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This dissertation is concerned with the use of a computer to analyze and understand
rhythm in music. The research focuses on the development of a program that
automatically transcribes percussive music, investigating issues of timing and
rhythmic complexity in a rich musical setting. Beginning with a recording of an
improvised performance, the intent is to be able to produce a score of the performance,
to be able to resynthesize the performance in various ways, and also to make inferences
about rhythmic structure and style.

In order to segment percussive sound from the given acoustic waveform, automatic
slope-detection algorithms have been developed and implemented. Initially, a simple
amplitude envelope is found by tracing the peaks of the waveform. This provides a data
reduction of about 200:1 and is useful for obtaining an overview of the musical
material. The data are then segmented by repeatedly performing a linear regression
over a small moving window of the envelope data, moving the window one point at a
time over the envelope. The linear regressions create a sequence of line segments that
*float" over the data and allow segmentation by carefully set slope thresholds.

The slope threshold determines the attacks. Once the attacks are determined, the decay
time-constant, tau, is determined by fitting a one-pole model to the amplitude envelope.
From the value of tau, a decision can be made as to whether a given stroke is damped or
undamped. This corresponds to the method of striking the drum., Once the
damped/undamped decision is made, a portion of the original time waveform is sent to a
“stroke-detector” that determines how the drum was struck in greater detail.

At this point, enough information about the performance has been obtained to begin a
higher-level analysis. Given the timing information and the patterns of strokes, it is
possible to track tempo automatically, and to try to make inferences about the meter.
These :ivo issues are in fact quite deep, and are the focus of a body of work that
involves detection of "macro-periodicity,” that is a repetition rate over longer periods of
time than signal processing would normally yield. Also included in this thesis is an
historical and theoretical overview of research on rhythm, from several perspectives.
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On The Automatic Transcription of Percussive Music
—From Acoustic Signal to High-Level Analysis
By
W. Andrew Schloss

Program in Hearing and Speech Sciences
Stanford University, Stanford, California 94805

In this dissertation, an example of a real improvised performance is transformed
from the acoustic waveform to a (modified) Western notation representation. A
myriad of decisions are made en route, some of which could be research topics in
themselves. They are addressed here as they relate to the problems at hand.

An effort is made here not only to automate a process that well-trained musicians
can already do, but to shed light on the many musical/acoustical /theoretical issues
that are involved or invoked in this process. Thus, the broad motivation is a desire
to understand the entire process better; the final result is not the only concern. This
thesis represents an attempt not only to perform the task of automatic transcrip-
tion (though this is not a trivial task), but also to use that process to lead to an
understanding of rhythm perception and production, and to understand more fully
the relationship between composer and performer.

The material within covers a great deal of territory and crosses numerous
boundaries. It cannot be contained in a single discipline. Some material has been
included that is peripheral to the main effort of transcription (parts of Chapter 2,
for example) because one aim of this work is a better understanding of percussive
music in general.

Those readers familiar with signal processing may not be familiar with eth-
nomusicology, a psychoacoustician might not have thought about rhythm, a drum-
mer may not know about cognitive psychology, and so on. It is hoped that the
material presented will be of interest to a diverse group of readers.
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Itinerary of Topics

In Chapter 1, an overview of the transcription system is presented, including
the form of input and output, and furnishing a general flowchart. Chapter 2
provides historical background, first of previous transcription efforts, then on issues
of time perception and musical timing, from low to high level. There follow some
theoretical treatments of rhythm, and finally, related issues in ethnomusicology,
both theoretical and practical, are discussed. Chapter 3 is a detailed description of
how the current transcription system actually works. Lastly, in Chapter 4 we try
to draw conclusions about the work, and suggest directions for future research.




Chapter 1

Overview

1.1. The Problem

Several attempts have been made to transcribe music automatically, beginning
with an acoustic signal and terminating in some kind of visual representation
describing the musical events. In Chapter 2 we describe some of these attempts.
Certainly there are many levels at which this process can be considered to succeed or
fail, in technical, and ultimately musical, terms. When any sound is heard, from the
simplest sine wave, to a rich orchestral climax, to a car crashing through a plate-
glass window, what reaches the ear is in effect simply a single-channel signal. This
single-channel signal, which is the algebraic sum (superposition) of all contributing
sound sources and is therefore a single function of pressure vs. time, contains
many levels of information and can thus be parsed in many meaningful ways by
the auditory system, depending on context, experience, and need. The auditory
system, even in the untrained listener, exhibits more and more amazing analytical

power as one attempts to duplicate what at first might seem trivial listening tasks.

Of course, the issues begin with the auditory system, but extend naturally to
cognitive and perceptual processes. It is not enough to decipher what was played;
some sense has to be made of how the material is constructed. This is tantamount
to a musical analysis, because the listener, either implicitly or explicitly, perceives
structure in the music. A trained listener may begin to make the structure explicit;
an untrained listener probably cannot, but he or she perceives it in some form
nevertheless. This is equally true of notated and non-notated (improvised) music.

The process of notating music is dependent upon a significant level of musical
analysis: there is no way to notate music of a particular style without having a
theory of that style. Thus, any theory of music is heavily laden with conventions
about the styles it describes. In fact, a theory may distort a listener's percept of
what is being played. One hears what maps onto one’s musical paradigm, in a
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kind of “global categorical perception.” We do not want to “squash” the music into
Western notation; we hope instead that Western notation, when carefully derived,
can provide us with powerful insights into the music.

One of the difficulties with any attempt to transcribe music has been described
by Charles Seeger [Seeger, 1958] as the dichotomy between “prescriptive” versus
“descriptive” music notation. Prescriptive notation is the notation we are accus-
tomed to seeing in Western music, that is, the score. In the score, innumerable
conventions are assumed, and the performer implicitly includes these unspoken con-
ventions in every performance. The task of many musicologists is to clarify some
of these implicit conventions, or to infer what they might have been at the time
that the music was written. Descriptive notation, on the other hand, should ideally
assume nothing, and try to present a map of every “salient” feature of the musical
event. This is almost impossible, because such a map, if one could actually pin down
all the features, would be so dense as to be nearly impossible to parse. It would
tell you “more than you wanted to know.” Thus, musical knowledge is needed to
represent the data in a meaningful way.

In this thesis, the effort is somewhat different from those previously cited,
because the musical input is restricted to percussive music and the analysis con-
centrates mainly on timing issues and rhythm. Different problems are thus intro-
duced; since the sounds are not always periodic, as in other studies, more attention
is paid to modeling attack characteristics. Also, instead of pitch, the important
dimension (apart from timing) is “stroke characteristic.” That is, one must identify
what kind of stroke, on what drum, corresponds to each attack.

Once the timing and stroke characteristics have been determined, a notelist*
is created. Following this, the rhythm is analyzed. Finally, armed with the analysis
data of real performances, inferences can be made about style and structure, peri-
odicity, and the use of specific deviations from a canonical time-base for musical
purposes. :

The analysis system is being applied, in the current research, to music for
which there is no score. Presumably, if there is already a score, then this tool is
useful not as the producer of a score, but as a means by which one can compare the
score with the actuality of a particular performance, resulting in investigations into

* The notelist is an uninterpreted list of begin-times, durations, amplitudes, and any other
important features or parameters of the music.
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resampled
at 22.05 kHz
SONY PCM F1 m
digital tape recorder
SONLY HARD DiSK
Srate = 44.1 kHz interface
16 bit samples digitized
waveform

Figure 1.1. The recording setup.

performance practice. However, since much of the world’'s music is improvisatory,
the way is open for transcription and analysis tools to be applied to a large body
of music, both for systematic study and for recreation of desirable performances.

Finally, this work may be seen as part of a larger scheme: that of an intelligent
editor of music. I hope that this thesis will provide a few contributions towards
this effort. Automatic segmentation is a crucial first step towards the efficient
manipulation of musical material, and globally, the position of musical events in
time gives the most effective way to maneuver within a piece of music. Details on
the automatic segmentation method are presented in Chapter 3 of this thesis.

