "inverse filter,” tends to make the amplitudes of the




INTRODUCTION . ' 2

harmonics equal. Since the periodic signal with harmonics that all have the same amplitude is a
pulse train, the output of the filter approaches the ideal pulse train. Pitch is then detected by
calculating the distance between successive peaks of the inverse filtered speech waveform. Pitch
can also be computed by taking the autocorrelation of the inverse filtered speech waveform.
The largest peak in: the autocorrelation is taken to represent the fundamental period. The
theory behind this is that the reason the autocorrelation is not useful when directly applied to
the speech waveform is widening of the autocorrelation peaks by the effect of the vocal tract.
If the effect of the vocal tract is suppressed by filtering the waveform with the inverse filter,
the peaks in the autocorrelation will be sharpened considerably. Since the speech waveform is
constantly changing, the filter must be -reconiputed.. periodically..It .is.often..done.every. 5.or. 10
milliseconds. :

The linear predictor can also be used, like the cepstrum, as a vocoder. Since the filter calculated
by the predictor is an approximation to a fiiter whose inverse behaves like the vocal tract, the
speech waveform can be synthesized by simply filtering a pulse train by the inverse of the filter
produced by the predictor. Inverting the spectrum of a digital filter is a simple operation. Atal
and Hanauer [1971] and later Markel and Gray [1974] programmed vocoders based on this
principle and found them quite successful. A marvelous synthesis of the cepstrum and the
linear predictor was-done by Tribolet [1974], who joined the two methods to get an estimate of
both the poles.and the zeros of the filter. The linear predictor by-itself is an all-pole model and '
is sometimes inadequate in the presence of a strong nasal zero. These topics are part of the
larger field of system estimation. In this discipline, the object is to estimate the filter that could
have produced the input signal in as much detail as possible with as little error and
computation time as possible. Tribolet’s thesis gives an excellent review of system estimation
techniques. An excellent review and detailed analysis of the linear predictor is given by
Makhoul and Wolf [1972]. Boll has also made significant contributions to the reduction. of the
compute time for the linear predictor [1973] by assuming that the filter which represents the
vocal tract changes slowly with time. The estiraate at this point in time can then be used to aid
‘the computation of the estimate at the next point in time.

MISCELLANEOUS METHODS

Another method of pitch extraction that is also based on spectral flattening (making all the
harmonics more ahke in amplitude) was given by Sondhi [1968]. In his system, a band of
bandpass fiiters are used to determine the spectral envelope. The speech waveform is then
accentuated in frequencics where it is weakest. The resulting waveform has much more
prominent peaks which can then be used to determine the fundamental frequency, either
directly by wneasuring the distance between peaks, or by taking the largest peak in the
autocorrelation. Sondhi also noted that the peaks in the autocorrelation can be enhanced by
center clipping. This process uses an adaptive thresheld to gate the signal through only when
its magnitude exceeds the threshold. When the signal is passed, the threshold is subtracted
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(added if the signal is negative) to prevent discontinuities in the waveform. The threshold is set
to a fraction (such as .7) of the maximum amplitude in a given window. The center clipped
waveform is then autocorrelated, and the strongest peak in the autocorrelation is taken to be the
pitch period. ' :

DIRECT WAVEFORM ANALYSIS

A series of pitch detectors have been devised which base their estimates directly on the speech
waveform itself [Reddy 1966; Vicens 1969; Goid 1962; Gold and Rabiner 1969; Miller 19751
Reddy used a three-step process-based.on-measuring. the-significant-maxima-and minima of the
speech waveform. The first step just detected the times when the speech waveform exceeded a
certain fraction of the maximum of the waveform in a certain region. The second step
determined the significant maxima and minima of the waveform, looking for places where a
maximum and a minimum occur together. These two methods were related by three heuristic
algorithms which matched the two pitch estimates, eliminated irregularities and filled "holes” in
the pitch estimates. Gold and Rabiner made six measurements on the speech waveform,
producing six different pitch period indications. A final stage of processing coordinated these
six estimates to produce the final estimate. Two refinements were offered to improve the
performance. Miller developed a technique which detects the “principal excursion” of the
speech waveform for each period. This excursion is the large positive pulse which occurs after
the glottal pulse. It is essentially the impulse response of the vocal tract. In most phonemes
except nasals, this pulse is quite prominent. His method consists of integrating the waveform to
locate the position of maXimum positive area. The. zero crossing preceeding this position is
taken to be the beginning of the principal excursion. A series of heuristics is used to prune
spurious and irregular zero crossings from the estimate. )

All of the previous methods are based on the fact that the speech waveform is unique in many
respects. It is this special behavior of the speech waveform that makes measurements on the
waveform itself useful. These methods are somewhat sensitive to phase distortion. Miller’s
method, for instance, can be fooled by passing the speech waveform throuzh an all-pass filter,
which causes phase distortion that can eliminate the prominent peak in the signal. Excessive
room reverberation, such as found in large concert halls, can also spoil the method, since
reverberation causes gieat phase distortion. The method of Gold and Rabiner used a Lerner
filter for bandpass filtering to preserve the phase relations as much as possible.
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'MUSIC PERCEPTION - _
or: A Child's Garden of Psychoacoustics

PITCH PERCEPTION

In trying to determine a method for analyzing musical sound, it would seem reasonable to look
at what is known about how the ear does it, since we are trying to rival the ear’s performance.
As it turns out, many interesting observations have been made, but they raise many more
questions than they answer. Let us review. the existing literature in one particular area, the
perception of the pitch of one voice. It seems impossible to cover all the interesting work in
this area. We shall not attempt to do so here.

Our ear is presented with a musical tone. We perceive it as being at some pitch. What features
of the waveform determine that pitch? What starts out sounding like such a simple problem -
turns out to be very complex.

In our naivite, we might first postulate something like Ohm's acoustical law [Ohm 1843]. Ohm
suggested applying Fourier’s theorem, such that each tone of a different pitch in a compiex
sound originates from: the ob jective existence of a peak at that particular frequency in the
Fourier analysis of the acoustic waveform. This would imply that the impression of pitch
depends not only on the existence of a sinusoid at the fundamental frequency, but also that that
sinusoid is of a stronger amplitude than any harmonics the tone may exhibit. Seebeck [1843]
countered the theory of Ohm by determining the Fourier spectra of several of his previous
observations [1841] and showing that in several cases, the sinusoid at the fundamental
frequency was quite weak or even missing. A pitch at the hypothetical fundamental frequency
was still perceived. Ohm [1844] and later Helmholtz [1863] declared Seebeck’s observations to
be invalid and the result of either illusion or fau'ty experimental technique. o

We skip a haif a century and pick up again with the work of Von Békésy [1928), who
produced proof that the ear does a spectral analysis of some sort, where different frejuencies
excite responses from neurons originating in different places along the basilar membrane. As
we progress along the membrane, the excitory frequency changes smoothly in a vaguely
" logarithmic manner.

With the coming of electronics, increasing evidence was gathered for the case of the missing
fundamentcl, that inceed. a pitch could be perceived without the existence of any fundamental
frequency at all. In fact, a group of higher harmonics can be heard collectively as a single,
unified. percapt. This percept is called the residue.

In an attempt to explain the phenomenon of the residue, one might observe that severai
ad jacent harmonics addea together produce a waveform whicn has a perindic modulation at
the frequency corresponding to the difierence of the harmonics. One might then hypothesize
that either the ear detects the 2nvelope of the incoming waveform, thus demodulating the signal
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and extracting the frequency of the undulation, or perhaps the ear perceives the differences
between the harmonics directly and infers the pitch from that. Figure | shows the waveform of
a signal that has no fundamental frequency. It was produced by bandpass filtering a signal
which has many harmonics. Notice the regular undutation that might imply some fundamental
periodicity. Figure 2 shows the discrete Fourier transform of the waveform in figure 1,

showing that it, indeed, has no fundamental. It also shows that the frequency of the undulation
is roughly equal to the spacing of the harmonics in the Fourier transform. This undulation is a
_characteristic of a cluster of isolated harmonics.

Schouten [1940] in one experiment showed that neither of these could be the case. This was
done by shifting the set of harmonics collectively by some amount. This makes the sinusoids no
longer harmonically related, but it preserves the constant differences among them. In fact, one
does perceive a change in the pitch of the residue even though the envelope of the waveform
has not changed, nor has the differences of the frequencies of the sinusoids.

So. It is not the envelope, nor is it the differences among the harmonics. Well, what is it? Dé
Boer [1956] did some revealing experiments which began the current trend in thinking on this
question. If one takes a sinusoid of some frequency f, say 2000 Hz, and amplitude modulates it
with some other frequency g, say 200 Hz, one gets three sinusoids of frequencies f-g, f, and
f+g. As usual, these are heard as one percept of pitch g. A change in the carrier frequency, f,
results in a proportional shift in perceived pitch. A more remarkable observation was that the
pitch shifted downward when the modulating frequency, g, was raised! This effect was met
with doubt up to incredulity. De Boer made the observation that these phenomena could be
explained by hypothesizing that the ear detected the time difference between peaks of
comparable amplitude. This is called the fine structure hypothesis, that the ear detects the
details of the fine structure of the waveform and uses that data as the basis for pitch. Figure 3
shows the essence of this theory. We see a waveform which has a regular unduiation. W2 have
chosen an'ambiguous case, where there are two separate maxima of equal amplitude, such thar
the time between the maximum of the previous undulation and this undulation can have one

"+ of two values. This theory predxcts that the’pitch’ will be ambiguous in this case.

Ritsma [1970] extended this theory a bit by showing that if pitch information is available along
a large part of the basilar membrane at once (that is, if a tone has many harmonics), then the
ear uses only the information from a narrow band. This band is positioned at about 5 to 5
times the pitch value. This is called the concept of dominance. Ritsma sums up the theory as
follows:

The sound is subjected to a spectral analysis on the basilar membrane. Bacause of
the limited resolving power of the membrane, on each place of the membrane, a
waveform is generated. Aczording to the concept of dominance, only one region on
the basilar membrane is dominant with respect (o the perception of pitch. This
region is roughly 4 times the pitch value. On the waveform generated in this
dominant region, the ear performs an autocorrelation-iike process determining the
time interval hetween two pronounced positive peaks in the fine structure.
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FIGURE 1. This waveform was produced by filtering the waveform of a guitar tone so as to
select only a few of the upper harmonics. The note that was being played was roughly an E4 (332
Hz). The sixth and seventh harmonics were most prominant in this waveform, aithough many others
are present to a lesser extent. It is clear that the waveform is periodic with a period of roughly 3
miiliseconds, ‘which corresponds to the frequency of the note.
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FIGURE 2. This is the discrete Fqur'ier transform of the wﬁvefo?m in figure 1. As.we can
.see, tnhe first and second harmonics are entirely absent. Despite their absencs, the waveform in
figura 1 is quite pericdic. ‘
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FIGURE 3. This illustrates one theory of pitch detection which is sometimes czlled the
“fine-strusture hypothesis”. This theory states that the pitch is determined by measuring the time
between the peaks in successive wava groups. In the case pictured above, the ‘heory predicts a
percaptuai ambiguity in pitch, that some subjects would report f Hz. and some subjects would
report g Hz as the pitch of this tone. This tone is inharmonic. As was pointed out by Wightman
[1973], this theory is highly suspect because it depends on the phasing of the component
sinusoids, whereas pitch perception does not seem to. The effect of phase change can be
demonstrated simply by inverting the waveform. If we measure the distance between the negative
peaks rather than the positive peaks, there is no longer any ambiguity in the pitch measurement.
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This is what is called the place versus period controversy. The place advocates, of which
Heimholtz and Ohm were members, attribute the perception of pitch to the position of
maximum stimulation on the basilar membrane. The basilar membrane is known [Békésy 1934]
to be frequency sensitive, with the frequency distributed motonicaily along the length of the
membrane. The period advocates use the existence of the residue to show that there doesn’t
_'have to be any maximum at the place where ipiu:h is perceived.

There is, again, evidence that the fine structure process is not. the whole story. Smoorenburg
did experiments with the perceived pitch of complexes consisting of twa pure sinusoids. The
problem is that given two tones at frequencies f, and fy (f;<f,), one not only hears the
difference tone fa.f), but one hears the combination tone 2f,~f,, and it is louder than the
difference tone. This effect can not be explained by any of the methods discussed so far.
Hmmm! One explanation might be that there are nonlinearities in the ear that produce cross-
frequencies. The problem is that although one can hear tones at frequencies (n+l) f -nf,,
one does not hear the corresponding higher tones at (n+1) f,=nf,. One can only wriggle out
of this one by declaring that the nonlinearity must be frequency-selective, that it suppresses the
higher sideband itself. Further work places more and more restrictions on the nonlinearity, such
that it can only be considered as tentative, and the existence of the combination tones has yet to -
be ewplamed satisfactorily.

Terhardt [1970] advanced De Boer’s (and others’) work and found small deviations in the pitch
of the residue from what would be predicted by the fine-structure hypothesis. His conclusions
imply that the ear itself transduces primary sensory data on the level of frequencies and -
amplitudes of the partials of a tone, and some higher level of processing is responsible for many
of the funny effects, like the residue.

This was all fine and good until Wightman [1973, 1974] came along and showed that a change
in the relative phases of the harmonics of a tone changes the fine structure drastically, but does
not alter the perceived pitch. This essentially eliminates the fine-structure hypothesis. This can
be seen in figure 3 bv merely inverting the picture. This changes the fine structure entirely. For
instance, there is no longer an ambiguity in the distance beiween maxima. ‘

There are any number of cther effects which should be mentioned just to give one an idea of
the complexity of the issue. One marvelous effect is that of repetition pitch. If one takes a
signal (like white noise) and delays it by some amount (say, 10 ms) and adds it back into itself, a
listener generally perceives a pitch at the frequency represented by the delay. If the original
signal is passed through a bandpass filter, and its delayed repetition passed through another
bandpass filter whose passband does not overlap that of the first filter, the sum of the two
filtered wavaforms does not procuce any pitch effect [Bilsen 19703 The point here is that this
effect could not be due to comparing successive peaks in the waveform for repetition bacause
there are not necessarily meaningfui repeating peaks. This argues for a more gross, averaging
- sort of process, like autacorrelation. Thers is a dichotic repetition pitch also. The criginal can
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be played into one ear and the deiayed sound can be playéd into the other, thus producing a
pitch. This could only be produced at the first place where the signals from different ears meet
at the same place, where they can be compared. The first place this is done is in the cortex
itself.