1.2. Input to the System

The input material may take the form of acoustic or synthesized signals. The
use of synthesized waveforms affords greater control of test data, and provides a
precise preliminary check on analysis results. The acoustic data consist of digital
recordings of several different drums in a very dry room, using a Crown PZM
microphone attached to a plexiglass reflector .8 meters from the drumheads, at the
same height as the drumhead (see Fig. 1.1).
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The signal is digitized by the Sony PCM F1 digital tape recorder and stored
on a Betamax cassette at a sample rate of 44.1 kHz, in 16-bit samples. Later, the
musical material of interest is read from the PCM-encoded tape and written on a
hard disk via the SONLY interface (designed by Phil Gossett at CCRMA), which
allows direct transfer of the digitized signal without converting it to analog and
back. Once the data are written on the disk, they can be manipulated by the
standard soundfile software at CCRMA, or by special processing routines written
as necessary. In this thesis, all algorithms are written in SAIL, and run on the
FOONLY F4 computer, which emulates to a DEC PDP-10. Because the signal
processing is done on a general-purpose computer, it requires approximately a ten-
to-one compute-time to real-time ratio, but most of it could be easily modified to
run in real-time on an array processor. To alleviate the compute-bound processes,
the signal is resampled at 22.05 kHz before further processing. Resampling lowers
the bandwidth of the signal, but has no effect on the efficacy of the procedures;
high sampling rates are generally more important for synthesis than for analysis.

In difficult cases, the signal may be high-pass filtered to facilitate segmentation.
This is done because the upper partials of a tone tend to die out more quickly than
the fundamental. Since the upper partials have nearly the same onset time as the
fundamental, this simplifies the work of the segmenter by reducing the problem of
overlapping notes (see Chapter 3).

1.3. Types of Output

Intermediate level representations, such as time-domain waveforms, FFTs, en-
velope graphs, or parameter maps can be collected at all points in the system.
Music notation is automatically created upon completion of an example. The sys-
tem is interactive, and allows the user to change values of numerous parameters
and thresholds in mid-execution. It is most useful to select a setting for some of
these values using a small data set, and then let the system proceed uninterrupted
on the body of data under consideration. Figure 1.2 shows the system overview.




Acoustic waveform on disk

Low-level analysis
(Section 3.2)

Note-List
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Figure 1.2. System overview. Auditory feedback is impor-
tant at both low and high levels of analysis. The “raw”
resynthesis means reconstruction of the music from the notelist,
to see if the signal processing is correct. The “normalized”
resynthesis means reconstruction of the music from the various
versions of musical notation generated by the higher level

analysis.
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Chapter 2

Background and Theory

“The only true notations are the sound-tracks on the record stself.”

— from Bartdk, 1951

2.1. Introduction

To put the focus of this thesis into an historical and theoretical perspective,
previous research in several areas will be outlined in this chapter. Also we occa-
sionally go beyond reporting previous work, and introduce ideas that are new, or
a synthesis of previous ideas. It is hoped that these elaborations will shed light on
what has been a somewhat elusive topic.

In Section 2.2 we review actual attempts at automatic transcription, of which
this thesis is one. The subtleties of the task, both at a perceptual (musical) and
technical level, are numerous, and the problem is far from solved.

In the rest of the chapter, an attempt is made to orient the reader within
the realm of rhythm, from the lowest to highest possible levels. Section 2.3 deals
with studies of timing, which in themselves cover a wide range in approach, from
psychoacoustical to cognitive, including systematic deviations from metrical pat-
terns. Section 2.4 follows with theoretical investigations into the issues of metrical
structure and hierarchies in music. In Section 2.5 we attempt to describe a tenta-
tive paradigm for categorizing music in a global perspective, showing how rhythm
functions and how it is constructed in different world-music contexts. Finally, in
Section 2.6, we briefly discuss some specific characteristics of the type of percussive
music that is being analyzed herein.
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2.2. Previous Research in Automatic Transcription

Almost all previous methods for automatic transcription were applied to non-
percussive instruments. They are included here because many of the ideas and basic
problems are the same. The earliest work predated modern digital technology and
therefore was analog-based, staying “close to the signal,” that is, no higher-level
decisions were made. More recent work includes considerable high-level musical
analysis, entering into the realm of Artificial Intelligence. We begin with the first
researcher to deal with the problem systematically.

2.2.1. The Melograph

The late Charles Seeger (husband of the composer Ruth Crawford Seeger, and
father of Pete and Peggy Seeger) occupies an important position in the field of
musicology. He was one of America’s earliest and most prominent ethnomusicologists,
and he made significant contributions to the theoretical basis of a systematic study
of world music.

Seeger, as early as the 1940's, saw the need for an objective representation of
performed music. His earliest efforts led to a graph of fundamental frequency against
time, and even today, a robust pitch-tracker remains of interest to the computer-
music community. Seeger was convinced that a graphical representation of music
was the answer to objective studies: “I have a feeling that before a hundred years are
passed our present notation will look more like a graphic than a symbolic method of
writing.” [Seeger, 1951]. On the other hand, such a graphic representation, while it
is an objective record of events in time, does not represent the musical abstractions
that are so important.

Six years later, Seeger moderated his position somewhat, mentioning that
traditional notation complements the graphical representation: “Our conventional
notation will not serve—and we should no longer pretend it can serve—the need of
a universal music sound-writing. To no one would I recommend abandonment of
traditional techniques of writing music for the novel and still undeveloped graph.
For the present, I would urge the two to be used side by side.” [Seeger, 1957].

In order to represent more aspects of the music, Seeger developed his Melograph,
which had three temporally aligned time-varying graphs: amplitude vs. time, fun-
damental frequency vs. time, and a high-resolution spectrograph. The spectrograph
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is really the output of a bank of band-pass filters that record the energy in each
channel on a chart recorder. The amplitude is simply proportional to the voltage
of the input signal. The fundamental frequency is found by scanning a bank of
1/3 octave filters, beginning with the lowest frequency, and when a maximum is
found, it is assumed to contain the fundamental. Then the zero-crossings of the
output of the filter are counted and plotted on the chart recorder. The problem
with this method is that the fundamental may be very weak or absent; it would be
more robust to try to determine the fundamental from looking at its harmonics,
or using some other modern technique like the cepstrum* to find the fundamental
frequency, but this is a much less straightforward task.

The Melograph evolved over a period of twenty years; the most developed
version was the model C, completed circa 1970. The model C is more accurate
than previous models, and though mostly an analog device, it does supply output
available in digital form, which could be subjected to further analysis [Hood, 1971].
The melograph is intended to be applied to a monophonic (one-voice) input, and is
rather sensitive to noise. See Fig. 2.1 for an example of Melograph output.

This instrument gives the researcher a very useful overview of his data. It
makes no attempt to interpret anything; this is left to the user. The process of
interpreting the output of the machine is laborious and prone to error. Subsequent
music transcription attempts that address the problem of representing the music in
a more abstract way are described below.

2.2.2. Moorer's Thesis

James Moorer’s doctoral thesis [Moorer, 1975] is an important contribution to
the field, although many restrictions were placed on the material to be analyzed.
Moorer occupies a central position in the “lore” of computer music, and his dis-
sertation is still timely nine years after it was written, because he makes an early
attempt to deal with polyphony.

Moorer’s work is quite different in orientation from this thesis. He does not
try to deal with tempo variation, instrument identification, notes of less than 100
msec. in duration, and inharmonic spectra, all of which are dealt with here. Also

* The cepstrum is defined as the inverse discrete Fourier transform of the log magnitude
spectrum of the time data.
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Figure 2.1. An example of the Melograph output for an excerpt of the Chinese sona
(double reed aerophone). Amplitude trace on top, fundamental frequency trace in the
middle, and spectrograph in the bottom half. From [Hood, 1971].

he disallows glissandi, fast trills, and vibrato; however, he is dealing with the
transciption of polyphonic music, which is still a largely unsolved problem. In
his pioneering attempt, he also restricts input to two simultaneous voices, and he
disallows unisons, octaves, twelfths, and some other intervals because the harmonics
of two instruments playing at these intervals will overlap, greatly complicating the
disambiguation of these cases.