Another effect reported in the literature is that of the binaural residue {(Houtsma and Goldstein
19721 In this experiment, two higher harmonics are used to prbduce a perceived pitch at the

" frequency of the missing fundamental. The difference is that one harmonic is played into one
ear and the other harmonic is played in the other ear. At low sound pressure levels, one indeed
does get a residue phenomenon. Like the dichotic repetition pitch, this implies that some aspects
of pitch formation are done at a high level of processing. Our informal listening tests have
failed to confirm this effect. .

Siebert [1970] calculated entirely from statistical arguments that human perception of pure sine
tones was based on place rather than periodicity. His calculations show that not only wouid the
frequency resolution be much more acute, but the form of the behavior as a function of the
frequency of the tone would be different if time cues were used. It would, for one thing, be
_dependent upon the amplitude of the tone. Except in the limit (very loud or very soft), the
resolution is independent of amplitude. Three more recent theories (Wightman, Goldstein
[1373]. Terhardt) go on to propose modified place theories. In these theses, the place of
stimulation is transmitted to the brain, where some higher-level process pieces together the
evidence and registers a pitch. Terhardt even shows a learning model which must undergo a
training sequence to acquire effects like the .residue. In none of these theories is the
fundamental necessary for pitch perception. It is inferred from a sequence of harmonics. Both
Goldstein and Terhardt present models that are essentially statistical in nature, leaning heavily
toward decision-theoretic methodology. Wightman is still using a modified autocorrelation
approach with reasonable results so far. None of the models is comprehensive enough to
explain all the effects of pitch perception that have been noted, but they all shcw promise of
being extendable. If implemented on the computer, Terhardt's model would require more than
188 words of memory just for the decision table.

In any case, it would appear that “he current concensus is that the ear resolves separately each
of the harmonics of a complex tone. The exisience of and piich of tnese harmonics is sent to
the brain. The brain then examines them (and the immediate past, presumably) and cecides
what pitches are present. The theory to date is not detailed enough to directly code for the
computer, but it is somewhat suggestive of promising directions for research.

It is not clear what the residue and combination tones have to do with music perception. Most
music is polyphonic, which already implies that weak effects like residue and combination tones

are of secondary importance.

There is a great deal more literature in psychoacoustics that dea! with topics that are related to




INTRODUCTION ‘ 28

music to one degree or another that will not be reviewed here. These include works on
- consonance and dissonance, timbre, cognitive (high-level) processing, and many others.




S 2 PROBLE»{ STATEMEN;’
LOW-LEVEL TECHNIQUES

INTRODUCTION |

The: low-level techniques are those which operate directly on the digitized waveform. They
belong largely to the realm of digital signal processing. The purpose of these techniques, in our
application, is to determine what frequencies are present in the input waveform, how. strong
they are, and over what intervals. in time. they.exist... This is, of . course, a -statement of the
variables in our model of musical sound. We wish to determine how many sinusoids are present
at any given time as well as what the slowly-varying amplitude and frequency functions are, as
functions of time. Since we are not interested, for the moment, in identification of the
instruments, nor are we interested here in synthesis of music instrument tones (synthesis will,

" however, be discussed briefly in the following sections), we do not need to determine these

functions to great accuracy.

The routines group themselves into two broad categories: pitch detectors and harmonic
extractors. The pitch detectors (more precisely, periodicity detectors) take ‘a signal in and
produce as output a list of what frequencies are present in the signal as a function of time.
Pitch detectors work best when the signal is a single periodic waveform, but have some
application in polyphonic sound. Although any number of techniques have been used as pitch .
detectors in the past [Gold 1962; Gold and Rabiner 1969; Moorer 1974; Miller 1975; Harris and
Weiss 1963; Markel 1972; Noll 1967; Sondhi 1968; Reddy 1968), we will only deal with two
autocorrelation-like methods: the optimum-comb method and the autocorrelation function. The
reason 1s that these methods are more useful in the bolyphonic case than any other common
methads. The methods that use direct waveform measurement [Reddy 1966; Gold 1962; Miller
1975] are biased toward monophonic human speech. The spectral flattening methods [Markel
1972; Sonrthi 1368) are based entirely on the assumption of monophony and have no
application in polyphony. The spectral methods [Harris and Weiss 1963 Noll 1967]) have
various problems and will be discussed individually later.

The purpose of a harmonic extractor is to produce the waveform, or at least a model of the
wavefcrm, as a function of time, with all other simultaneous activity eliminated. We will
discuss two such extractors: the heterodyne filter and bandpass fiitering. The heterodyne filter
is a harmonic-based technique, in that it requires that the input waveform be periodic. It then
returas the amplitudes and phases of each of the harmonics as functions of time. Bandpass
filtering has no such restriction, but has a problem with resolution of time-detail. There is a
direct tradeoff between frequency resolution and time resolution with the bandpzss filter. This
is sort of the signal processing enthusiast’s "Hemnberg principle” (or perhaps the signai
processor’s own personai albatross!). |
And then there are ail the methods that didn't work. These are, of course, far too numerous to
detail in cne lifetime, but three of the more important failures are discussed. '
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The techniques that were found useful are interesting in their own rigﬁt, but they must be
merged into a unified whole to accomplish-anything. The last section of this chapter deals with
the algorithms used to weave meaningful threads through the data.
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‘ 31 ' AUTOCORRELATION
METHODS FOUND TO BE USEFUL (AND WHY) |

THE AUTOCbRRELATIQN FUNCTION

INTRODUCTION .

The autocorrelation function is one. of the. oldest and best understood signal-processing
techniques. It is defined as follows: ’

- .
(7) A(T) = _j’ F(F (t+T) dt

Where F (t) is the input waveform at time t,
and T is the lag time in seconds.

In the world of sampled-data, we do not have the function from the beginning of time to the
end, nor do we have the function at all points. For sampled-data systems, there are several
analogous functions we may use: '

o

() Ap = 2 FoFrem ' (discrete analog of (7) )
Ne=co .

o N-m-1 . o .

(9) Ay = 2 Fo Fhem _ ' ("windowed™ to N points)
n=0 : :

H-1 ' ("eyclic® autocorrelatim;)

(18) Ap =2 FoF(ummdN ' i A
n=@
CON-1

(1) Ap = 2, FoFoum
: n=9

(covariance)

Where Fn is the input waveform at the ntt sample, that is, at time Nh
whers h is the time between samples
and M is the lag index in samples, that is, the totai lag time is mh

We shall use the definition of equation (11). To see what this does to a signal, let us calculate
and observe its behavior on a pure sinusoid.
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N-1

 (12) A, =Y, B sin(nwh+d) B sinl(nemwhip)

n=8

.

Where B is the amplitude of the sinusoid
W is the radian frequency of the sinusoid
¢ is the phase of the sinusoid

And by the magic of the summaﬁon calculus we get:

sin (Nwh)

(13) Ay = & B2 (N cos(mwn) - Sinfidh

cos [mwh+ (N-1) Wh+241}

This is plotted in figure 4 for certain values of the parameters. By equation (13), we can see
that A, is periodic with period Am = 2mw/wh. It has maxima and ‘minima that recur with
that period. As a function of M, it is, in fact, a perfect sinusoid. This can be seen because it is
the sum of two sinusoids of the same period (21r/wh) with differing but constant phases and
amplitudes: The result is another sinusoid. S

Since the autocorrelation is not linear, superposition does not apply. We cannot generalize by
inspection. We can, however, compute the autocorrelation of a perfectly periodic waveform of
arbitrary spectral content. * v '

N-l L L.
(14) Ay = 28 2 Bysintnjwhed) ] [ D By sinlnkwhidy) ]
Nl j=1 : k=l .

Where N is the harmonic number,

B, is the amplitude of the N'™ harmonic,

W i¢ the radian fundamental frequency of the wavefcrm,;
Py, is the phase of the N harmonic.

Which comes out ‘o the following:

. L L i [N(K")mh]
. 1 N-1 sin
(15) A, = = 3 3 B B, {cosimkwhsd ¢ +ot ] — 2
"2 jel kel * 2 sin(-kziloh
=“i“[N(k-o»')mh]

. N-1
- cos [mku)h+¢k».-¢:+_ Jo—
2 sin[(’(-kl)zwh‘]

This expression is piotted in figure 5 for several values of the variables invalved.
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F'IGUREA. This is the autocorrelation of a pure sinusoid. The result is, as we would
expect, a pure sinusoid with a maximum at integral muitipies of the period.
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FIGURE 5. This is the autocorrelation of a periodic signa: with 5 harmonics. As we see, the
result is also periodic, although the harmonic amplitudes are entirely differant from those of the
input waveform.
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Again, it is periodic in m with period Am = 2r/wh. Again, the maxima and minima recur
" with that period. thle this result is no longer a pure sinusoid, it is a harmonic series, and is
thus periodic. : . .

It is interesting also to observe the results when a waveform with missing harmonics is applied.
Figure 6 shows the autocorrelation of a waveform with only three harmonics, numbers 5, 6, and
7. The autocorrelation is still periodic with a period equal to the period of the missing
fundamental frequency. Figure 7 shows the autocorrelation of a waveform with harmonics 2, 3,
4, 6, 8, 9, and 10 present. This,is what you might get if two notes were present at 300 Hz and
450 Hz, an interval of a perfect fifth.

Two instruments playing at perfect fifths will produce an autocorrelation with a period equal to
that of a“fictitious "fundamental® period. .

With this theoretical base; let us see what this function does with actual music waveforms.
USAGE

We see in figure 8 the waveform of a trumpet playing an G4, roughly 392 Hz. This waveform
and the next were taken from a recording of Ravel's orchestration of Mussorgsky's Tableaux
D’une Exposition. This is the first note of the piece. We can easily see that the period is near
2.5 milliseconds. What small deviation exists is due to inaccuracies in the rotational speed of the
turntable. In figure 9 we see equation (11) evaluated for 3.5 periods of the input waveform.
We see that the output is periodic also with penod of about 2.5 milliseconds.

In figure 10 the waveform of the first brass chord of the piece. This is a G-minor triad. The
note, G, corresponds to a frequency of about 98 Hertz, which is slightly over 10 milliseconds in
~ period. The evaluation of equation (11) for this waveform is shown in figure 11. The greatest
maximum is clearly at about 10 milliseconds.” This demonstrates the principle of determining
the harmony of a piece of music without determining what notes are being piayed at any given
time. : '
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FIGURE 6. The autocorrelation of a periodic signal with only three harmonics: the Sth, 6th,
and 7th. The autocorrelation is periodic with a period equal to the missing fundamental of the
waveform. ’ ’ i :
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FIGURE 7. The autocorrelation of a periodi¢ signal with oniy harmonice 2, 3, 4, 6, 8, 9, and
10 present. This is what would occur, for instance, if two tones at 300 Hz and 450 Hz were
present siinultaneously. This represents the musical interval of the perfect fifth. Any two tones at
this interval wiil produce a periodicity in the autocorreiation equal to an implied fundamental period
of the zomposit waveforrn.
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FIGURE 8 A segment of the waveform of a solo trumpet in a highly reverberant
environment. This was taken from a recording of Tableau D’une Exposition.
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F'GURE 9. The autccorrelation of the waveform shown in figure 8. As we would expect, it
is. pertodic with the same period as the input waveform.
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Figure 10. A segment from a recordlng of a brass choir. Thts is a root-posltlon G-minor
chord taken from a recording of Tableau D'une Exposition.
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Figure 11. The autocorreiation of the waveform shown in figure 10.. It has maxima at
multiples cf 98 Hz, representing the low G2 root note.
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. THE COMB FILTER

DEFINITION AND ANALYSIS

’

Another function that is closely related to the autocorrelation function is the magnitude of the
output of a comb filter whose delay is swept over some range of interest. Thu was discussed by
Moaorer [1974] and by [Ross et al 19741

A comb filter is defined by the following difference equation:

(16) Y, = X,~Xpn

Where X, is the n' sample of the .input waveform,

and Y,, is the nt* sample of the output waveform

There are, in fact three other things that are called comb filters. The first is produced by
changing the subtriction to an addition. The other two are faormed by delaying and
differencing the output rather than the mput. We will only discuss the form shown in equation
(18).

It is easy to show that the magnitude-frequency response of the comb filter as deﬁned above is

(17) {sin?(mwh) + [l-cos(mwh)]?} 12

This comb filter has a zero of transmission at frequencies which are integral multiples of 1/mh
Hertz. Thus, if the input waveform is a stationary signal consisting of nothing but frequencies
which are multiples of 1/mh Hertz, the steady-state output of the filter will be identicaily zero.

What we do is to sum the magnitude of the cutput of the filter for some number of points, say
k points. The minima in this sum represents periodicities present in the input waveform. This
sum may be written in the foilowing manner:

k-1 o
18) 2 Ixm-( - nol-nl

This is re!ated to the au'ocorrelauon function as d:fined in equation (ll) In fact, it is
approximated by the following fu nctlon {Ross et al 1971}

(19) (A, -A,) 12

‘Where A, is defined by equation (11). This shows that where A, has a maximum, equation
(18) will show a minimum. Compucationally, equation (18) is easier to compute than equation

(11) because it involves oniy additions, .0 multiplicaticn or division.
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USE FOR DETERMINATION OF HARMONY

A program was written using the comb filter as the fundamental technique for the purpose of
determining the harmony of a piece of music. Figure 12 shows a display of the results of this -
program when applied to the first brass choir in Tableau D’une Exposition. The graph shows

time in milliseconds on the horizontal axis and frequency (actually, inverse period) on the

vertical axis. The vertical axis is period in seconds, but it is labeled in frequency. This places

the highest: frequency (smallest period) nearest the origin and the lowest frequency (largest.’
period) is at the top. The heavy squiggly roughly horizontal lines represent minima in the

evaluation of equation (11).- The equation was-evaluated-every- 10.milliseconds throughout the

excerpt. The minima in adjacent time slices which were extremely close in frequency were

linked into lists. The beginning of each list is denoted on the figure by a vertical stroke. The

long, light horizontal and vertical lines were placed there by hand as a guide to interpretation

of the figure. The vertical lines denote the places where the chords change, as determined by

hand (by ear?) by the author. The horizontal lines point out some selected frequencies. The

names of the chords have been placed above the graph as a guide to interpreting the data. One

attribute which is used by subsequent programs but is not shown here is the depth of the

minimum. Many of the traces are weak and will be subsequently ignored.

One of the interesting features is that the first G minor triad produces a strong trace on the low
G natural, but the second G minor triad produces a strong trace on the low Bb. This is because
on the second G minor triad, the Bb is doubled in the trumpets, giving it much more strength.
" The score of the first few bars c{ the piece is shown in figure 13 for reférence.

One thing to notice is how the traces often contine to run on after the chord has changed.
This is because the recording was made in an extremely reverberant environment. The tones
continued to ring long after the chord changed.

There arz many other traces for each chord than just the root of the chord. These other traces
are subharmonics of the notes in the chord. They are clear to see in figure 14 as all the other
minima. One must remember that.any periodic component of the waveform will produce some
kind of minimum in equation (11). The minima get deep when the periods are rational
multipies of one another. Then their subharmonics will coincide to produce a deep minimum.

To demnonstrate both the power and the limitations of this method for determining harmony, 9
test chords were synthesized and processed. The first was a C-major triad in root position. The
results are shown in figure 15. We see a strong minimum at slightly over 15 miliiseconds, which
is somewhat over 64 Her:z, which is about C2. This is as if the notes of the chord were the 4",
5%, and 6" harmonics of C2.
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When we add- an A4 to the chord, the chord becomes ambiguous. It is the superposition of a C
triad and an A-minor triad. This chord is usually referred to as an A-minor seventh chord. A
major seventh chord produces unambiguous deep minimum, because the major seventh chord
* represénts the 4'", 5™, 6™, and 7" harmonics of the root (even though the 7* harmonic is lower
in frequency than is commonly used in the major seventh chord).
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FIGURE 12. This shows the output of the optimum-comb pitch detector when appliec to the
first brass choir in Tabieaux D’une Exposition. The minima in adjacent time slots have been linked
together 'nto lists. There is a vertical stroke at the beginning of each list. The horizontal axis is
tima in milliseconds. The vertical axis is period, but is labeled in frequency. This means that the
labelings in frequency are not equally spaced and the highest frequency (smaliest period) is at the
origin. Naturally, the scale goes asymptotic at zero period (infinite frequency). To heip in
evaluating the results, light verlical bars have been placed at the places where the cherds change.
The chord names have been printed at the top of the figure. The 'ight horizontal bars dencte
some important frequencies for comparison. The strongest traces seem to occur when notes are
doubied in the orchestration. Compare this plot to figure 13 which shows the score of the first
part of the piece. .
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TABLEAUX D'UNE EXPOSITION

PROMENADE M oo KT

Maurice Ravel
Allegro giusto, nel modo russico; senza allegrezza, ma poco sostenute

e

Copyright 1929 by Edition Russe de Musiaua

Printed by arrngement 3ocsey & Hawkaes Inc., New York, ’;m‘ ;-I&l"‘.;;

FIGURE 13. This is the first page of Ravel’s orchestration of Mussorgsky’s Tzbleaux D'une
E«positicn. The original piano score is shown at the bottom. This is from the Soosey & Hawkes
nocket edition, 1929.
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FIGURE 14. This is the results of applying the optimum-comb to the first chord of the
brass choir in Tableaux D’une Exposition. The chord is @ G-minor. The principal minima are
subharmonics of G2 (about 98 Hz.). : S
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FIGURE 15. Equation (18) applied to C-major chord in root position. The notes in the
chord are C4, E4, and G4. We see a distinct minimum at 15.5 milliseconds, which is C2.
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FIGURE 16. Equation (18) applied to a C-major-sixth chord in root position. The notes in
the chord are C4, Ed, G4, and A4. Since this chord is ambiguous, no strong miniraum occurs This
chord is sually called an A-minor-seventh, in which case this chord is in the first inversion.
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The minor seventh chord does not have such a clean correspondence to the harmonic series.
The minima in the comb filter output for ambiguous chords are subharmonics of the notes of
the chord. This is shown in figure 16. When we apply the formula to a C-minor triad, we get
two strong minima. One is at F1, which makes the notes of the chord the 6", 7™ and ot
harmonics. The other is at AbO, which makes the notes of the chord the 10", 12* and 5%
harmonics. This is shown in figure 17. In figure 18 we see the results from a C-diminished
chord. The strong minimum is at Ab1, which makes the notes the 5 6" and 7™ harmenics. In
figure 19 we see the results from the famous diminished-seventh chord. This is one of the most
ambiguous chords in common usage. As.we.might expect, there_is no strong.minimum. Figure
20 reports the results for a C-augmented chord. There is a minimum at FO, which makes the
notes the 12", the 15", and the 19'™ harmonics. Now we have $ simpler examples. Figure 21
shows the results from a C-major-nineth chord, figure 22 is for a C-major triad in first
inversion, and figure 23 if for a C-major triad in second inversion. These three all show strong
minima at C2.

Thus we see that the comb filter can be used to detect and identify any unambiguous chord
with reasonable accuracy. . ’
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FIGURE 17. Equation (18) applied to C-minor chord in root position. The notes in the chord
are C4, Eb4, and G4. There are two strong minima. One at slightly over 23 milliseconds, or 43
Hertz.- 43 Hertz is F1. There is another minimum at 39 milliseconds, which is AbO
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FIGURE 18. Equation (18) applied to a C-diminished chord in root position. The noies in
the cherd are C4, Eb4, and Gb4. The strong minimum is slightly over 19 millisaconds, or about 52
Hz, which is Abl.
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FIGURE 19. Equation (18) appiied to Cod»mtshod-sovsnth chord. The notes in the chord are
C4, tb4, Gb4, and A4. There are no strong minima because this chord is. highly ambiguous.
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FIGURE 20. Equation (18) applied to a C-augmentcd chord in root position. The notes in
the chord are C4, E4, and Gnd. The s’rong minimum is slizhtly over 46 milliseconds, or about 22

Hz, wh:ch is

Fo.
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FIGURE 21. Equation (18) applied to C-major-ninth chord in root position. The notes in the
chord are C4, E4, G4, and D5. This chord, like the C-major chord, has a strong minimum at 155
milliseconds, or 64.5 Hertz, which is C2. The traditionsl definition of the ninth chord inciudes the
seventh degree, which in this case would be Bb4. It is ommitted here to help separate the effects
of the DS, although its inclusion would not greatly perturb the plot nor disturb the location of the

rainimum.
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FIGURE 22. Equation (18) apphed to a C-major chord in the first inversion. The notes m
the chord ara E4, G4, and C5. The strong minimum is again at 15.5 niilliseconds
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FIGURE 23. Equation (18) applied to C-major chord in second inversion. The notes in the

.chord are G3, C4, and E4. This chord, like the C-major chord, has a strong minimum
milliseconds .

at 155
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THE HETERODYNE FILTER
INTRODUCTION

This tool is an adaptation of the discrete Fourier transform, hereafter abbreviated DFT. The
heterodyne filter is used as a filter or operator. It-takes a function of time as input and gives
many functions of time as output. It is used to determine the amplitude and frequency functions -
which make up nearly-periodic waveforms. More directly, we represent such waveforms as
follows:

(20) F, = z A, sininwansd )
n=l

Where F , is the signal at time ah,

h is the time between consecutive samples,

@ is the radian fundamental frequency of the note,

n is the harmo;wic number,

" Ay is the amplituds of harmonic N at time ah,

M is the summation interval in samples. For best results, this must be set
to the number of samples in one period of F,‘. or the closest
integer to 2r/ (hw).

0, is the phase of harmonic N at time ah.

- This models the waveform as a sum of sinusoids with time-varying amplitudes and phases. We

must insist tha: the amplitudes and phases vary slowly with time, or the analysis procedure does
not give correct results. '

This is not a Fourier series represen:ation, although it looks similar. The Fourier series -
demands that the sinusoids be perfectly harmonic and of constant amplitude. If we allow the
amplitudes or phases to vary, the sinusoids are no longer orthogonal by summation over one

. period, thus the sinusoids do not constitute a Fourier series. We mention this fact because this

means that the tone can not be resynthesized by use of the fast Fourier transform algorithm. To
resynthesize the tone from A,,, 0,,, and @, we must evaluate M sinusoids for every point in
time.

The heterocyne filter has its main use in analysis for the purpose of insight into music
instrument physics and for resynthesis of the instrument tone. It could be used for analysis of
music that formed unambiguous-chords at every point, that had no notes outside of the chord. "
This is the case with very little music, thus making the filter of little use to the musical scribe.
One wou'ld be hard put to find any such music outside of harmony textbooks.

* METHOD AND ANALYSIS

The method is defined as follows:
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o+N=-1
21 a, =3 F, sin(nw,ihed,)
imsa :

a+N-1
(22) b,, = 3, F, coslnw,ihs,)

jma
(23) A, = (8, 2+b, '
(24) 6,, = atanl(a,/b,,)

Where (g is the radian frequency of analysis,
@g is the phase of analysis,

nis thp harmonic number,
F; is the input waveform at time ih

N is the nearest integral number of samples in one period of the input
waveform. :

The initial phase angle, @y, is included for generality. The method is independent of this phase
angle. ' : ' ' ' :

The'summaﬁons are taken over one period of the input waveform. Since N must be an integer,
we can not analyse for an arbitrary frequency whose period may not be an integral number of
samples. We must settle for taking the nearest integer. Having chosen the number of samples in
the summation, we must then set Wy to 21r/Nh. If this is not done, a very strange kind of
inaccuracy sets in. We will show an,e:.(ample of this presently.

We apply equations (21) through (24) to the digitized waveform of a single note of constant
frequency for each harmonic of the waveform. This produces two output waveforms for each
harmonic. The waveform represented by A, in equation (23) corresponds to the amplitude of
the harmonic as a function of time. The waveform represented by 8,, in equation (24)
corresponds to the phase of the harmonic as a function of time. We may convert this to

frequency by taking the slope of the function at each point in time. This may be done with a
band-limited differentiator [Kaiser 1963, 19661

To better understand what the heterodyne filter does, we may examine its output when a pure
sirusoid is applied. The heterodyne filter is a nonlinear filter, so the principle of superposition
does not apply. Equations (21) and (22), however, are iinzar. The transformation to equations
(2?) and (24) does not change zertain principles. if a signal is annihilated entirely by equations
(21) and (22), it will not be present in the outputs of eithar equations (23) and (24). Signals
greatly suppressed in equations (21) and (22) will be greatly suppressed in equations (23} and
(24
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If we apply a pure sinusoid of f‘requency W, we may compute' the output of the heterodyne filter
exactly by means of the summation calcuius [Hamming 19621 .

1

(25) A, - pre3 sin? (25

) {cec? [_—Z—(W"w')h] +csc? [-—-—T—(m'"w')h]

+ 2_cos [nwgh-2de)

.in[(o)-m;).)h] .in[(w-ng).)h]

The expression for the phase is not included here because it is so complex as to be almost
meaningless. Equation (25) is plotted in figure 24a. The frequency of analysis was the 5th
harmonic of 500 Hz. We can see that the response is identically zero for all multiples of 500 Hz
except the 5th.

It- is interesting to compute the limit of the exact expressions for the response to a pure
sinusoid. If we define Aw to be {W=nwy), the limits may be computed as shown in equations
(26) and (27). ’

(26) lim A= =1 @8 - L
wanwp ™ W2 4

Bpe sin {2nwyh [’% +a]}+ N sin{Awn ['tl +a] }
27 1im — . 2
wanwy Pre  cos {Znweh ["-"?1 +al } + N cos {Awh ['iél +al }

The first important point is that the results are, in the limit, not depender.t upon the absolute
phase of the input sinusoid. Also, the magnitude of the output ccnverges ta a constant cimes the
amplitude of the input sinusoid. The phase converges to a iinear function of the frequency
difference, Aw, if the number of points in the summation, N, is large compared to |.

USAGE

‘The biggest problem with using the filter is that the assumptions upon which it is based are

rarely true. That is, ail music instruments have harmonics that change with time, and many
have frequencies that are not exact multiples of the fundamental frequency. Since the principal
source of error due to these deviaticns from the ideal comes {rom “leakage” from adjacent
harmonics, the output may be improved somewhat by further filtering of these harmonics.
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FIGURE 24. Equation (25) Evaluated for a wide range of frequencies. In this figure, we are
analysing the fifth harmonic of a 500 Hertz tone. This is effectively the frequency response of the
heterodyne filter for s particular tone. in the lower plot, the output has been smoothed by
averaging over one period of the fundamont:l :
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FIGURE 25 This is equation (25) evaluated, as above, for the fifth harmonic of 3 500 Hertz
tene and then smoothed by averaging over one period, The upper plot has been smoothed twice,
and the Iower piot has been smoothed three times.
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Since the important part of the output of the heterodyne filter is around zero frequency, we can
simply filter out the harmonics other than the one under analysis by replacing each point in the
output by the average over one period of the fundamental frequency. This places an
.additional zero of transmission over each other harmonic. Figures 24b, 25a, and 25b show the
results of applying such a filter once, twice, and three times. The sideband rejection becomes
quite strong. We could use a classical filter, like the Butterworth or Chebychev low-pass design,
but this would not put a zero of transmission at the other harmonics. We feel this feature is
very important. '

To get the slope of the phase function, we replace each point by the slope determined by a

least-squares fit of a-linear polynomial-centered- around-that.point.- This.provides-further-noise -
reduction by averaging as well as producing a band-limited approximation to the slope at each

point. .

Figure 26 shows a plot of the amplitudes of the harmonics of a music instrument tone. Time is
the axis going from left to right (about .5 seconds total), and frequency is depth.into the page. .
The first harmonic is in the rear. Figure 27 shows a spectrogram-like plot of this data as well . '
as the detailed frequency deviations of each harmonic as functions of time. The analysis
technique as described so far was used to analyse 16 music instrument tones for a study in
perception of musical timbre [(Grey 1975].

Tones were synthesized from these data. Putting the tones in this form allowed them to be
normalized independently for pitch, duration, and loudness, as well as to be modified and

blended. The synthetic tonss were judged quite similar to the original tones. This is, of course,

the final test of the analysis procedure. Appendix A shows the results of analysing several

synthetic tones to determine how much perturbation the filter can tolerate before producing

results that are grossly in error. It would appear that as much as a 2 percent deviation in

frequency with rise times as short as 5 periods can be tolerated with reasonable results.