Moorer’s thesis is valuable not only for what methods it employs in the transcrip-
tion effort, but in its review of methods that were tried and found not to be useful
for musical analysis. For instance, Moorer does not recommend the Discrete Fourier
Transform (DFT), and its more computationally efficient analog, the Fast Fourier
Transform (FFT), because he says they are distorted by any change due to either
amplitude or frequency, and thus will give misleading results in the presence of
vibrato or room reverberation.* Two speech analysis techniques, the cepstrum (the
inverse DFT of the log magnitude of the DFT of the input), and the linear predic-

* The DFT and FFT are obviously workhorses in any music analysis situation, but they
have to be carefully extended to succeed in complex musical situations.
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tor, are also not recommended because of their apparent problems in dealing with
multiple sources (polyphony).

Moorer also describes the heterodyne filter that was used to produce John
Grey's plots in his dissertation on musical timbre called An Ezploration of Musical
Timbre [Grey, 1975]. The heterodyne filter is basically an adaptation of the DFT;
its problem is that it is too sensitive to frequency and amplitude variation (present
in most musical signals), and if the partials wander out of a channel, it is difficult to
interpret the results. Thus, the heterodyne filter is most useful in analyzing single
isolated tones from various musical instruments, but not for continuous music or
more complex situations.

Of the methods actually used in Moorer’s research, the first applied to the
data is a technique related to the autocorrelation function, which Moorer calls
the “optimum comb.” Its derivation is as follows: For each data point z, in the
waveform of k samples, form the sum

k—1

E |Zn+i — Zntiomll,

om0
looking for minima over m in this sum. This is really a preprocessor, and is used to
find the basic periodicities, or “harmony” of the data, mostly to reduce the extent
of further processing. The idea is that one can find a “least common divisor” of
harmonics using this method, which helps in setting bandpass center frequencies
later.

The main signal processing method is actually a carefully adapted band-pass
filtering routine, set to examine multiples and subharmonics of the basic periodicity
found by the optimum comb. Then the results of the band-pass filters are analyzed
and the notes that could produce the original sinusiods are inferred. This is not
an obvious procedure, in that there is not a one-to-one correspondence between the
original sinusoids and the supposed source.

Moorer is not specific about how he goes from the notelist to the score; assuming
that the tempo is constant makes this task more manageable. Tempo fluctuations
inevitably make the time values found by the lower level analysis extremely unreli-
able to notate without further processing before converting to musical notation.

After finishing his thesis, Moorer explored the possible use of the phase vocoder
[Moorer, 1978], which is similar to the heterodyne filter except that the output of
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each channel is not simply the sinusoid that falls into it, but rather a time-varying
parametric representation for each channel. This means that the phase vocoder
is less vulnerable to vibrato and tremolo than the heterodyne filter, and therefore
presumbly might have been his preferred method for transcription if it had been
implemented at an earlier date. However, the phase vocoder presents problems
when used for quasi-periodic signals like percussion, because it is difficult to “line
up” the channels of the phase vocoder with the partials of the percussive tones
[Gordon and Strawn, 1984].

2.2.3. Piszczalski and Galler

Piszczalski and Galler have been publishing articles on automatic transcription
since 1977. Their approach is basically pragmatic, and is loosely tied to perceptual
theories. In their first article [Piszczalski and Galler, 1977], they concentrate mostly
on the recorder and flute. They describe three levels of their analysis system applied
to these instruments. The three levels are actually quite similar to Moorer’s work
cited in the previous section, viz:

1. Convert the time-waveform to an amplitude-time-frequency representation;
in this case, a 3D plot based on successive FFT’s of the signal.

2. Infer from intermediate processing what musical “notes” can best account
for the frequency, amplitude and time values derived in step 1.

3. Represent the events hypothesized in step 2 in musical notation.

The most interesting part of this system is step 2, as there is some intelligence
built into this level, mainly in trying to account for the harmonics as they combine
to make a continuous tone; for example, if the fundamental has a drop in amplitude
but the second harmonic is continuous, then there should be no segmentation at the
point where the fundamental drops.* There are inevitably some frequency variations
detected, and the value derived by averaging the frequencies over the duration of a
given note is taken as the musieal pitch.

The example is then scored from the pitch and time information. No attempt
is made to deal with tempo fluctuation; in their examples, they try to provide

* That is, there may not be a new attack at the point where the fundamental swells to
its original amplitude; the program should be looking at more than just the fundamental
when trying to detect new attacks (segmentation).
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themselves with a constant tempo (a very unlikely situation in a real performance).
This assumption of constant tempo is typical of the early transcription attempts;
there is enough to deal with in just getting reasonable results in pitch-tracking and
segmentation from the acoustic signal.

In Piszczalski and Galler’s method just described, the problem of a weak or
missing fundamental is not addressed. They subsequently developed their system
and made it more robust by adding a scheme to infer the pitch from a set of
harmonics [Piszczalski and Galler, 1979]. The method is basically to look at
adjacent pairs of harmonics, and calculate the ratio of their frequencies. If this ratio
is close to a low-integer ratio, it is used to estimate the fundamental frequency. The
idea is to infer the likely harmonic numbers; the value of the fundamental should be
uniquely defined by its harmonics. Since the calculation is done over several pairs
of harmonics, the estimate gains reliability. In fact, the method saves all pairs in a
table, but there is no combinatorial scheme applied to all the ratios; they are simply
weighted according to their relative amplitude, and the best value is chosen.

This method works satisfactorily in most of their test cases. It fails in the
following cases:

1. Substantial ringing of a previous note (that is, any amount of polyphony,
inadvertent or intentional).

9. The fundamentals are low in frequency, because the frequency ratios will
often imply the wrong fundamental. (The strong higher harmonics will have closely-
spaced ratios.)

3. The duration is very short (this is due to the time-resolution limit of 40
msec. from the lower-level processing).

It is also hard to imagine this method working effectively for inharmonic tones,
but of course the sense of pitch elicited by inharmonic tones diminishes as the
partials depart from integral multiples of the fundamental. In the case of percussive
instruments, the subject of pitch perception is still quite open, and the transcription
should reflect this by notating pitch where it is perceptible.

Piszczalski and Galler later implemented the above method into their transerip-
tion system, which certainly improved pitch-tracking for instruments with weak
fundamentals. Also, to reduce the compute-bound bottleneck of the spectral est-
imation calculations, they abandoned the standard FFT for a charge coupled device
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(CCD) performing a chirp Z-transform (CZT). This operation can be done in real-
time, and since this would be the most computationally intensive part of the system,
it makes possible more exploration of graphic representations of the time-varying
spectra, but it does not change the basic approach. Polyphonic input is still not
addressed, and there is no way to deal with varying tempi.

2.2.4. The Auditory Transform

In his MS thesis [Stautner, 1983], Stautner tries to develop and implement an
analysis method that is closer to the way we hear. Tuning his system to several
“rule-of-thumb” auditory parameters such as critical bandwidth, nerve firings, and
the jnd (just-noticable difference) of loudness, Stautner creates 3D plots that are
carefully tuned short-time Fourier Transform log magnitudes (STFT). These plots
are visually informative, and he shows how the sound can be resynthesized from
the plot, but to get more useful information from the data, the analysis must
be extended. First, a second stage of STFT magnitude analysis at the output
of each analysis channel is computed. It turns out that, though the Auditory
Transform resolves the first few harmonics, the higher partials will fall together
into single channels, which results in temporal beating. This will result in a “pitch
periodogram” for the second spectral analysis, allowing one to infer fundamental
frequency. This method resembles the cepstrum, though Stautner does not refer to
it as such.