It is of interest (o list the ways that this technique has been misused in the past with the hope
that future usars will avoid these problems. '

As was described in the historical review, Luce used a method that was very similar to this, but
* limited by the extreme cost of compuier time in those days. He selected single periods of the
waveform and interpolated them to get exactly 24 points per period. He then did the
summations to produce amplitudes and phases for 12 harmonics. Note that this method only
gives one 24 numbers per period, whereas the heterodyne filter yives one 2NM numbers, where
N is the rumber of points in a period and M is the number of harmonics under analysis. The
advantage of this exira computation is that a particular difficuity of Luce’s is avoided. The
following quote is from Luce’s thasis:
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FIGURE 26. Perspective plot of analysis data from heterodyne filter for a clarinet tone, shown as
an Amplitude x Frequency x Time perspective piot. The detailed frequency variation of each
harmonic is not shown hers. (X = time; Y = amplitude; Z = frequency, with the fundamental
harmonic plotted in the background). .
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FIGURE 27. Analysis data from heterodvne fiiter for the same clarinet tone as in figure 26. shown
above in the torm of a spectrographic plot (X = time, with 1/10 second lines; Y = frequency, with
KHz lines; Width.of bars = relative aB to -40), : .
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“Another very serious difficulty arises far waveforms containing very
narrow pulses well-separated from each other if only 24 ordinates per
 cycle of the fundamental of the note analyzed are used. Two neighboring
data points are used in each interpolation. it is possible that none of
these 48 data points, corresponding to the 24 points in. time selected for
interpolation during the cycle, contain the narrow pulse. Because of this
phenomenon, a small error in the measurement of the fundamental
frequency of the note may resuit in the pulse being missed in some
cycies entirely and being selected in others. Large fluctuations (from
. cycle to cycle) in the calculated spectral components resuit.”

By taking all the points in a period, we avoid- this-problem. We-cannet;-however;-avoid-a small
(order of 1/N) fluctuation due to the fact that the true period is not an integral multiple of the
sampling interval. Since this fluctuation is periodic with the same period -as the note, the
further filtering operations eliminate it entirely.

Puise-like waveforms are quite common in music. All brass instruments have pulse-like .
waveforms. The human voice is often quite pulse-like. Pulse-like waveforms cannot be ignored

. in musical contexts.

Beauchamp and Freeiman both thought of the summations in equations (21) and (22) as
discrete analogs of the Fourier integrals. This is dangerous because it leads one to sum over one
period, but to use an analysis frequency (Wg) which does not correspond to a period equal to an
integral multiple of the sampling interval. This produces imperfect pole-zero cancellation and
all the resulting distortion. They too obtained only "a few" points per perjod, letting themselves
in for the same kind of errors Luce’s method 'obtains. =~ ‘

Beauchamp later used the FFT algorithm [personal communication 1974] with a Hamming
window. The Hamming window is equivalent to a convolution in the frequency domain. It is

equivalent to replacing each frequency-domain point (8, Da,) with the sum of itself and a
portion of its neighbors [Bertram 1970; Blackman and Tukey 1959). This means that "leakage”
between ad jacent harinonics, that very problem we have tried so hard to filter out, is directly
encouraged by the application of a window function. Figures 28a and 28b show the frequency
response of a filter designed this way. The zeros of transmission at the neighboring harmonics
have been removed. This method cannot possibly produce accurate resuits.

This technique can be salvagea by doing the analysis at one-half the frequency (twice the
period). This will produce an outpu: that has only even harmonics, indicating a tone an octave
high. This way, when we analyze for a certain harmonic, the -adjacent "harmonics” will, of
course, Le zero, because the odd harmonics will be zero. This way, anything the technique
produces on the odd harmonics can be ignored as artifacts of the analysis. '

Keeler [1972] used Lagrangian iaterpolation to produce a much higher effective samgling rate
and then computed an approximation to the Fourier integral by use of Simpson’s rule. Even if

. we ignore the fact that the Lagrangian interpolation coes nct have good band-limiting
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properties [Schafer and Rabiner.1973), there is a severe problem with the use of Simp;oh's rule
rather than direct summation when considered from a signal-processing point of view.

With Simpson’s composite rule, ‘the successive samples are weighted by the following
coefficients: 2, 4, 6, 4,6, 4, . . , 4, 6, 4, 2. The weighted samples are then summed. The problem
is that this is equivalent to the sum of three separate weights:

firsts 20 20 2, 2, 2020 4 4 0y 2,2
second: B, 2, 2, 2, 2, 2, « « +, 2, 0
third: 0, 0,2, 8,2, 8 ...,0, 0

We see that the first sequence is pure summation. The second sequence is a summation, but
over N=2 points; a different fundamental frequency. The third sequence has every other
sample zero, which is characteristic of a sampling rate a factor of 2 slower. This means that
massive aliasing occurs, as well as annihilating the zeros of transmission. Figure 29a shows the
frequency response of such a filter. We can see the aliased band up in the high frequency
range, as well as the fact that the response no longer goes exactly to zero at every other
harmonic. Probably the only reason that Keeler got as good results as he did is because he was
analysing large organ pipes, which presumably had few high harmonics, and thus little aliasing.
Figure 29b shows what happens if just a straight triangle rule is used. The plot does not show
it, but the minima in the frequency response are not actually zeros of transmission. The use of
the triangle rule has made the response non-zero at each of these points. This is because it is
equivalent to the sum of two weightings, one of length N and one of length N=2.

Thus we see that there are a number of ways of doing this process incorrectly. It is hoped that
this exposition will help others to find even better methods. ' '
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FIGURE 28. This is the magnitude frequency response of the heterodyne filter when a
"Hanning” window function is applied. Since windowing in the time domain is equivalent to
convolution in the frequency domain, the spectral zeros at the fourth and sixth harmonics go away.
This cannot give accurate resuits. The lower piot uses the "Hamming” window.
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FIGURE 29. This is the rescit of approxiiaating the Fourier integral by Simpson’s composit
rule. An effective haiving of the sampling rate and corresponding aliasing occurrs. The lower plot
approximates the integral by the triangle rule with somewhat better success.
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BANDPASS FILTERING
INTRODUCTION

The bandpass filter is one of the oldest techniques for separating out a single harmonic.
Backhaus [1927, 1932] used a bandpass filter for studying individual harmonics of music
instrument tones, notably the violin. The bank-of-filters method of speech analysis has been
widely used. There is much evidence that the basilar membrane in the ear is like a bank of
bandpass filters.

We will not attempt to repeat the wealth-of -iiterature thiat exists on- linear systems and linear
filters, but let us just review some basic principles of filtering in general.

The output of a filter consists of its particular response and its Aomogeneous, or transient
response. The particular response is directly related to the input signal. In fact, the spectrum of
the particular response is just the product of the spectrum of the input signal and the frequency
response of the filter. The transient response is, however, somewhat more complicated.

Any linear filter has what are called natural frequencies. These can be resonances or anti-
resonances. The transient response of a filter is made up of sinusoids of these frequencies.

There is a relation between the ’freqdency selectivi:y of a filter a'nd how fast it can respond to
changes in the input signal. A very narrow-band filter has a very long transient response and

‘changes very slowly. This is illustrated in figures 30 and 31. In the first figure, we see the

response of a very narrow band filter to a suddenly-applied pure sinusoid. The second figure

shows the response of a wide-band filter to a suddenly-applied sinusoid. With this in mind, let

us see how the bandpass filter can be used in practice.
USAGE

If we suspect that a harmonic exists at a certain frequency, we can use a bandpass filter to select
it from a complex signal, with some ensuing loss of resolution in time. In fact, unlike the
heterodyne filter, any sinusoid of nearly-constant frequency can be selected. It does not have to
be harmonically related to any other sin 1soids in the signal. Figure 32 shows, in the top pldt,
the response of a 4th order bandpass fiiter (Butterworth, 30 Hz between the 3dB points) to a
complex signal. The center frequency of the filter is set to exactly the frequency of one of the
harmonics of the signal. Notice the smooth amplitude enveiope of the harmonic. The upper
plot in figure 33 shows the output of a filter with the same input as the previous figure but its

" center frequency does not correspond to any partial in the input signal. The response consists

almost entirely of transient response. The particular respouse is highly suppressed, as it should
be. : '
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FIGURE 30. The response of narrow bendpass filter to a pure sinusoid applied suddenly.
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_FIGURE 31. The response of a broad bandpass filter to a pura sinusoid zpplied suddenly.
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FIGURE 32. These three plots show steps in the processing of the fundamental harmonic of
a piano tone in a piano duet. The upper piot shows the response to a bandpass filter the center
frequency of which coincided closely with the frequency of the harmonic. The center piot shows
the results of applying the optimum-comb to the waveform in the upper plot. The minima in
adjacent time slices have been linked by a nearest-neighbor rule to form lists representing the
frequency of the signai as a function of time. A vertical stroke has been placed at the beginning of
each list. The lower trace shows the results of eliminating obviously spuridus frequercy lists. The

.dominant list nas a horizental line drawn through it representing the average fr2quency of the

harmonic. The vartical stroke at the beginning of this line is two standard deviations high.
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FIGURE 33. This figure, like the previous one, shows the processing of a single harmonic
extracted from 2 polyphenic piece by a narrow bandpass fiiter. The upper plot shows the -output
waveform of the filter. The center piot shows the results of the application of the optimum-comb
to detect any periodicity which may be present in the filter output waveform. The minima of the
optimum-comb have been linked together to form lists. In the lower plot, obviously spurious traces
have beein eliminated. The remaining list has a horizontal bar through it denoting the . average
frequency in the list. There is, in fact, no sinusoid present at this frequency. This is a transient
response and is entirely an artifact of the bandpass filter. This trace will hopefully be eliminated
later due to its large frequency variation,
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We may apply a pitch detector to the output of the bandpass filter to get the frequency of the
harmonic as a function of time. This is also a good way to tell if there is really something there
or not, because the output of the pitch detector will be gibberish if there is not a near-sinusoid
present. The center plot in figures 32 and 33 shows the output of a pitch detector (the optimum
comb) applied to that output of the bandpass filter shown in the upper plot. As we see, the
frequency varies smoothly throughout the duration of the plot. If no harmonic is present, we
do not get a consistent reading of pitch throughout the duration of the signal, thus no trace like
the one shown is produced. .

If the center frequency of the filter is very low, it.is_possible that the pitch detector can track
sub-harmonics of the lowest harmonic in the sound at that point. Some of this low harmonic
will sneak through the filter and fool the pitch detector. As was shown before, the
autocorrelation-type pitch detectors respond just as well to integral multiples of the fundamental
period as to the fundamental period itseif. Figure 34 shows multiple traces of subharmonics of a
harmonic produced by the optimum-comb technique. To eliminate the spurious traces (all of the
traces in this figure are spurious), we may make some other crude measurement of the pitch
which does not have this problem and compare the results. One simple technique is just to
count the zero-crossings in the filter output. This provides a crude estimate of the pitch of the
signal and is enough to eliminate the spurious traces.

To use the filter, we must know how to set its center frequency. One convenient method is to
use a pitch detector (autocorrelation and comb filtering have been previously described) to get
an estimate of the harmony of the signal. Since music uses ambiguous chords, we may expect
several significant pitches to be indicated. We may then apply bandpass filters to all multiples
of these pitches, up to some maximum. This will get approximations to the harmonics with
limited resolution in time. We may then apply a pitch detector (again, autocorrelation or comb
filtering will do) to get the frequency of the harmonic as a function of time, and we may
average the energy of the signal to estimate the amplitude of the harmonic as a function of
time. The bottom plot in figure 32 shows the final frequency contour of a harmonic of a

.complex signal. The straight line through the plot indicates the average frequency of the

harmonic. The vertical bar at the beginning of the horizontal line is two standard deviations
high. Figure 35 shows wnat happens if the center frequency of the filter is not exactly upon
the frequency of the harmonic. This trace was not accepted, as is shown by its absence from
the lower plot. The frequency deviation throughout the trace was unacceptably great.
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In practice, the use of a pitch detector to determine which bandpass filters to apply only reduces
the number of applications of the filter by a factor of about 3 from a dense covering. For -
example, a 30 Hz bandwidth was used in the analysis program. A dense covering from 100 Hz -
to 2000 Hz would be about 200 applications. In fact, only about 75 applications were needed.
This is still a lot. It is enough so that this method of analysis can hardly be called practical at
this ‘point in time. Perhaps with the advent of high-speed special-purpose signal processing
hardware, the method may become more than a demonstration. It should be noted that just as .
much time was spent doing the pitch detection on the filtered waveform as was spent doing the
filtering itself.
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FIGURE 34. This figure is similar in format to the previous two. This shows the resuits of
applying a bancpass filter at a very low frequency. The fiiter does transmit the lowest sinusoid in
the signal greatly attenuated. The optimum-comb cannot by itself distinguisi subharmonics of the
filter output, so it finds many minima. These are linked into lists and shown in the center plot. A
vertical stroke is placed at the beginning of each list. To eiimirate subharmonics, we count the
zero crussings in the filter output. This gives a rough pitch estimate that is sufficient to eliminate
all the spurious subharmonic traces, as is shown in the bottom piot.
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FIGURE 35. Here we ses the results of applying a bandpass filter the center fraquency of
which does not correspond to any partial in the piece at that time. The filter, of course, passes in
atiznuated form the composit waveforms of the neighboring partials. The optimum-comb found
some minima to track, as is shown in the center plot. Since the list of frequencies found by the

_optimum-comb is highly variable, it can be eliminated on this basis alone, as is shown in the lowar

plqt.
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67 o INTRODUCTION
POPULAR TECHNIQUES NOT FOUND USEFUL |
INTRODUCTION

In this section, we will expose some of the weaknesses in other popular signal processing
techniques that make them not useful for the musical scribe. We present these negative results
for several reasons, perhaps the most important being the fact that the science and art of digital
signal processing is new enough that a great deal of experience with its techniques has not had
time to accumulate. Each of the techniques to be discussed has been found. to be very useful in
general. The linear predictor forms the core of most speech analysis systems in use today. The
FFT is the "workhorse of the mdustry The cepstrum is useful in speech as well as picture
processing, sonar, radar, and many others.
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THE CEPSTRUM
INTRODUCTION

The cepstrum is defined as the inverse DFT of the log of the magnitude of the DFT of an
input signal. This may sound a bit perverse, but if we recall that the autocorrelation of two
time-limited signals can be computed by the inverse DFT of the magnitude of the DFT of an
input signal, we can see that the processes are related. The cepstrum of a signal is a signal (e
function of time) whose DFT is the log-magnitude of the DFT of the input signal. The cepstrum
is a time sequence, just like the signal itself, and also like the autocorrelation function.

The cepstrum is useful for dealing with signals that have been multiplied or convolved with .
other signals. For instance, we may think of the speech production mechanism as an excitation .
(the glottis) followed by a filtering operation (the vocal tract). In picture processing, the signal
can be represented as the excitation (the light source) multiplied by the reflectance function of
the illuminated ob ject. In each of these cases, the log-magnitude DFT is related to the sum of
the transforms of the individual signals. If these signals, by themselves, occupy different parts
of the spectrum, then they can be separated by simply partitioning the cepstrum. In this
manner, we may use the long-time end of the cepstrum to detect the pitch of a speech waveform
[Noil 1967], or the short-time end of the cepstrum to compute an approximation to the impulse
response of the vocal tract [Oppenheim 1968, 1969; Miller 19741 In speech, the signals
separate nicely. ’

One place where the cepstrum may be of great use in music is in analysis for the purpose of
synthesis. Since we can separate the functions of periodicity generation from spectral shaping
with the cepstrum, we may use it to generate the impulse response of a filter which can
duplicate, as a function of time, the spectral shape of the waveform of a music instrument.
Since a number of instruments are almost perfectly periodic (brasses, most woodwinds except

. during the attack), it may be possiole to synthesize many tones using these impulse responses.

There are, however, a large number of instruments which are not perfectly periodic (all stringed
instruments) and are thus not suitable for simulation in this manner, unless some technique for
deriving and modeling the excitation function is found. (We can compute the excitation
function simply from the long-time part of the cepstrum, but unless we can model it more -
simply, it is not amenable to modification and is thus not useful for musical purposes).

_ DISCUSSION

The problem with using the cepstrum to compute, say, the pitch of music instruments is that in
polyphonic music, we are,dealing with the sum of a number o] waveforms. When we take the
tog of the magnitude of tie DFT of the input signal, we get a very complex tesult where the
signals do not partition nicely. The information for each voice is spread all over the cepstrum
in complex ways. For instance, {igure 36 shows the cepstrum of a single violin tone. Notice the
single peak corresponding to the period of the input signal.
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FIGURE 36. This is the cepstrum of a segment of tho waveform of a trumpet solo. The
waveform was taken from the first note of Ravel’s orchestration of Tableaux D'une Exposition. The

‘note is a G4, or about 396 Hz. As we see, a single peak is svident at about 25 milliseconds, which

represents the period of the detected signal. The capstrum is quite insensitive to reverberation,
as the trumpet was recorded i ina large concert hl" with extensive reverberation.
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FIGURE 37. This is the cepstrum of a segment of the waveforr of a brass choir. The
waveform was taken from the first brass chord of Ravel's orchestration of Mussorgsky’s Tableaux
D'une Exposition. The cepstrum does not seem to produce a distinct peak corresponding to any
seriodicity in the input signal in this polyphonic case.
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Figure 37 shows the cepstrum of two violins being played at different frequencies. The peaks
no longer correspond to frequencies in the original signal. There is no clear way to extract from

" the cepstrum the information about the pitches of the two notes being played. -
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INTRODUCTION

The Fourier transform in all its many forms is possibly the oldest and most widely useful signal
processing technique of ail. Special processors to compute the DFT by the Fast Fourier
Transform algorithm [Cochran et ol 1967; Gentleman and Sande 1966; Gold and Rader 1969;
Rabiner and Gold 1975 Oppenheim and Schafer 1975; Singleton 1967, 1968, 1969] are
available from numerous sources. When we began this project, the DFT was the first
technique called upon to help accomplish the task. It was later abandoned for reasons that will
be explained below: It may; in-fact; be-possibie-to-aceomplish-the-task-at hand -with the DFT,
but certain problems would have to be solved which did not seem to have simple solutions.

DISCUSSION

Let us begin by examining the DFT of a pure sinusoid with an exponential aniplitude. The
(complex) signal that we shall transform is as follows:

(28) S" - en(O’+j0))T

Where S, is the value of the sinusoid (the input signal) at time nT,
“where T is the time between consecutive samples
O is the decay rate. 1/0 is the time constant of the signal, i.e., the time
it takes the signal to decay to 1/ of its value at time=3.
 is the radian frequency of the sinusoid.
J is the square-root of -1, : .

The transform can be computed as follows:

. Nel N-1 .
29) A, = 2 ~Sne—21mk;/N - z en((O’-&jﬂ))T—Zﬂ;k/Nl
ned

nsd

AK is the K"‘ value of the discrete Fourier transform. It represents the
frequency k/ (NT),

N is the number of points in he transform.

Sinice this is just the sum of 'a finite exponential series, we can compute this summation in
closed form:
IN(O+iw) T-2m jk} _ ¢

(38) A -
38) A, o LIO+i@IT-2Mjk/NI_ 1 -

After som2 manipulation, we find that the squared magnitude of this expression is then the
foilowing:

a(N_l)g-'r sinh? (NO'T) +8inr? (INWT-27Tk)

(31) jA]% =
x sinh? (0T +sinf (@WT-21k/N)
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It is easy to'show that this expression is maximized when the following is true:

NwT
1(32) k = —
: 2n
. This maximum is unique in the range @SwT<m/2. We can seé from the expression above that
the peak widens as N gets smaller and as o gets larger. Figure 38b a shows equation (32)
evaluated for N=128, figure 38d for N=2848, and figure 33f for N=16384. We see that as N
is increased, the peak becomes sharper and sharper. :

‘Figures 38a, 38¢, and 38e show the actual DFT of a pure sinusoid at 314.159265 Hz evaluated
by the fast Fourier transform ‘algorithm-for-128 .peints, 2048. points,~and ~16384. points:~The - -
results differ from the calculated values because of roundoff error. In the longer transforms, the
error manifests itself as a spreading of the peak. It is roughly analogous to a 'muitiplicative
noise (rather than an additive noise).

Likewise, figures 39a, 39b, 39¢, and 39d show the spreading of the peak as 0 increases. The
reciprocal of O is the attack time in seconds, so 0" increasing means faster and faster attack. A o
of 100 implies a 10 millisecond attack, which is quite common in music waveforms.

These cases were idealized. In general, the attack is not a pure exponential. Figure 40 shows
the DFT of a segment of a 2-voice piano piece. The time window is centered over the
boundary between two notes. The lower voice persists throughout the window at a constant C4 -
(261.6 Hz). The upper voice is changing between an E4 (3296 Hz) and an F4 (3492 Hz). It is
clear that the region around the E4 and the F4 is quite muddled with many peaks in evidence.
This DFT used 4096 points and occupied about 200 miiliseconds width in time. -

There is another problem with the use of the DFT for sounds that were recorded in highly -
. reverberant rooms. In this case, the effect of the room can be modeled by a linear time-
invariant filter. The music is then convolved with the impuise response of the room. This is
equivalent to multiptying the transform of the music by the frequency response of the room (or
adding the logarithms of the transforms). Since it is well known that concert halls have
frequency responses with many narrow peaks and valleys of depth uo to 20 and 30 dB
[Schroeder 1962, 1962, 1970), these peaks and valleys can produce spurious peaks in the DFT
of music recorded in such a room.

Figure 41 shows the DFT of a 200 m:llisecond segment near the center of the first block chord.
This chord is a G-minor chord. It has notes at G2 (98 Hz), G3 (196 Hz), Bb3 (233.1 Hz), D4
(293.7 Hz), and many more. We can notice many spurious peaks. In the regicn of the Bb3
* (232.1 Hz), there is an extra peak that is only 5 dB lower than the main peak. The same is true
of the G3 (196 Hz).

For these reasons, we decided not .0 use the DFT in this invescigation. Later on, we show cases
where we used the DFT as the front end of a hypothetical music malysls system and compare -
the results with our preferred impiementation.
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FIGURE 38. Comparison of predicted (right-hand column, figures 38b, 38d, and 38f) and actual
(left-hand column, figures 38a, 38¢c, and 38e) DFT of pure sinusoid with OFT of increasing amounts
of aata. The top figures. 38a and 38b, used a 128 point DFT. The center pair, 38c and 38, used
2048 points. The bottom pair, 38e and 38f, were done with 16384 points. The discrepancies are
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due to rcundcff érror which tends to increase the apparent baciground noise.
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FIGURE 39. Comparison of predicted DFTs of exponentially-damped sinusoids for different values
of damping factor, ¢. Figure 3Sa has a damping factor e=1, which reprasents a 1 sacond decay
time. Figure 339b has ¢=10, or 100 milliseconds decay time. Figure 39¢ has ¢=100 for 10
milliseconds decay. Figure 39d has ¢=500 for 2 milliseconds decay. We can see from this that the
more transient the waveform is, the more the peak in the OFT is spread.
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FIGURE 40. Discrete Fourier transform of a 4096 point (200 millisecond) segment of a
piano duet. The time window is centered over the boundary between two notes. The lower voice
persists throughout the window at a constant C4 (261.6 Hz). The upper voice is changing between
an E4 (329.6 Hz) and an F4 (349.2 Hz).- The region around the E4 and F4 is quite muddled with,
many peaks in evidence.

FREQUENCY IN KHZ

FIGURE 41. Discrete Fourier transform of a 4096 point (200 milisecond) segment selected
from the center cf the first G-minor brass chord in Tableaux D'une Exposition. Some of the
principle notes present in the chord are G2 (98 Hz), G3 (196 Hz), Bb3 (233.1 Hz), and D4 (293.7
Hz). This recordinrg was made in a highly reverberant concert hail. Since this is equivalent to
muitipiying the transform of the music with the frequency response of the concert hail, we see
many superfluous peaks representing the natural modes of the hall. Near the Bb3 (233.1 Hz) thers
is an evtra peak that is only 5 dB lower than the main peak. This causes considerable confusion in
trying to use the discrete Fourier transform for polyphonic music analysis in reverberant
environments.
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THE LINEAR PREDICTOR
INTRODUCTION

The linear predictor [Atal and Schroeder 1968; Atal and Hanauer 1971; Boll 1973; Griffiths
1975; Itakura and Saito 1968, 1970, 1971; Levinson 1947, Wiener 1947, Makhoul and Wolf
1972; Makhoul 1975; Markel 1972] is a technique for computing an all-pole filter the frequency
response of which best approximates the spectrum of the input signal. It has become very
popular recently in the speech community because one can approximate the spectrum of a
speech signal and then determine the formant regions by examining the frequency response of
this filter. It provides much-needed- smoothing- of- the. spectrum;. giving- quite - often-clear;
unambiguous peaks at the formant frequencies. This technique belongs to the world of "system
estimation”, in that the filter thus created models the filtering activity of the vocal tract. The
linear predictor estimates the system consisting of the resonant regions of the vocal tract.

" DERIVATION

A simple way to derive one form of the linear predictor was given by Markel [1972]. First, we

define a linear finite impulse response fiiter of the following form:

(33) Alz) =1+ a z
: il -

Where A {Z) is the Z-transform of the filter transfer function.
Z is the unit time-advance operator '

&; are the coefficients of the difference equation that defines the filter,
shown below equation (35).

If X; is the input sequence and Y; is the output sequence of the filter, we may obtain the energy
in the output of the filter by merely suming the squares of the output of the filter.

L
(34) Energu = z Yf.

n=8

Wheie Y, is the output of the filter at time i T.

and also:

"
(35) Y, = X, + 21 aX..,
in
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After substituting (35) into (34), dit‘ferenciating with respect to @, setting the energy to zero, and
collecting terms, we get the normal equations for the filter coefficients:

. L . L
(36) 2 3 z xn-ixn-k e '2 Xt
iel ns=® n=d

for k=1,2,... M

This is a system of linear equations.in-the.¥ariables,.the. 3,.1t-can..be solved- in. a ‘number of
efficient ways [Levinson 1947, Markel 19721 It produces a filter that best reduces the input
sequence to zero. Such a filter has a frequency response that is the inverse of the spectrum of
the input signal. We can invert the fiiter simply by making it an all-pole filter, using the
coefficients, 8, on the delayed output signal rather than the delayed input signal. This filter has
a frequency response that approximates the spectrum of the input signal. This is a discrete
realization of the Wiener-Hopf integral [Levinson 1947, Wiener 1947; Lee 1960], and uses the
RMS error criterion for optimality. This technique also belongs to a larger topic of “system
estimation” [Tribolet 1974; Sage and Meisa 1971}, where one attempts to infer a linear system
from its impulse response. A superb review of linear prediction may be found in Makhoul
(19751 Lo : ' : : : -

USAGE

This is commonly used in vocoder and speech analysis systems. For vocoder use, the input
speech is processed for pitch, voiced-unvoiced decision, and filter coefficients &. These
parameters are transmitted to the receiving station. The speech is then resynthesized using a
pulse train at the computed pitch for voiced excitation, and white noise for the unvoiced
excitation. The filter then simulates the spectral shaping imposed by the vocal tract.. .

‘This technique can also be used to aid pitch detection. The input signal is filtered by the

inverse filter. This avens out the spectrum, removing the sffects of the formants. The resulting
waveform is much more pulse-like. This output can then be autocorrelated to preduce peaks
which are much more sharp than those produced by auiocorrelating the unfiltered waveform.