The last level of analysis is in the application of principal components analysis
to search for the optimal model for the spectral data. This analysis yields several
orthogonal components that relate to physical features of the sound. The sound can
be resynthesized successfully from the principal components analysis. The method
of principal components is rather computationally intensive, and though it leads to
some interesting results, one wonders if there is not a simpler way to achieve the
same goal.

When the above analysis is carried out on a section of music played on the
Indian tabld (a set of two tuned drums), the detection of several salient features
is demonstrated. It turns out that the first six principal components seem to
correspond to certain aspects of performance; however, the task of automating the
translation of these features from an observation to an algorithm involves some kind
of pattern-recognition, and is non-trivial. In fact, it has not been done except to
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detect onsets in the music. Resynthesis was done to debug the onset detection, and
seemed to be correct. However, this is a long way from a complete analysis.

2.2.5. Recent Work at CCRMA

Several researchers at CCRMA and at Systems Control, Inc., including the
author, working on a joint National Science Foundation grant, have been dealing
with the problem of automatic transcription. Their early efforts are described in
[Foster, et al., 1982] and [Chafe, et al., 1982]. The former paper concentrates on
lower-level problems, the latter paper on high-level issues. Here we give a summary
of some of the work done.

Foster, et al. developed a segmentation method based on an autoregressive
(AR) model fit. The idea is to compute two AR models; one for current data, and a
delayed model recursively tracking older data. Each model has an associated model
error u(t) for given input data. Wherever the data has changed (in the sense that it
is modeled differently), the “delayed” model applied to current data will have larger
error than the current model applied to current data. Thus, one can detect changes
in the data by forming a ratio of the two model errors. If the error ratio is plotted
against time, there will be a “spike” marking each new event, because the model
errors will suddenly differ substantially, thus the ratio will suddenly depart from
unity.

The above method was tested on excerpts of flute, 'cello, and vibraphone music,
with interesting results. The AR model error ratio will detect events effectively even
when there is substantial overlap between events, and it works on instruments with
inharmonic spectra as well as harmonic ones. Problems with this method are:

1. For all the computation, one only finds out that “something happened,” but
one has no idea what happened (though it is certainly important to know when the
event occured even if it is as yet uncharacterized).

2. The method, although it is easy to describe, is difficult to intuitively tune
or modify; the parameters do not correspond in a clear way to physical properties
of the signal.

3. Since amplitude changes alone will not change model error, this method will
miss repeated attacks on the same note. For this reason, amplitude thresholding
methods might complement this method.
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The main signal processing method used initially by Foster, et al. is similar
to that used by other researchers, in that the method proceeds directly into the
frequency domain. However, it differs from other similar routines, in that the data
are processed in reverse short time segments, noting the location and amplitude
of the spectral peaks. The rationale for tracking the spectrum backwards is that,
typically, the “middle” of a note will have the clearest and most coherent spectrum.
If we proceed backwards toward the attack, we can obtain the time-varying spectra
of the note, just up to the attack, at which point the spectrum becomes incoherent.
A pitch estimate is made for each time frame, and consecutive time frames are
compared. In this way, moderate tremolo and vibrato can be characterized. The
method is a trade-off with Moorer’s, in which he is able to track two voices, but he
restricts the behavior of the voices considerably. This pitch-tracking method is the
source of the “event-list” that is analyzed in the companion article [Chafe, et al.,
1082].

From this point, the higher-level part of the system aims at extracting tempo
and meter from the raw timing data; this is not attempted in other studies. Since
Chapter 3 of this thesis describes an elaboration of this process, it will not be
discussed here.

Desiring better temporal accuracy in their pitch-tracking, Foster et al. also
devised a pitch-synchronous spectral analysis routine. This method generates spec-
tral plots over integral numbers of periods of the time-waveform, and for quasi-
periodic input, the amplitude and phase can be accurately measured over each
interval of time. Then an ‘instantaneous frequency’ is estimated for each partial.
This fine-resolution method was tested on various musical examples, but has not
yet been integrated into the analysis system, because it is very computationally
intensive.

One interesting test case that was analyzed was a 1913 recording of Alma
Gluck singing Ave Maria. The reason for choosing this example as a test case
was to compare our results with those of Carl Seashore and his colleagues’ studies
of vibrato of the same recording. We found substantial agreement between our
pitch plot and the plots done by R. Miller, a graduate student of Seashore [Miller,
1932}, which is a tribute to the resourcefulness and meticulousness of these early
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researchers.*

Segmentation by amplitude was also tried, and was found to be very difficult,
due to room reverberation and other factors. Trying to effect slope detection by
differentiating (1- or n- point differencing, in fact), yielded very poor results due
to inevitable noise, and large fluctations of amplitude. Low-pass filtering to reduce
noise did not improve the situation, because it effectively smoothed the attacks
so much that they were not detected. Finally, a robust amplitude segmenter was
implemented, one that works quite well with percussion instruments. It is described
in Chapter 3.

3.3. Timing Studies

No matter what definition one considers appropriate for rhythm, it seems
impossible to deny that rhythm has to do with some kind of accurate perception of
events in time. If we hope to make sense out of temporal information, it is important
from the start to have some notion of the kind of accuracy or granularity that is
required in order to capture what a human listener responds to. There must be some
physiological basis for rhythm, which of course expands into higher level (central)
processing of musical and perceptual dimensions. In this section, we address many
interrelated questions, such as: What is the best we can do in terms of temporal
discrimination? Is it roughly the same for everyone? Are musicians more skilled than
others? When is the perceptual onset of a tone? Does our temporal discriminability
vary over a large span of durations? Is rhythm based soley on physiological sources?
How do we “measure” time? And at a higher level, how do performers deviate from
“normal” (scored) rhythmic patterns?

* In fact, it is probable that the first concerted efforts to objectively study significant
aspects of musical performance were done by Seashore and his students at the University
of Iowa, published in several volumes under the title University of Iowa Studies in the
Psychology of Music. In particular, Volume I: The Vibrato, Volume III: Psychology of
the Vibrato in Voice and Instrument, and Volume IV: Objective Analysis of Musical
Per fomance, [Seashore, 1932, 1936, 1936] are of considerable interest.
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2.3.1. Lower Level

In trying to define limits on temporal discrimination, researchers have not
always agreed on their results; one fact stands out, however—the “ear” is the
most accurate sensory system in the domain of duration analysis. There are three
kinds of temporal discrimination that might be tested: duration, intermittency,
and regularity. Duration discrimination means estimation of a single time interval.
Discrimination of intermittency refers to estimation of a beat rate, and regularity
discrimination involves the evaluation of evenness of a repeated pulse. Then, in a
musical context, one wants to evaluate precision of a beat pattern, or rhythm.

Naturally one is curious to see if the dimension of auditory temporal discrimina-
tion follows a Weber law.* It turns out that, for very long or very short durations,
Weber's law fails, but in the area from 200 milliseconds to 2 seconds, a modified
version of Weber's law seems to hold, according to Getty [Getty, 1975]. This range
is in the range of typical musical notes (two seconds is equal to J at J =#60).
Below 200 msec., the relationship is not clear, but is probably more like a “constant
offset.” This basic result is also reported by Michon [Michon, 1964], but with two
regions: .01 for (100 msec. < ¢ <300 msec.), and .02 for (300 msec. < ¢t < 1
second). For Michon, the law did not hold outside these regions.

In Michon's Ph.D. thesis [Michon, 1967], he extends the discrimination experi-
ments to include other kinds of timing questions. All the experiments are based
on key tapping by the subjects. This is a very accurate method, because there is
no possibility of error in deciding when the key is tapped, but there is a limitation
on the musical inferences that can be made. In a musical context, the performer
is in a much more complicated feedback loop involving his instrument, the room
he is playing in, and the auditory system. Thus the efforts in this thesis to go
from the acoustic waveform are worth the trouble, because the feedback loop of
the performer precedes the analysis, and is therefore implicitly being analyzed. See
also the next section for experiments by Gabrielsson, et al. that attempt to deal
with this problem.

Michon posits a signal detection theory for the perception of time, similar to

* Weber’s law is a general psychophysical law that states that the perceptual discriminability
of a subject with respect to a physical attribute is proportional to its magnitude, that is,
that Az/x = k where z is the attribute being measured, and Az is the smallest perceptual
change that can be detected. k is called the Weber ratio, a dimensionless quantity.
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Creelman'’s counter model [Creelman, 1962], in which a short interval “ticks” by and
is incremented and compared with a standard; this is presumed to be characteristic
of the auditory system, but is really a model, and not a description of actual events.
Divenyi [Divenyi, 1971] also tries to apply a counter model to his data, in which
he uses marking tones of different frequencies. There is implicitly an internal clock
proposed in the counter model, but no description of its mechanism is given. In
any case, Getty reports that for his data, Weber’s law (slightly generalized) is more
successful than the counter model.

Certainly long intervals (> 2 seconds) are processed in a different way than
are what we might call the “musical range” of 100—2000 msec. Perception of long
intervals is much less accurate, unless the subject actually counts and/or subdivides
the interval, but this is based on the smaller intervals again. Lorraine Allan [Allan,
1979)] specifies four ways of investigating time perception that clarify the problem
for longer durations:

1. Verbal estimation: “The interval was 45 seconds.”

2. Production: “Tell me when 45 seconds have passed.”

3. Reproduction: “Play this.”

4. Comparison: “Which interval is longer?”

Because 1 and 2 above allow no sense of continuity, they are not really musical
situations. Cases 3 and 4 do not require “conversion” to non-musical time, so are
closer to musical experience.

Lunney employed a different experimental paradigm. He had listeners control-
ling an electronic metronome in which every fourth beat was irregular, and the
amount of irregularity could be controlled by the listener. The task was to cause
the fourth beat to be just perceptually irregular [Lunney, 1874]. He found a Weber
ratio of about .04 for durations up to 300 msec. With practice, he was able to
become quite consistent, but not more accurate. For this reason, he says “the limits
of discriminability are biologically imposed.” In musical terms, we are not too
concerned with durations longer than 2 seconds; these are not typically assigned
musical note values. But, as we have seen, for durations less than about 200 msec.,
Weber’s law fails. This is below the range of most note values, and falls into the
range of deviations from expected values (see Section 2.3.3.).

To see just what the limit of discriminability might be in terms of two events
close together in time, we look first at the classic study on temporal order perception
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done by Ira Hirsh [Hirsh, 1959]. Using synthetic stimuli (a turntable with adjustable
activation switches) he found that it was possible to separate perceptually two brief
sounds with as little as 2 mseec. between them; but in order to determine the
order of the stimulus pair, about 15—20 msec. was needed. When this experiment
was repeated by Patterson and Green [Patterson and Green, 1970] they found that
listeners could do much better, that their subjects could distinguish temporal order
with much smaller intervals between the events. They explained this by noting that
the overall durations of their stimuli were much shorter.

It seems that people typically have the most accurate sense of temporal acuity
in the range between 500—800 msec., which, for example, at J = 60, corresponds
to the note values & t& J. In the normal musical range, it is likely that to
be within 5 msec. in determining attack times is adequate to capture essential
(intentional) timing information. It will be seen that tempo fluctuation and other
inaccuracies dwarf this 5 msec. standard for accuracy in musical contexts, but one
wants as much accuracy as is reasonably possible at the lowest level, so that the
“normalization” (or fitting to closest metric values) that proceeds from the original
values begins with the clearest data. Eventually, one can compare the original
data with the “normalized” score to begin to establish a statistical evaluation of
intentional or unintentional deviation from “canonical” note values. See the next
section for more information on this subject.

One wonders whether the sense of rhythm is inherently physiological (in the
sense of the body as opposed to the mind). Fraisse has written about this topic in
several articles [Fraisse, 1978, 1982]. He describes what he calls “personal tempo”
in which a person taps his forefirger at a spontaneous rate, which is measured.
It is usually in the range from 380—880 msec., with 600 msec. perhaps the most
representative. He claims that, though there is great interindividual variability,
individual vanability is slight. He also mentions that personal tempo correlates
well with the swinging of the leg of a seated subject, or swinging of the arm when
standing. The fact that the speed of walking, or of the heartbeat is also in this range
may be misleading. For example, acceleration of heartbeat does not correspond to
an acceleration of Fraisse’s personal tempo.

It happens that the most accurate time discrimination is also in the neighbor-
hood of 600 msec., but this too may be a coincidence, or non-causally related to
gross physiology. In his Ph.D. thesis, An Analysis of the “True Beat” in Music
[Lund, 1938], Max Lund makes a strong case that the sense of time in music is
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not a direct result of physiology, but rather a higher-level cognitive ability. This
makes sense if we think about the cultural diversity and influence of environmental
factors we see in rhythm, which would be less pronounced if rhythm were primarily
physiologically based.

2.3.2. Perceptual Attack Time

To close this section, there is an issue that should be mentioned in the context
of any careful study of timing in musical contexts—the problem of Perceptual
Attack Time (PAT). The reason for mentioning PAT is that the first moment of a
disturbance of air pressure is not the same instant as the first percept of the sound,
which in turn may not necessarily coincide with the time the sound is perceived as a
rhythmic event. There inevitably will be some delay before the sound is registered
as a new event, after it is physically in evidence. This variable delay could cause
error for an automatic transcription program, so it should be covered.*

Vos and Rasch investigated PAT using synthetic tones that were complex
sawtooth-like waveforms, with rise-times varying from 5—80 msec. They played
the tones in an identical A-B-A-B order; the subjects were instructed to adjust the
physical onset until the repeated attacks sounded regular [Vos and Rasch, 1981].
They then tried to explain the perceptual onset by various models. Their principal
hypothesis was that PAT occurred when the amplitude crossed some threshold
relative to the local maximum amplitude, usually about 15 dB below maximum.

John Gordon, in his doctoral thesis [Gordon, 1984, extended the work of Vos
and Rasch significantly by using real musical tones that were resynthesized and
adjusted for equal loudness, and by also trying a larger number of mathematical

¥ A good example of this problem in a musical setting is provided by an attempt of
John Grey to create a synthetic realization of a piece called “Loops,” written by Robert
Erickson, of UCSD. The piece is based on the concept of klangfarbenmelodie, which means
that timbre is used as 3. conspicuous parameter, as pitch might be, and there is a sequence
of tones that change not only in pitch but also in timbre (different instruments). The
changes are so rapid that it was impractical to play with real instruments. When Grey
reconstructed the piece by concatenating the specified tones at precise moments (to the
nearest millisecond), it was evident that although the physical onset times of all the tones
were correctly aligned, the sequence sounded uneven in rhythm.
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models to see which best fit the data on PAT. Some of the models he tried were,
for example, time of maximum amplitude, absolute amplitude threshold, relative
amplitude threshold, integration threshold, and various slope threshold methods.
Interestingly, he found that the relative amplitude threshold model of Vos and
Rasch was not as successful for real data as a model based instead on slope; this is
the approach used herein (see Chapter 3) to segment percussive music. In fact, since
slope relates directly to the perception of attack transients, it should be especially
appropriate for percussive instruments.