This technique of "spectral flattening”™ or "prewhitening” does not apply to polyphony. Unless
the ‘ilter is of extreme order, making it expensive to compute, the interleaved harmonics of the
nctes will not be adjusted equally. The autocorrelation then shows one sharp peak
corresponding -to the dominant tone and a multiplicity of other peaks, corresponding to the
other tone. '
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FIGURE 42. Frequency responses of filters computed by the linear predictor for difierent filter
orders. The top plot is the sound waveform itself. The second piot is the discrete Fouriar
transform of that sound waveform. There are two violins playirg here. The sound segment is 40
milliseccnds long. The next plots are the magnitude frequency responses of linear predictors of
orders 80, 160, 320, and 640 respectively. As the order approaches ‘he number of points in the
sound sampie, tne frequency response of the filter approaches the magnitude of the discrete
Fourier transform ot the sound sample. :
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FIGUPE 33. Frequency rasponses of filters computed by the linear predictor for different filter
orcers. As in tne prev.ous figure, the top plot is the sound waveform itself. The second piot is
the discrete Fourier transform of ihat sound waveform. The sound segment is 80 milliseconds long.
The next plo‘s are the magnitude frequency responses of lingar predictcrs of orders 80, 16C, 320,
and 640 respectively. Increasing the size of the sound sample from 40 to 80 milliseconds has the
effect of sharpening the peaks in the transform. it aiso lessens the chances that the signal will be
homogeneous throuzhout the interval. .
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Another possible usage would be to compute a filter of high enough order that it simulated the
harmonics themselves as high-Q resonances. Figures 42 and 43 show frequency responses of
filters of various order computed by the autocorrelation method [Markel, Itakural As we see,
the frequency response approaches the spectrum as the order is increased. This points up again.
that the linear prediction algorithm is a spectral matching process [Makhoul 1972]. Since the
DFT. itself has not proved useful in this task, there is no reason to believe that an
approximation to the DFT would be any more useful. :

Griffiths [1975] used this method for determining the frequencies of a number of sinusoids
which were added together. With a 12 pole filter and a 25 dB signal-to-noise ratio, he obtained
estimates for the frequencies of up to-three sinusoids-added.together.--The-error-was-as- much
as 12 percent, and sometiies peaks were not even located. In our case, we must detect up to 40
sinusoids and determine the pitches to better than 3 percent in all cases.
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OVERVIEW

The music analysis system as it was implemented for the purposes of this thesis combines the
previously discussed low-level routines into a complete system. This is done in the following
steps: '

An estimate of the frequencies present is obtained by running the optimum-comb pitch detector
over the entire music sample at 10 millisecond intervais. We call these "windows™ into the
sound file. If a particular period appears in many consecutive windows, a list is made of its
occurrences. A list is redundant if it is a harmonic of some other list. Redundant lists are
eliminated. This produces a list of regions which have the same periodicities present. These are
regions wherein the harmony does not change. These are arbitrarily grouped into larger
regions so that more data may be dealt with at once. These macro-regions are then used as the
guide for the bandpass fiiter. :

The bandpass filter is set to all harmonics of all the periodicities that are present in a given
macro-region up to a certain maximum frequency. For the examples shown later, a maximum
frequency of 1.5 KHz was sufficient. Any more comprehensive system would have to use a

“much higher frequency range than this. The output of the bandpass filter is run through an

optimum-comb pitch detector which is swept over the frequencies in the passband of the filter.
The minima of the optimum-comb output are linked into lists which indicate the existence of a
frequency at that pitch over the time that the minima are found. The amplitude envelope of
the filter output indicates the amplitude function of the harmonic in question. It is these
amplitude and frequency functions that are passed to the intermediate-level routines for scoring
and grouping into notes. Before we leave this level, many checks are done to throw out traces
that are obviously spurious.

We will first discuss the theoretical basis and the cons:raints on the music that allow us to
analyse it in this manner. We will then discuss the details of the algorithms.
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THEORETICAL BASIS

To allow this dissertation to be completed in a finite amount of time, certain restrictions have
been placed on the music that will be allowed. These restrictions, combined with the properties
of music instruments, make the problem manageable. These properties and restrictions are
discussed below.

ALL TONES ARE NEARLY PERIODIC

This restricts the class of instruments to woodwinds, brass, strings, and some percussive
instruments (piano, marimba, etc). This assumption ailows us to infer a note from its harmonics.
It insures that notes will have harmonics. It does not tell us what the harmonic structure will be,
or how the harmonic structure changes with time. It can still be that the note will not have a .
first harmonic (a sinusoid at the fundamental frequency). The note can also consist of a single
sinusoid. Later, in the intermediate-level processing, further restrictions will be placed on the
tones. For the low-level, this 1; sufficient.

ALL FREQUENCIES ARE NEARLY PIECEWISE-CONSTANT

This restriction eliminates strong vibrato, glissandi, and other cases of non-constant pitch. This
allows us to filter out a single harmonic by using a filter of a constant frequency. We are
assured that the tone will not jump out of the range of one filter and into the range of another.
Vibrato can be tolerated up to a point, but some intermediate-level routines attempt to model
the sound as having constant frequencies, and would thus make errors if strong vibrato was

. present.

THE FUNDAMENTAL OF ONE NOTE WILL NOT OVIRLAY A HARMONIC OF
ANOTHER NOTE

This is very important. If the fundamental frequency of a note is the same as the frequency of
a harmonic of another note that is sounding at the same time, it appears to be very difficult to
distinguish this case from the case of a single note with a comglex harmonic structure. It is not

" clear how (or that) we distinguish these cases. It is possible that we hear differences in the times

that the inscruments begin, or that we can distinguish because the instruments are invariably at
slightly different pitches. It is clear that a more advanced transcription system should be able
to separate the notes in these cases. It is certainly the case that separate vibratos on the tones
makes them auvrally separaie much more convincingly. The subject of when a group of
harmonics fuses into a single percept has not been researched fully in the past. Rather than
attempting o solve the problem here, we will finesse it by requiring that the input music not -
exhibit that preperty. Or likewise, if it exhibits the property, we will not expect the higher note
to appear in the output manuscript. This gives us the propertv that a set of harmonics
uniquely imply their fundamental. All we must deal with is noise and processing error which

© may cause sorhe harmonic to be missed. We .do not have to try to expand a single set of

harmonics into more than one note.




a3 THEORETICAL BASIS

; THE PIECE CONTAINS NO MORE THAN TWQ VOICES

This restriction allows us to compute the musical harmony ‘from the periodicity of the
waveform without having to worry about whether some voice is lost because it is masked by
several other voices. When using the diatonic scale, any two notes imply a harmony, thus a two-
voice piece will always imply at least one root frequency, and generally will imply several.

'OTHER CONSIDERATIONS

We also expect the tones to be smooth. The amplitude and frequency functions of the
harmonics of music instrument tones vary slowly-with timeexcept during the-attack and decay
portions of the note. Since these portions are relatively short, compared to the total length of a
note, we need not consider them. This assures us that the amplitude and frequency contours
" will be continuous and will not vary greatly. This is important, because then we can use this
smoothness criterion to eliminate noisy traces. This eliminates certain instruments, like drums
and cymbals, which not only do not have harmonics, but they do not have smoothly varying
partial tones. This also eliminates heavy reverberation. Recording in a highly reverberant room
causes phase and amplitude jitter in each harmonic. Each time a reflection reaches the
microphone, the attack of the note with all its inharmonicity occurs again. Figure 44 shows the
amplitude and frequency trace of a harmonic from a piece that was recorded in a highly
reverberant concert hall: The jitter due to the reflections is quite apparent here in both the
amplitude and frequency plot.’

With the above restrictions, we have some hope of accomplishing the task. Let us look now at
how the routines can coax out the secrets of the input waveform.
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FIGURE 44. The upper pliot shows the waveform of the output of a bandpass filter
centered at 33 (196 Hz) on.the first brass chord in Tableaux D'une Exposition. The center piot
shows the pitch as a furction of time as tracked by the optimum-comb. The jitter both on the
amplitude of tha signal and on the ‘frequency is due both to the extremely reverberant
environment of the concert hall and the choral effect of having many musicians playing the same
- note (or notes at ortaves). The notes and their harmonics beat highly due to the inevitabis
mistunings among the musicians, Despite this variabiiity, the frequency function is accepied as is
shown in the lower plot.
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We seek first to partition the piece on the basis of its musical harmony. This gives us a guide
as to where to look for harmonics. As mentioned before, this can be done using the optimum-
comb as a penodlc:ty detector.

Figure 45 shows the waveform of two violins playing simultaneously. One is playing B4 (494
Hz) and the other is playing Fe4 (370 Hz). It is difficult to detect any periodicity in the
waveform by direct observation. Figure 46 shows the output of the optimum-comb for the
above mentioned waveform We can see strong periodicity at about 4, 8, and 12 milliseconds.
These correspond to about 250 Hz, 125 Hz, and 62.5 Hz. The Fe4 is roughly the 3rd harmonic
of the 8 millisecond period and the B¢ is roughly the 4th harmonic of the 8 millisecond period.
This shows that the periods detected by the optimum-comb are sufficient to assure that we can
find the frequencies of all the harmonics present by taking multiples of the frequencies
represented by those periods. The problem is that there are more periodicities found by the
optimum comb than are actually needed for this task. Since there does not seem to be any good

" a priori way of eliminating the unnecessary ones, we must settle for doing more work than we

have to. We can, however, notice that one period is 2 harmonic of other periods and is thus
redundant. For instance, in the set 4, 8, and 12 milliseconds, 4 milliseconds is redundant and
need not be included.

ON THE OPTIMUM-COMB

The first pass through the piece is a straightforward application of the optimum-comb '
periocicity detector. There is little of interest here except that there is a way to reduce the
computation time. If the time step between applications is less than the summation interval,
then the summation can be broken up into intervals whose length is just the time between
applications. The total summation.may be obtained by summing a number of these intervals,
thus reducing the computation to a fixed amount, regardless of the total summation width.

To enhance the accuracy of locating the minimum, the four points around the minimum are
used to generate a Lagrange polynomial which is then differentiated and the location of the
minimum extracted. This allows us to get somewhat finer resolution than an integral number of
samples would allow.

Consecutive minima which are very close in period are linked together into ‘ists. Figure 12
shows these lists as determined for the first brass chorale in Tableaux d'une Exposiiion. The
only special consideration here is that loss of a minimum at a single point is tolerated. A list
rernains continuous even though an application of the optimum-comb does not have a
minimum at that period, but has one in the neighboring applications.
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FIGURE 45. This is the waveform of a violin duet. One violin is playing a B4 (494 Hz) and
the other is playing an F#4 (370 Hz). There is no periodicity evident to the unaided eye in the
waveform. ’ ; )
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FIGURE 45. When the optimum-comb is applied to this waveform, it produces the above
plot. We can clearly see the-minima at about 4, 8, and 12 milliseconds. These correspond to 250
Hz, 125 Hz, and 62.5 Hz. The F#4 is roughly the 3rd harmonic of the 8 millisecond period and the
B4 is rougnly the 4th harmonic of the & millisecond period. The frequencies detected by the
optimum-comb are generally sufficient to assure that all the harmonics of all the notes in the piece
at that time are at frequencies which are multiples of those found by the ootimum-comb. This is
very important for planning at which frequencies the bandpass filters shouid be placed.
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& PRIMARY SEGMENTATION
ON THE ESTIMATION OF ROOTS

These lists are then examined to generate regions. Each region is characterized by a number of
“roots”. A root is a frequency such that a number of the harmonics present in the region are
integral multiples of the root frequency. Some number of roots will account for all the
harmonics in a region. For N-voice pieces, only N roots at most are required. We cannot,
however, tell on an a priori basis which roots form a complete set. We must settle for some
duplication. :

The first estimate of the regions is determined just by the beginning and ending times of the
lists of minima. For each region; the-minimuny number-of-frequencies-is determined which can
produce all of the frequencies in the region. In other words, redundant harmonics are
eliminated as candidates for the roots in a region. Adjacent regions are then merged if they
contain the same roots.

The following is a table that presents the results o far for the first second of a two-violin piece.
The first column gives the beginning time of the region, the second column gives the

frequencies of the roots found in that region. The third column gives the frequencies'of' the

notes that were sounding during that region, and the last column comments on the roots.
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From this table, it should be clear that the roots determined by this process are not entirely
reliable. The problem is that there is no way to judge the quality of a minimum produced by
the optimum-comb method. The exact depth of the minimum is highly variable from
application to application, depending on the exact amplitudes of the notes involved. The
period estimates dc not vary appreciably from applica:ion to application. Since we cannot tell
whether a particular periedicity estimate is better than any other, there is no way to eliminate
the less useful root estimates. To make sure that no tones are lost, root estimates for ad jacent
* regions must be merged before planning the filter frequencies.

LOW-LEVEL TECHNIQUES a8
- TIME. ROOTS NOTES COMMENTS
Ms.) (HZ.) (HZ.)
9 1835 165, 196 11th harmonic of 165 Hz
10 183 : Poor approximation to 1396 Mz
20 32.1 Sth subharmonic of 165,
Bth subharmonic of 196
188 162.4 Poor approximation to 165 Hz
230 179.8 165, 185 Poor approximation to 185 Hz
240 20.1 8th subharmonic of 165,
' Sth subharmonic of 185
350 179.8 : .
390 186.8 Approximation to 185 Hz
408 186.8 282, 2088 Leftover from last note
272 Poor approximation to 262 Hz
410 186 ’
ggg Poor approximation to 288 Hz
4398 208
272
440 51 _ 4th subharmonic of 208,
Sth subharmonic of 262
458 g%s .Sth subharmonic of 208
- 520 42.6 o
7308 48 262, 226 difference tone betwueen 262
and 2290 )
63.7 - 4th subharmonic of 262
85.7 3rd subharmonic of 262
850 24 262, 196 8th subharmonic of 196,
11th subharmonic of 262
63.7 '
85.7
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ON LOCATING CENTER FREQUENCIES

First, we must determine at what frequencies to apj:ly the: filters. This comes from examining
the estimates of the roots of each region of the piece. The only measure of quality of the root
estimates is the length of a region.* A long region means that these roots were present for a long
time. This is evidence that they are not transient phenomena. Based on this observation, we
form macro-regions by starting with the widest regions and grow outward by absorbing
ad jacent regions until the entire piece.is covered. Because.of memory limitations, we cannot
handle more than .5 seconds of sound at a'time inthefiltét routines, thus we cease growing a
region when it approaches .5 seconds in length.

To some extent, the procedure described above is an ad Aoc one. This is because there does not
seem to be, at this time, anything better to be done. Since the purpose of locating the roots of
the regions is to reduce the number of filtering operations over what would be required for a
dense covering, it is not damaging that we include spurious roots. This just means that we wiil
not realize the minimum number of filtering operations. In every case exarmned so far, some
savings have been realized, so the procedure seems worthwhile. The avera.ge savings seems to
be roughly a factor of three over the dense covering. '

Once the macro-regidns are defined and the roots determined, a list is made of all the

‘harmonics of each root up to some maximum frequency. This maximum could have been set as

high as the Nyquist rate, but was arbitrarily set to include up to the 5th harmonic of the
highest note in the piece under analysis. This maximum frequency setting does not affect the
analysis, providing it is set high enough, so that setting it any higher snnply wastes time
without adding to the quality of the analysis.

This list of candidate center frequencies is examined for redundant entries. An entry is
redundant if it is within the passband of a filter set at an ad jacen: frequency. This reduced list
is then taken as the final list of center frequencies. ’

ON FILTER PARAMETERS

A bandpass filter is defined by many parameters. For communicaticn value, ‘ve use traditional
filter types: Chebychev, Butterworth, etc [Guilliman 1957, Karri 1966), transformed to the
discrete domain by use of the bilinear transform [Gold and Rader 1969]. The resulting filters
have infinite length impulse responses. The filter coefficients are determined by a program
which takes the filter specifications and computes the coefficients (see Appendix B). In
selecting a filter type and parameters, the considerations are as follows:

| - What is the band width? A bandpass filter attenuates frequencies outside of its passband.
We determine the band width by clicosing two frequencies which represent the
endpoints of the passband.
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2 - What is the attenuation outside of the passband? This determines the order of the filter.
The order of a filter is an integer. It determines how many natural frequencies the
filter has. Outside of the passband, the frequency response (before transformation to the.
discrete domain!) drops off roughly 20 dB per decade (factor of 10 in frequency) for
each order. Since a bandpass filter has two skirts (places’ where the response drops off
sharply), the effect is halved. That is, increasing the order by 2 causes an increase of the
attenuauon rate of 20 dB per decade on bot4 sides of the passband.