In order to find the slope, Gordon chose the same basic method employed in this
thesis, which first finds the amplitude envelope, and then calculates the slope based
on a least-squares fit to the envelope data. Gordon, in common with this thesis,
abandoned the method of finding slope by using first order difference equations
because of sensitivity to noise, and instead opted for a linear regressive fit to the
points of the amplitude envelope, much like the method described in Section 3.2. It
is interesting to see that Gordon’s method of slope detection, chosen from among
many possible methods, is similar to the segmentation method described in this
thesis. (See Chapter 3.)*

It turns out that the actual “delay” caused by PAT in the case of drum sounds
is quite small, because the slope is typically rather steep. Also, for consistent rise-
times, the delay caused by PAT is consistent, and therefore constitutes a constant
offset that will not affect the inter-attack durations; that is, (¢p41 +At)—(tn +AL) =
tn+1 — tn, or the duration between ¢,4; and t,. So, if the instruments involved
have similar attacks, the problem is minimized.

2.3.3. Higher Level—Timing in Musical Contexts

In the previous section, we explored some of the basic questions of temporal
discrimination that are quite general. Now we examine some research into questions
of timing in musical contexts. Instead of experiments using clicks and isolated time
intervals, there is an attempt to deal with specifically musical perception of time.
We will see that, although the researchers mentioned in this section are addressing
timing questions as they relate to music, many attempts still employ unnatural
experimental materials because of the difficulty of extracting robust timing data
from real performances.

* Actually Gordon decided to try this method after discussing it with the author.
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Fifty years ago, Carl Seashore and colleages, ahead of their time in musical
research, dealt with objective analysis of musical performances directly from musical
data, not from artificial situations. For instance, in their extensive studies of
the vibrato published in several volumes of the Unisversity of Iowa Studses in the
Psychology of Music [Seashore, 1932, 1936, 1936], questions such as vibrato depth,
rate, articulation, and intonation were explored. Of course, a large amount of their
analysis included embellishments “by hand.”

In addition, Seashore, et al. made substantial contributions to the issues of
timing in piano music by the design and implementation of the “piano camera.”
The piano camera could be considered a first step towards automatic transcription.
It provides a photographic record of begin-time, duration, and relative intensity of
each note played on the piano [Henderson, Tiffin, Seashore, 1936]. The camera is
truly a “Rube Goldberg” device in which strips of balsa wood are glued to the tail of
each hammer on the piano, and via a complicated sequence of events, a continuous
recording of duration and velocity of each keystroke is made on a moving film.

The resulting photographic record is transcribed to a “musical pattern score,”
which is a proportional notation bar graph superimposed on a grid representing the
musical staff. M.T. Henderson then used this method to analyze the chorale section
of Chopin’s Nocturne No. 6 (G minor) Opus 15, No. 3. Several findings were
reported, for instance, a lack of correlation between perceived accent (of the first
beat of a measure) and performed intensity—only .06 for one performer, and still
only .19 for the other (though .19 is a much higher correlation, it is still surprisingly
low). We can infer that duration, or delayed entrance, is more likely to result in
a perceived accent than intensity cues alone.* Interestingly, Henderson found that
when there is a pattern of duration (like the second quarter note of a pattern
shortened with respect to the first), this relationship tends to be true even in the
context of accelerando, ritardando, crescendo, or decrescendo [Henderson, 1836].
This lends credence to the concept of “local tempo,” in the sense that, taking into
account tempo fluctations, intended relations between adjacent notes are upheld.
In Section 3.3, considerable effort is made to track tempo in order to distinguish
intended musical relationships between durations.

Another area of interest is synchronization of notes in a chord. In fact, Hender-
son found that chords that are not notated as arpeggios are often played as such

* A short duration followed by a long one results in perceived emphasis on the longer
tone, which is called an agogic accent.
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to varying degrees (.01 to .04 seconds for one pianist tested, .02 to .2 seconds for
another). Further study of synchronization in piano music was done by Vernon,
who did not use the piano camera, but rather, Duo-art rolls, that are recordings
of world-famous pianists preserved in the form of piano rolls. He found great
differences between pianists, but these general tendencies emerged [Vernon, 1936]:

o Frequency of deviation varies with average length of duration—this implies
that most of the asynchrony is intentional.

o Slow or changing tempo correlates positively with asynchrony.
e Melody notes are often emphasized by being played early or late in a chord.

e Asynchrony is not related to beginnings or endings of phrases, or changes in
tonality, contrary to expectation.

Of course, in musical contexts, there is an enormous difference between “ran-
dom” deviation (such as Gaussian distribution around an intended duration), and
systematic deviation, that can be shown to relate to musical context. Alf Gabriel-
sson and colleagues at the University of Uppsala in Sweden have done a considerable
amount of research on systematic variation, which they call SYVAR. They published
a series of articles in which they tried to characterize SYVAR in rhythmic musical
examples.

In one study [Gabrielsson, 1974], two pianists and one percussionist performed
notated rhythms that were recorded and subsequently analyzed by a device which
they call the MONA analyzer, that gives fundamental frequency trace and ampli-
tude trace through time. The MONA analyzer is an analog device that plots these
parameters on millimeter paper, at a speed of 100 millimeters per second (see [Tove
et al., 1966]). Gabrielsson reports that the onsets (rise-time) of the piano and drum
are rapid—the peak amplitude is reached within 20—40 msec. Nevertheless, it
is quite difficult to ascertain the exact location of the attack by looking at the
amplitude trace on the paper, particularly because each millimeter = 10 msec.
Therefore, 45 msec. corresponds to a distance on the chart of only half a millimeter.
If the paper were set to move more quickly to provide better time resolution, it
would probably be too cumbersome, because fairly short musical examples would
result in piles of paper chart to measure.

The task of segmenting the attacks from the chart analyzer is slow and prone
to error, because one has to try to find (by eye) the point on the amplitude trace
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that corresponds to the desired attack, and do this for all notes in every musical
example. In this thesis, a method for automating this task is described in Section
3.2. The automatic segmentation described herein makes possible a general-purpose
and “tunable” segmenter that will eliminate subjective error in finding attacks, and
would probably be a heip to Gabrielsson, et al. in experiments of this sort.

In their examples, a metronome click is used by the performers to help steady
the tempo. Thus, tempo tracking is not done; the determination of SYVAR is done
from an assumed constant tempo. Some results reported are as follows:

1. There is a general tehdency to insert a SHORT-LONG relationship to
adjacent eighth-notes even though they are notated as equal.

2. Similarly, the figure I r.l is often played: m

S L
. L S

(L = long, S = short). S
3. Many temporal relationships are exaggerated or “sharpened,” e.g. for
D the J\ is longer, while the ) is shorter. In other words, dotted

thythms are typically “overdotted.” The propensity to do this may relate to
Fraisse's concept of “temps longs” or “temps courts” [Fraisse, 1978, 1982).

4. There are striking deviations from the “norm” in the case of syncopation,
similar to (3)—the relationships have a tendency to be exaggerated.

5. The amplitude peak at the beginning of bars is a “weak” but noticeable
characteristic of non-melodic examples, and is typically combined with prolongation
of duration. However, for melodic examples, the highest peak amplitudes are
irregularly spaced in the examples.

Later, Bengtsson and Gabrielsson [Bengtsson and Gabrielsson, 1980] extended
the search for SYVAR by applying the MONA analysis to 28 melodies played on
flute, clarinet and piano. The same problem of evaluation accuracy applies here as
in the previous experiment, given that the attacks are found by hand. Once the
attacks are found, a computer program (called RHYTHMSYVARD) was written
that performs the following steps:

1. Calculate total duration.

2. Calculate tempo by dividing total duration by the number of beats and thus
the metronome mark (MM). Note that this finds only an average tempo over the
entire piece and has no provision for local tempo.
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3. Normalize duration values by expressing them as percent values of total
duration.

4. Calulate the deviation of each normalized inter-attack duration (they call
this D,;) from the corresponding normal value according to the notational/mechanical
norm.

5. Calculate the proportion between neighboring D;; values within a certain
unit.

6. Perform factor analysis on the proportion data.

From this program, they graph the deviations from the mechanical values for
the notation, and are able to make some general inferences. The deviation from the
notational norm is found to be as high as 15—20% for half-notes and quarter-notes,
or 20—40% for eighth and sixteenth-notes. These large deviations are obviously
perceptible (we know the limits of discrimination as described in Section 2.3.1), but
though quite large, these deviations do not apparently destroy the structure of the
rhythm. Rather, they determine the character of the “flow” of the rhythm. In
other words, these deviations, if they were random errors, would simply destroy the
rhythmic intent, but due to the placement of the deviations, they are heard as a
kind of “embellishment” of the rhythmic character. For example, it could be that
“the perception of temporal/structural relations like 1:1, 2:1, 3:1 etc., that are so
frequent in music, is an example of categorical perception. In other words, there
is a rather wide tolerance zone around each such value, and as long as deviations
stay within that zone the perceived temporal/structural relation does not change—
but the deviations affect the perceived motion character, sometimes in very subtle
ways.” [Gabrielsson, et al., 1983]. In Chapter 3 of this thesis, we see that it is
possible to “factor out” timing deviations, and find that there are several possible
rational approximations to the actual normalized time values found.

Another path to understanding SYVAR is to try to generate SYVAR via syn-
thesis. This is a powerful avenue that only in recent years has been possible with
sufficient accuracy and control. In another paper, they begin with mechanical per-
formances and introduce variations according to what their analysis showed. For
example, they try synthesizing a Viennese waltz accompaniment with increasing
amount of deviation of D,,’s in terms of the typical pattern (first beat shortened,
second beat lengthened, third beat left alone). The mechanical performance would
have each beat equal at 333% of the measure duration. The best simulation is
probably that with the first interval 25—27% and the second interval 40—42% of
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the measure [Bengtsson and Gabrielsson, 1983).

It is important to note at this point the distinction that Bengtsson and Gabriel-
sson make between the inter-attack time (D;;) and the duration from the end of the
previous note to the attack of the next (D;,). It is safe to say that, although D;,
is quite important to detect (it usually corresponds to rests), D;; characterizes the
rhythm, whereas Dy, the articulation of the rhythm. This finding is in agreement
with the study called “Timing by Skilled Musicians” by Saul Sternberg, Ronald
L. Knoll, and Paul Zukofsky at Bell Laboratories, who note “... dominance of the
sequence of time intervals between the onsets of successive note (attacks) and the
relative unimportance of offset time, which probably serve articulative rather than
timing functions.” [Sternberg, et al., 1982]. Another finding of this study was
that in general, when judging small temporal intervals, musicians typically assigned
values that are too large (overestimation), and in both the production and imitation
of temporal intervals, they produced intervals that were too large (overproduction).

Gabrielsson used a subjective approach as well in two studies [Gabrielsson,
1973a, 1973b). Here he played rhythms performed on drum and piano, and asked
subjects to make similarity ratings, that were then analyzed by a multidimensional
scaling (MDS) program called INDSCAL (see [Shepard, 1062] for a description of
this method). In this experiment, four bars of each rhythm are presented to the
listener, who tries to evaluate the rhythm from a purely subjective vantage point.
This does not ignore the objective timing differences between the performances in
terms of SYVAR, but rather attempts to identify the subjective dimensions that
are invoked by the different styles of rhythm.

In seeking to interpret the “dimensions” found within the subjective space, he
suggested the following:

1. “Meter”

2. “Rapidity”

3. “Tempo”

4. “Uniformity—variation or simplicity—complexity”

5. “Basic pattern”

6. “Movement character”

Another valuable contribution is work done by Sundberg and Lindblom, in
which they try to generate timing fluctuations in a systematic way. They develop
a rule-based program that takes standard notation as input, and automatically
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produces a “natural” performance as output, by introducing deviations from the
notation at key places that are recognized by the program. The feedback one gets
from this kind of work is very powerful; it is a natural way to test musical hypotheses
[Sundberg and Lindblom, 1976}

2.4. Rhythmic Structure and Meter

In this section, we concentrate on theorists who are trying to characterize
rhythm as represented by a musical score, and not by a performance. In this sense,
there is no concern for automatic transcription per se, or for performance nuance;
instead the focus is on inferences made directly from notation.

Ironically, this is equivalent to an analysis of a performance in which the music
is played absolutely unexpressively or mechanically, which might seem uninterest-
ing. On the other hand, when searching for a general theory of meter or rhythmic
structure, this is probably a reasonable restriction. There is so much going on in a
real performance that we might want to deal with one aspect at a time, and limit
ourselves to the score, which is very well-defined as the written intention of the
composer. Clearly, this approach is best suited to Western music.

In the next section (2.5), we will put forth a theory that is more global with
respect to the music of the world.

2.4.1. Theoretical Studies

It is common to see, in many papers on rhythm and meter, an initial statement
that laments the confusion and vagueness that surround the subject of rhythm in
music. For example, in the preface of their book The Rhythmic Structure of Music,
Cooper and Meyer state: “An understanding of rhythm is important for performer
as well as composer, for historian as well as music theorist. Yet the study of this
aspect of music has been almost totally neglected in the formal training of musicians
since the Renaissance.” [Cooper and Meyer, 1960]. It is safe to say at this time
that there is still room for improvement—one wonders not whether the topics of
rhythm and meter are more elusive than, for example, harmony and counterpoint,
but why. It is not easy to establish, at the outset, what rhythm and meter are and
how they are related.
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Being elusive, the topic can quickly become philosophical. Indeed, two names
that appear often in the literature on rhythm are the Greek philosopher Aristoxenus
(350 BC), and Hegel, along with Hegelian dialectics. In Western music there
are three theorists who stand out, and whose work has stood as a foundation
for more recent theorists: Moritz Hauptmann (1792-1868), Hugo Riemann (1849-
1918) and Rudolph Westphal (1826-1892). Hauptmann and Riemann (who was
a direct theoretical descendent of Hauptmann) based their theories of rhythm on
the Hegelian dialectic. In fact, the basic concept of thesis/antithesis/synthesis is
elaborated upon as it relates to the realm of rhythm in the writings of both.

Hauptmann develops the idea of the basic metrical form as duple, which is
defined simply by two equal units of time in succession. This is enough to imply a
continuing beat. Ternary (triple) time is generated as the antithesis of duple time,
specifically, two units of duple time that overlap and form an intersection of three.
This seems somewhat artificial, and in fact, Hauptmann did not extend it to other
prime numbered divisions, and tried to rule out more complex possibilities, like
subdivisions of five and seven.

Riemann developed Hauptmann’s work, and though he differed significantly in
certain ways, he retained the idea of the dialectic as a general driving principle,
in that he considered undifferentiated durations as the thesis, divided durations as
the antithesis, and subdivisions, or internal groupings, as the synthesis. Riemann
makes an interesting statement on the essence of rhythm: “As the essence of the
harmonic-melodic element is change of pitch, so the essence of the metric-rhythmic
element is change of living energy, of tone-intensity (dynamics) on the one hand,
and rapidity of tone succession (agogics, tempo) on the other.”*

Although Riemann had an a priori idea that large rhythmic structures are
ideally based on some multiples of four, he was willing to see prime number divisions
like five and seven as logical primitives rather than complex intersections of duple
and triple divisions as Hauptmann suggested.

Rudolph Westphal based his theoretical work on the writings of Aristoxenus,
rather than Hegel. Basically his attempt was to apply Greek metrics, or prosody, to
the musical domain. The various rhythmic feet are derived from various combina-
tions of the shortest indivisible unit, called the chronos protos. Westphal included

* This translation is from Yeston [Yeston, 1976] quoting Carl Alette [Alette, 1951] quoting
Riemann’s Musskalische Dynamik un Agogic [Riemann, 1884 p. 10].
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the concept of hierarchical structure with respect to the foot: a given foot may be
an accented or unaccented segment of a larger foot with longer total duration; this
method of analysis is architectonic. Because rhythmic groups may exist on a lower
level and be part of a higher level, this scheme could be considered as an analogue in
the rhythmic domain to Heinrich Schenker’s seminal writings in analysis, in which
the foreground level is the actual music, and the background is the abstracted struc-
ture. (See [Salzer, 1952]). It should be mentioned here that an attempt to translate
Schenkerian analysis into the domain of rhythm is not necessarily appropriate.