3. How close to constant is the response in the passband? This determines how accurate the
harmonic amplitudes will be as they emerge from the filter.

The relations among these parameters are complex. Generally, it works like this: the transient
response is directly related to the band width. It is secondarily related to the attenuation rate.
The more narrow the band, and the faster the falloff, the longer the transient response. There
is a tradeoff between constancy in the passband and the attenuation rate. In the Chebychev
filters especially, there is a direct relation. The more ripple (distortion) you allow in the
passband, the greater the attenuation rate.

Making a choice of exactly the parameters to use is an exercise in whim, since there is generally
no “optimum” setting. When thinking about musical sound, we might conclude that since
harmonics are linearly spaced .in. frequency, a linear frequency scale is what is called for, that
we should maintain a constant bandwidth throughout the frequency range, and that center
frequencies should .be placed at uniform intervals. Linear distance, however, on a piano
keyboard reaches frequencies that increase exponentially. This might lead one to think that the
bandwidth could.be wider for higher frequencies because the spacing of musical notes gets
wider with frequency. The ear is physically set up on a scale that is somewhat between linear
and exponential, and since we are mimicing the ear’s performance, we perhaps should take
advantsge of the experimentation that nature has done for us. Figure 47 shows the relation
between distance along the basilar membrane (corresponds to filter bandwidth) with frequency.
It is clear that this refation is not simply logarithmic or simply linear. The vertical axis on the
piot repre:ents wha: is called "tonalness” (a poor translation from the German) and is measured
in "Barks", after the great researcher Barkhaus. Tonalness represents critical bandwidths in the
ear. If we think of the ear as a band of bandpass filters, a critical band is analogous 0. the
bandwidth of the filter. For instance, two sinusoids will sound rough if their frequency
separaticn is smaller than a critical bandwidth, and will sound smcoth for frequency
separations wider than a critical bandwidth. A difference of 1.0 on the tonainess scaiz
represents one critical bandwidth. This corresponds to equal lengths along the basilar
membrane. '

However, the program currently uses a linear frequency scale. The bandwidth is se: to a
constant 20 Hz throughout the range, which extends from about 80 Hz to about 5000 Hz. Ii
would be very interesting to use the biological model and see if good results were obtained and
time was saved. This experiment is deferred for the time being.
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FIGURE 47. This is a plot of length along the basilar membrane versus frequency (after
Zwicker). The vertical axis label is called "tonainess” and is measured in "barks” (after Barkhaus).
One bark corresponds to one critical bandwidth. Thus this curve gives us the frequency rec<olution
of tha ear. Note that a critical bandwidth is not the inherent bandwidth of the hairs along the
basilar membrare, but is a much more narrow bandwidth which is hypothesized . to be. a
tonsequance of the neural interconnections of the hairs. The point is that the curve is neither
exponential (like the piano keyboard) nor linear (like harmonics) but is something in between. The
greatest siope is below 500 Hz and represents the greatest resolution. Most of the lower partials
‘of musical sound can be independently discriminated. Generally, it is tnought that "dissonance”
occurs when more than one partial falls within a single critical bandwidth. This plot is suggested as
a possible guide for placement of banopass filter frequencies for a dense covering of the
fraquency spectrum, :
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The program uses a 4th order Chebychev filter with a 3dB passband ripple. If it were being
done again, we feel that less ripple is in order. The ripple caused certain harmonic amplitudes
to be estimated incorrectly. Figure 48 shows the impulse response and the frequency response

_ for this kind of filter when centered around 100 Hz.

The impulse response associated with a 20 Hz bandwidth is quite long, as can be seen from the
figure. With some of the higher harmonics, where the activity is quite weak, considerable
transient response was excited. The use of wider bands, as suggested by the physical model and
the exponential modeis mentioned above, would heip alleviate this problem.

* ON PROCESSING FILTER OUTPUT

The output of each filter is sent to an optimum-comb pitch detector. The detector searches for
frequencies within the passband of the filter. It is applied every 2.5 milliseconds throughout
the macro-region. The output of the pitch detector at each application is a list of the '
frequencies where minima in the comb output were found. Again, polynomial interpolation is
used to locate the minima more accurately. This is essential. At 5 Khz, for instance, at 50 KHz

- sampling rate, the period is only 10 samples long. A shift of one-half sample is equivalent to a

frequency change of about 250 Hz. Interpolation, then, is essential for the higher harmonics.
Each such frequency is compared with the previous application. Frequencies whose periods are
within 2 samples are considered for linking. Each frequency is linked to its best match from the
previous application. These links produce lists of minima.

After all the lists have been formed in. this macro-region, a "weakest boundary first" merging
algorithm [Yakimovsky 1973] is used to link ad jacent lists whose average periods are very close.
This merging algorithm is used because each time two lists are merged, the resulting list has in
general a different average period, so that it must be compared again with its neighbors. Each
time two lists are merged, the boundary between them is deleted and the "scores” (magnitude

" difference between the average periods of thie lists) of the two remaining boundaries are

recomputed based on the new composite average period for the list. We cannot just merge lists
which have scores better than sorae threshold without recomputing the averages. This could
allow glissandi, which would have small local changes in frequency but large global changes.

This procedure is sensible because we know that the frequencies present in the music change
slowly and smoothly. so we can be sure that minima whose frequencies are very close are quite
likely to belong to the same harmonic. Since we know that the frequencies of notes, and thus
their harmonics, are nearly piecewise-constant, we can eliminate glissandi, and certain noise
traces which appear to have swiftly-changing frequencies.

With the lists. ihat remain, some simple tests to eliminate noise traces are done. A list whose
total deviation (maximum frequency in the list minus the minimum frequency) is too large is
eliminated. Lists whose frequencies change too rapidly (has too great a slope) are eliminated.
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FIGUPE 48. Impulse and frequency responses of the bandpass filters that were used for
‘the harmonic extraction. The bandwidth is about 20 Hz. This filter is centered on 1060 Hz. The
fiter was made by first designing a 2nd order Chebychev low-pass filter with 3 dB of ripple,
transforming it to a 4th order bandpass filter (all in the coniinuous domain), then transforming to
the discrete domain via the bilinear transform. Of course, the 3 dB points had to be mapped first
to assure the correct cutoffs after transformation. The advantage ct designing the filter in this
manner is that it is a closed form solution (no iteration) and thus can be programmed very -
etficiently. It takes only a few milliseconds on the computar to set uo the coefficissts for a filter
of arbitrary rippie and cutoff frequencies. If we were (0 attampt the task again, a filter with less
passband ripple would be praferred. The passband atlenuation sometimes reduced the amplitude
of a good harmonic to the point that it could not be distinguisned from a noise trace.
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As was mentioned before, the optimum-comb pitch detector (and, in fact, all autocorrelation-
type pitch detectors) responds as well to subharmonics of a frequency as to the frequency itseif.
We must have a way to eliminate these subharmonics. This is done by applying a crude pitch

~ detector which does not have this problem and comparing the results. The pitch detector .used

is just the length of the list in time divided by half the number of zero crossings in that
interval. This gives an order-of-magnitude pitch estimate which is then used to eliminate lists
corresponding to subharmonics.




95 PROBLEM STATEMENT

INTERMEDIATE-LEVEL

TECHNIQUES

INTRODUCTION |

At this point of the analysis, we are presented with a list of sinusoids that are present in the
original sound. We have their amplitudes and frequencies as functions of time.. The purpose of
the intermediate-level- programs=is--to-infer- from—these~data- what~notes-are present, their
frequencies and their extent in time.

At this level, we must also eliminate information that is not strictly erroneous, but nonetheless is
not desired. One example of this is found in string instruments. When a musician plays a string
instrument, like violin or guitar, the strings other than the ones being manipulated aiso sound.
It would be extremely difficult for a musician to damp the other strings all the time. It is not
common practice to do so on stringed instruments except in some schools of classical guitar.
The resonances of the other strings are usually 15 dB or more softer than the principal sounds,
so they are generally not heard unless one listens very carefully. Our program, however, picks
these extraneous tones out quite nicely. They.appear in all the output. Rather than report
exactly what is present, we wish to mimic human behavior and suppress these tones that do not
have immediate musical meaning. Qther extraneous sounds include box resonances (stringed
instruments, for instance, have very strong box resonances), and strings that continue to vibrate
past the intended ending of the note (common with open strings). ' o

In the following sections, we describe the processes as they roughly correspond to separate
programs in the processing path. First is segmentation and scoring. The scoring is the key to
this entire section. Without rating the output of the low-level processes as to. quality and
suitability, no cogent decisions as to what notes are present could be made. With these ratings,
the notes can be inferred by accumulating groups of high-quality harmonics without
combinztoric searches. After the notes are derived, we procevd to separating the notes into the
upper and lower voices. This is done using the assumption that the piece has no more than two
voices-at any given time. Finally, the output is prepared for the manuscripting program. This
involves some cleverness to assure good readability.
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HARMONIC, PROCESSING

" SEGMENTATION AND SCORING

INTRODUCTION

From bandpass filtering and pitch detection, we get rough traces of the amplitude and
frequency contours for each harmonic present in the piece. The probiems are many. First, any
given trace may not include the full duration of a note. This is because of space limitations in.
the filtering program. The signal must be broken up at arbitrary places and processed in pieces.
These pieces must be giued back together later. Second, any given trace may include more than
one note, one after another. This is because the transient response of the filter may continue to
ring after a harmonic disappears. It can be excited by activity eisewhere in the spectrum. This
can continue indefinitely, or another harmonic of similar frequency may be picked up. Third,
poor traces are caused not only by weak signals, such as extraneous resonances or high
harmonics, but can also be caused by having the center frequency of the filter be offset from
the actual frequency of the harmonic. In fact, there are usually 3-traces for each harmonic: one
right on the frequency, one above, and one below.

From this, we can see that the first thing that must be done is to break up the traces into units
that we know contain no more than one harmonic of one note, if they contain anything
meaningful at zll. The next thing that must be done is to produce a score for the trace which
reflects its "quality” in some way. We must decide what "quality"'means in this context. Gluing
together component pieces of a long note can be done later.
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SEGMENTATION AND SCORING

The segmentation is actually the easiest part of the prbcusing. Here, we simply determine the

threshold on the amplitude function such that 90 percent of the energy in the harmonic is at
amplitudes above this threshold. The amplitude function is then. scanned for regions that
exceed this threshoid. Segments that are shorter than 35 milliseconds are assumed to be
unimportant and are discarded. This is based on the fact that most meaningful musical notes
are longer than 100 milliseconds. Occasional grace notes and trills will invoive notes as short as
50 milliseconds. Our programs are set up (from this point on) to favor notes of duration 80
milliseconds or longer. This number is'a compromise- with' the -desire to ‘include meaningfut
musical notes and the desire to eliminate noise traces. We must set the threshold on length long
enough to eliminate as much spurious transient response of the bandpass filters as possible. We
include harmonics at this point of durations 35 to 80 milliseconds because they may get merged
into a longer note subsequently.

Before we proceed further, let me point out an ambiguity of terminology. When a piece of
music is written down in traditional music notation, the resulting document is called a score.
Alternately, when we rate an entity by assigning it a number which reflects its quality, this
number is often cailed a score. We hope the context will distinguish these meanings clearly. In
this section, we are interested in assigning a‘quality measure to the traces, so it is the second
meaning that is relevant here. '

The scoring of a harmonic is the most important process because it is the 6nly clue as to the
viability of a note that is assembled from a group of harmonics. As an example of how much
data is assembled, a single 2-bar piece that was processed contained 27 notes, or about 150
meaningful harmonics (about 5 harmonics per note). The output of the bandpass filtering and
pitch detection produced about 2000 amplitude-frequency traces. That means that over 90
percent of the traces produced by the filtering and pitch detection must be discarded. The
traces come from multiple detections of single harmonics, and traces of transient responses and
noise patterns in the high-frequency ranges. The score must reflect the likelihood that a given
harmonic is real and not just a noise trace.

The criterion we have chosen is smoothness of the curves. We require the amplitude curve to
correspond well to a low-order polynomial (6th order or s0), and we require the frequency to be
nearly constant. Since the sluggishness of the bandpass filter smooths out any fine detail in the
harmonic, this is a reasonable consideration. Strong, valid harmonics tend to have clean,
smooth traces and nice even frequencies. Vibratw can cause the frequency to be non-constant.
Pather than deal with this aspect now, we have finessed the problem by not ccnsidering it. Any
more comprehensive musical scribe should allow -certain forms of frequency variation like
vibrato, glissando, and expressive frequency changes.

We prédur.e a composite scora for the trace by taking into account the residual error of the
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amplitude and frequency fits as well as the coefficients of the frequency fit. This not only gives
a measure of the quality of the fit, but also a measure of the constancy of the frequency during
the note. We also use the distance between the center frequency of the filter and the frequency
of the harmonic. -Since the traces are better as they approach the center frequencj, because they
are maximally distant from the high-Q resonances of the filter, this is a reasonable measure to
help discriminate good traces from transient response. Each of these measures must be made
commensurate with one another. For instance, the coefficient of the second degree term of the
frequency polynomial is a squared quantity and its square root must be taken.

One of the bigger problems in normalization of the components of.the score is equalization for
duration. We want scores for long notes to be commensurate with scores for short notes. The
terms in question here are the residual errors for the polynomial fits. If we view the fit as a :
regression process, then the residual error will be distributed as X% To show this and the
assumptions it involves, let us show where this resuit comes from. This presentation is patterned
after Freund [1962]. Since this is a standard derivation, we shall only present the results, not
the intervening steps. :

Given a sequence of abscissa, X;, and their ordinates, Y, representing, in this case, equally
spaced points in time and the value of the amplitude or frequency curve at that point in time,
we can fit a polynomial to Y as a function of X and use its residual error as a measure of the
quality of the fit. We assume, then, that the Y; are independent random variables having the
following conditionai probability distribution:

1 - 2

——(Y -E: axh
2

20 'j,.‘ i

(37) v, |x,) « —L
A o~/2m

Where X; are the independent variable, 1< i <M
Y, are the dependent variable, but are independent random variables

distributed normally about an N'"-order polynomial.
0 is the standard deviation of said distribution,

3; are the coefficients of said poiynomial.

ere, the 3; are the same for each value of i. We obtain maximum likelihood cstimates of the
regression coefficients, 8, and then compute the residuai error as follows:
. , . n N .
(38) p° = = 2; iv,- ) axh
1= j.

Where p is the root-mean-square residual error cf ths abscissa and the -
rolynomial
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p? will then be an estimator of 0'2 and is thus distributed as X2 The main assumption here is
that the ordinates are distributed normally around a polynomial. This is, of course, not entirely
true. There is nothing in the physics of music production that requires the harmonic
amplitudes to be polynomials. We violate the usumptlon with the hope that the resulting
computations will still be meaningful.

The use of the X? property of the residual error is that traces of different lengths (different
values of M, i., different numbers of degrees of freedom) can be compared by first normalizing
by the X? value for that number of degrees of freedom. In fact, we find that this does help
produce more commensurate-residual-errors- between. long segments and.short-segments, but due
to the fact that the assumptions fundamental in the process are violated, the correction does not
~ seem to be enough. Long segments stiil have somewhat higher residual errors than short ones.

To be explicit, the score, representing the "badness™ of the trace (that is, inverse quality) is
computed as the sum of the following terms:

@&, - The quotient of the residual error of the amplitude fit, as defined in equation (38), and
the average amplitude of the harmonic. The residual error of the amplitude fit was

normalized by the X2 value for the number of degrees of freedom (points) in the
amplitude function that were used in making the polynomial fit.

&, - The quotient of the residual error of the frequency fit and the average frequency of the
harmonic. The residual error is again normalized by the X2 value.

&5 - The first-order coefficient of the frequency fit, divided by the average frequency of the
harmonic.

&, - The square root of the second-order coefficient of the frequency fit, again divided by the
average frequency of the harmonic.

& - The magnitude of the difference of the average frequency and the center req hency of the
filter.

The total score was then computed as the weighted sum of these terms:

Where the k; are tne weightings of the varicus error terms
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The first four terms, &, fhrough &, were normalized by the average value (amfalitude or

" frequency) of the harmonic. This gives a measure of the relative error rather. than the absolute

error. This allows us to compare strong harmonics with weak, high frequency harmonics with .
low frequency ones. Otherwise, the expected error range would vary with these parameters.

In (4 the square root was taken because the second-order coefficient is a squared quantity. The

root must be taken to make it commensurate with the other error measures, which are all linear
quantities.

For reference, the values for the..weights,Js.;,@ure._kplaﬂ.\,~‘k¢!3ﬂﬁﬂ.ﬂ.&,ﬁlﬁ.w~k4-20,A
k5=4.> ‘

Figure 49 shows four examples of segmentation, polynamial fitting, and scoring on a single
harmonic. The harmonic chosen is the second harmonic of a 262 Hz note (C4), which is at
about 525 Hz. These traces are taken from the first notes of a two-part piano piece. There is
also a 332 Hz note (E4) sounding at this time. The four traces in the figure are separate traces
of the same harmonic. This shows how adjacent filters will pass the same harmonic with
differing degrees of faithfulness. Over each figure is a list of parameters: CF represents the
center frequency of the filter that produced the trace. In each figure, the upper plot represents
the amplitude envelope of the filter output. The bottom plot represents the output of the pitch .
detector which was applied to the filter output. Across the amplitude plot is a horizontal line
which represents the threshold such that 95 percent of the energy in the amplitude envelope is
at values above that threshold. This is how the segmentation is done. The small arrows point
out the limits of the region above threshold that is being processed. Sometimes a single trace
will have several disjoint traces above the threshold. The rext figure shows such an example.
Both the amplitude and frequency functions were fit with polynomials. The polynomials are
also plotted. They are the smooth lines through the plots. The amplitude polynomial is of order
6, and the frequency polynomial is of order 2.

Above each figure is listed the contributions to the total score from each of the five error
functions. The labet CONT1 on the figure refers to the weighted, normalized quantity k ,G,.
The label CONT2 refers to the weizhted, normalized quantity k&, and so on. The total score,

which is the sum of these contributicns as expressed in equaticn (39), is labeled SCORE in the
figures. The parameter AVFR is the average frequency in the region under analysis.

As we can see, the error score decreases monotonically as the center frequency of the filter

. approaches the actual frequency of the harmonic, even if we discard the contribution from

kg®s, which represents exactly the distance from th: frequency of the harmonic. The
contribution from kg®s is included to strengthen this bias toward. centered filters. Remember

that the frequencies of the filters was dezermined by the :omb filter, so that they do not
_necessarily represenc.the frequency of the harmonic that passes through *he filter. Ve include

this last term to represent only the fact that the trace is better when the frequency of the

harmonic is near the ceater frequency of the filter, and thus the averall score for. the harmoric
is more likely to be meaningful. :
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FIGURE 49: Plots from the segmentation and scoring algorithm.’ Each picture shows an amplitude
and a frequency curve. The horizontai line across the amplitude plot denotes the threshoid where

"95% of the energy of the plot lies at amplitudes above this lire. The small arrows derote the

region being fit and scored. The smooth curves through the amplitude and frequency plots are the
polynomial fits to these curves. In figure 49c¢, the polynomial fit for the frequency rises at the end
of the plot. This is a boundary effect common in this kind of approximation that the slope of the
approximation strays at the ends of thc window. The numbers at ‘he top represent the various
sccring contributions, already weighted and normaiized, as described in the text. CF represents
the cenier frequercy of the filter that produced these plo's, AVFR reoresents the average
frequency in the region being fit, and SCORE represents the sum of the contributions from all five -
error sources. These traces were taken from the analysis of a two-nart piano piece. There was a
262 Hz nota and a 332 Hz note being played at this time. We sae four traces of the same
harmonic: the second harmonic of the 262 Hz note, at about 525 Hz. It is clear that the score
improves (gets smailer) as the center frequency of the filter (CF) approaches the actual frequency
of the harnionic. This is a good demonstration of why a scoring system is necessary. Each
harmonic produces rany traces. The good ones must oe separated from the spurious onues. The
error criteria used here seens to accomplish this effectiveiy.
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" In figure 50 we see four more plots, again of the same harmonic, which is the third harmonic

of the 332 Hz note (E4) at about 987 Hz. Since the sirengths. of the harmonics generally
decrease as the harmonic number increases, these upper harmonics become increasingly difficuit
to follow. Often, even when the filter is exactly centered on the harmonic a good trace with low
error cannot be obtained. As a result, these upper harmonics cannot be used with great
confidence to infer the existence of notes. '

Figure 50a and 50b show how a single harmonic can get spuriously broken into two pieces.
Here the harmonic was beating with the transient response of the filter and went below the

* segmentation threshold and was thus broken up. -
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FIGURE 50: Plots from the segmentation and scoring algorithm. As with the previcus figure, these
traces ‘were ‘taken from the anaiysis of a two-part piano piece. There was a 262 Hz note and a
332 Hz note being played at this time. We see four traces of the same harmonic: the third
harmonic of the 332 Hz note, at about 987 Hz. As we ascend in harmonic number, the traces get
weak and noisy, such that there are many spurious traces, and high error scores on the good
traces. For this reason, we cannot rely on the higher harmonics as svidence for notes except for
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certain instruments with especially strong high harmonics.
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INFERRING THE NOTES

At this point in the analysis, we have a large set of possible harmonics. For each possible
harmonic, we preserve only a few numbers: the average amplitude, the beginning time, the
ending time, the average frequency, the error score, and the amplitude function polynomial. All
information regarding the exact shape of the amplitude or frequency function has been
discarded. ' ’ : o

It seems to be a property of machine perception programs that they get more and more heuristic
and less and less defensible on theoretical bases as they proceed to higher and higher levels of -
processing, away from the low:level, signal-processing techniques. This program is no
exception. Each heuristic is based in the properties of musical sound, but sometimes the
connection is especially tenuous. '

OQur first task is to merge duplicate traces. Since we get several traces for each harmonic, we can -
combine these into one composite harmonic. This reduces the data immediately by a factor of
three or so. This initial merging is only done for traces that overlap significantly in time and
whose pitches are within a few percent of one another. We call these reduced harmonics. The
parameters of the reduced harmonic are taken from the parameters of the harmonic with the
lowest error score. In the case of several harmonics with low scores, a weighted average is taken
to form the new amplitude and frequency. The parameters are weighted by the reciprocals of
the scores of the individual harmonics.

Next, a list is formed of these reduced harmonics in order of their average amplitude divided
by their error score. This provides simultaneously a measure of the strength and the quality of
the reduced harmonic. We then attempt to group together a number of harmonics that infer a

" note. - One problem in so doing is avoiding a combinatoric search. Assuming that the lower-
level procedures have produced faithful traces, we can just pick off the best reduced harmonic
(ih the sense of having the {argest amplitude-error score quotient) and assume that this is the -
first, second or third harmonic of a note. This is a purely heuristic assumption but it is based
on the observation that most musicaily interesting tones have strong lower harmonics. This does |
‘not account for many erfects present in human hearing, like the existence of residue pitch, but
it is a reasonable compromise for the current study.

With this reduced harmonic, we first search the entire reduced harmonic list to see if there is
another reduced harmonic existing at the same time that has one-half or one-third of the
frequency. If there is nc such tone, we take our original reduced harmonic to be the
fundamental of the note, else we take the lowest reduced harmonic found as the fundamental.
We can then race throngh and pick out harmonics for this funcamental just by locating
reduced harmonics that exist at the same tiine and which have frequencies that are close to the
predicted frequency of the harmonic in question.

Oncze the harmonics are selected, the note can be tested for viability. The first test is whether
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the fundamental is at all strong We require the fundamental to be of substantial strength and
quality. This is, again, a departure from human perceptual performance. If the fundamental is
strong, we examine the strengths of the harmonics that are not muitiples of two and not
multiples of three. The lst, 3rd, 5th, and 7th are examples of harmonics that are not multiples
of two.. The Ist, 2nd, 4th, 5th, Tth, and 8th harmonics are examples of harmonics that are not
multiples of three. This is to try to determine whether the fundamental is a spurious trace and
the note is really two or three times higher than we are hypothesizing. We threshqld the ratio
of the sums of the qualities for these selected harmonics with the sum of the quality for the

-remaining harmonics. This seems to be an adeéquate technique, although it occasionally

elimiﬁates useful notes.

We requxre also that the harmonics be dense. That is, for two or more harmonics, we require
that the note possess all but one harmonic for acceptance, unless it is only odd harmonics, in
which case it must possess all the odd harmonics up to the highest harmonic in the
hypothesized note. A note consisting of just one harmonic, the fundamental, we requlre to be
quite strong for acceptance.

We then merge notes that have very nearly the same frequency and overlap considerably in
time. These can be produced by having a very long note. The initial segmentation based upon
the musical harmony of the piece is made, some errors in segmentation result. The most
common form of this kind of error is that a long note can get broken into smaller pieces. These .
pieces must be glued back together at some point. We have chosen to do so after the note
hypothesis has been formed.

The data representing the note is then reduced to just four numbers: the pitch, the beginning
time, the ending time, and the quality (amplitude over error score). The beginning and ending
times are obtained by producing an overall amplitude profile for the note based on the
polynomial representations of the amplitude curves for each of the harmonics. This overall
profile is subjected to a threshold that assures that 95 percent of .the energy is. above the .
threshold. The times where the profile arops below this threshold are taken to be the beginning
and ending times of che note. '

Figure 51 shows a representation of one of the notes inferred by this procedure. The curves on
the pilot represent the amplitude polynomials for each of the harmonics. The text in the lower
part of the picture represents information on each of the harmonics. The first column is the
beginning time, the second column is the ending time of the harmoric. These times are in tens
of milliseconds. The next column is the average amplitude of the harmonic. The fourth column
is the error score of the harmonic. Sometimes there is not a space between the figures in the
third and fourth columns. The last column represents the average frequency of the harmonic.
The isolated pitch figure at the bottom of the plot represents the weighted average pitch of the
tonz, which s derived by divicing down the average pitches of the harmonics, weighting.them
with the quality of the reduced harmonic, and averaging :hem.
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FIGURE 51. A representation of a note hypothesis from a two-part pianb piece. The

curves in the upper

figure are the polynomial approximations to the harmonic amplitude curves.

Each curve represents the amplitude as a function of time of one harmonic. The numbers below
the plot give the details of each harmenic. The first column is the starting time in hundredths of a
second. The second column is the ending time. The third column is the amplitude of the harmonic
(times 100,000), the fourth is the error score. The last column is the .average frequency of the

harmonic. There are

two small arrows above the curve which delimit the region where 90% of the

energy lies.
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FIGURE 52. This plot is like the above one, but points out that even at this late stage of

the processing, noise

traces can still be present in the data. Here, a bit of transient response from

the following nota overlapoed this note enough to be absorbed as part of it. Tne noisy harmonic
hzs a higher error score than the others, but it aiso has a very high amplitude, so it is not clear on
what basis it can be eliminated.
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Even at this late stage, imprecisions occur. Figure 52 shows one such error. There is a strong
noise burst on the end of one of the harmonics. This burst is enough to cause the ending time
of the note to be overestimated. : '
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DERIVING THE MELODIES

- Given this list of notes from the previous processing stage, we must now link them into
melodies. For convenience, we do not attempt to handle the case where parts cross. To handle
crossing parts correctly, we would have to identify the instrument involved, as well as examine
the musical context in great detail. ‘ :

‘We have decided upon a very simple algorithm for selecting melodic groupings. At this point
in the algorithm, we make use of the assumption that there are no more than two independent
voices in the piece. This way we can search for places where there are two notes sounding
simultaneously and identify the voices-positively."Any place-that-can-be-so-identified -is called
an island. This island represerits a place where there is no doubt as to the voices (upper or
lower) a particular pair of notes belong to.

To finish the assignment, we use a global scoring algorithm. We assign a "score” to a particular
assignment which is the sum of the magnitudes of the differences of the frequencies of ad jacent
notes in the melodies. We can then search all possible assignments of the unassigned notes and
compare the various possibilities by cornpanng their scores. The uslgnment with the best
(lowest) score is chosen.

Figure 53 shows the initial. melodic assignment for a guitar duet. The score for the duet is
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