In the twentieth century, there are at least two important efforts to con-
sider, which are Cooper and Meyer's The Rhythmic Structure of Music, and Maury
Yeston's The Stratification of Musical Rhythm. Both theories are architectonic in
principle, but differ significantly in detail.

Cooper and Meyer base their work on Aristoxenus and Westphal. They use
poetic feet to indicate accent and grouping, but not duration; this seems to be
a mistake, because there is no question that duration is a crucial parameter for
rhythmic performance. They assume that there must be some differentiation be-
tween tones, to distinguish between accented and unaccented beats. The hierarchy
proceeds from tones to motives to phrases to periods, all in the domain of rhythm.
The prosody, or poetic feet, are as follows:

1. iamb: v - ‘

2. anapest: vv -

3. trochee: —v

4. dactyl: -+

5. amphibrach: v-v

Again, these feet are defined, not in terms of duration, but rather accent. In
fact, Cooper and Meyer basically define rhythm in terms of accent: “Rhythm may
be defined as the way one or more unaccented beats are grouped in relation to an
accented one.” (page 6). Meter, on the other hand, is “the measurement of the
number of pulses between more or less regularly recurring accents.” (page 4). It is
disturbing that they do not define accents, but leave them as undefined primitives.

Yeston presents a considerably more consistent theory, based on two possible
methods of analysis: rhythm-to-pitch and pitch-to-rhythm, which means “to value
a pitch in terms of its accentual placement (rhythm-to-pitch), while, at the same
time, positing an accentual scheme on the basis of pitch value (pitch-to-rhythm)”.
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[Yeston, 1976 p. 33]. There is something dangerously circular, and yet appealing,
about these two approaches; Yeston attempts to decouple them, or to separate
rhythmic analysis from pitch analysis. He is critical of Cooper and Meyer’s focus
on prosody (poetic feet); the problem is that the way they use poetic feet to analyze
rhythm is possibly only a relabeling process, and not a way of exposing underlying
structure.

In analyzing a piece, Yeston describes five criteria by which one isolates rhyth-
mic sub-patterns. These sub-patterns are crucial to finding the rhythmic strata in
a piece. The criteria are as follows:

Attack-point. Derived from the score (as is the whole analysis), this refers
to the distance (duration) between attacks, in terms of the smallest local unit. For

example,
LN

has the sequence 311 3 4.

Timbre. Rhythmic sub-patterns are here distinguished by changes in in-
strumentation or by other timbral shifts, as in an abrupt registral shift in a solo
instrument. It is the clearest definer of rhythmic sub-patterns.

Dynamics. Either notated accents, or equivalent change in dynamic level, can
determine an uninterpreted rhythmic sub-pattern. By uninterpreted, we mean that
we as yet do not assign any strong or weak beats (accents) inside a given sub-pattern,
but simply identify it as a single level of interpretation as implied by dynamics.

Density. Refers to changes in either the “quantity” of the sound or the num-
ber of simultaneous voices in the overall texture.

Pattern Recurrence. Here, one looks for patterns of repeating units, either in
repeated duration figures, or pitch contours, or combinations thereof. This criterion

is somewhat open-ended, in that recurrent patterns may be created by various in-
terpretations.

Once the previous five criteria have been applied to a piece of music, one can
follow Yeston’s analysis. Initially, one views the music as an “uninterpreted struc-
ture,” by not yet establishing any internal groupings. The rhythmic subpatterns
identified by the five criteria are used to create the first stratum, from which the
structural events are abstracted. At each level, the structural events are given the
combined durations of the events from which they are abstracted. Again at each
level, the new representation is considered as a new uninterpreted structure, and
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the process is repeated.

The levels found, from the foreground (the original piece), through several
middleground levels, to the most abstracted background level, can be said to interact
perceptually. Yeston sees the interaction of these levels as the determining factor
in determining meter. In fact he says “a meter will never appear on any single
stratum, but it will arise from the interaction of two strata, one of which must
always be a middleground level.” [Yeston, 1976 p. 67]. Yeston provides numerous
examples of his analyses in the form of excerpts of scores with annotations.

The topics of rhythm and meter are obviously still open. One can muse over
comments such as this one from the ethnomusicolgist Jaap Kunst:

“Metre is the rational analysis of the living rhythm.” [Kunst, 1950 p. 2].

This statement generates thought but not clarity!

2.4.2. Computer Simulation Studies

The previous subsection described entirely theoretical work. Here we examine
some attempts by Longuet-Higgins et al. to automate an analysis from the score.
They have tried to formalize their ideas as computer programs whose input is a
score and whose output is an analysis, especially of rhythm.

In an article in Nature called “The Perception of Melodies,” Longuet-Higgins
describes an initial attempt to actually create the score, beginning from a perfor-
mance on an organ keyboard that has been modified to record the history of each
key (Longuet-Higgins, 1076]. In this article, he makes many assumptions, and re-
quires the performer to establish the tempo and meter beforehand by playing one
measure's worth of preliminary beats before the musical example begins. Longuet-
Higgins describes the rhythmic structure as a binary (or sometimes ternary) tree,
each terminal of which is either a note or a rest. Such a tree, in an obvious way,
reflects the structure of Western musical notation.

Longuet-Higgins assumes that “the perception of rhythm and the perception of
tonal relationships can be viewed as independent processes.” This is in agreement
with Yeston, although one would want to allow a level of interaction between these
two factors at some point. Longuet-Higgins claims that 100 msec. accuracy in
timing data is close enough to do the transcription. This is probably far too gross;
in general one wants to be able to deal with very fine decisions in certain notational
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contexts that will be obscured by such a wide tolerance. He is possibly confusing
“expressive” performance with the need to “factor out” expressiveness and local
tempo variation (see Section 3.3).

Longuet-Higgins further assumes that the listener expects pure binary meter,
which is absurd. He does allow for a change at any point, but there is no reason to
assume a duple meter from the start, except for the preponderance of duple meter
in Western music. It is not clear what the perceptual mechanism is for establishing
meter in human listeners, most likely there is “suspended judgement” for a few
beats during which the listener tries to parse the prosody and melodic and rhythmic
patterns of the music before making a decision. Longuet-Higgins’ program probably
starts out assuming the music is duple until proven otherwise. Evidence that this is
natural for listeners is lacking, though it may function satisfactorily in the program.
It would not be worth mentioning this were it not for the emphasis Longuet-Higgins
himself places on modeling human perception.

In the article, he also describes some algorithms used to produce the correct
“spelling” of the notes in a given key or keys related by modulation. This process,
like the rhythmic one, proceeds from left to right, forming an hypothesis about the
key, and retaining it until it is violated by later chromatic pitches.

Mark Steedman, a student of Longuet-Higgins, tried to infer the meter of un-
accompanied melodies automatically by using a computer program that is given as
input the 48 fugue subjects of the Well-Tempered Clavier by J.S. Bach. He describes
this effort as being complementary to the above article, in that Longuet-Higgins’
program needed the absolute position of at least two principal beats at the beginning
of a piece, whereas Steedman'’s program tries to deduce metric relationships “on the
fly,” i.e. without a hint about meter or tempo, but from the notation (score) rather
than the performed music. This idea of the rhythm “unfolding,” particularly from
the standpoint of the listener, is appealing, though it may abandon an important
possibility for analysis from the score itself —being able to make inferences from the
entire piece at once, in a more structural way.

Steedman’s program deals with syncopation, which he claims is possible to
analyze by computer because his program relies on establishing enough metric
context in the music before syncopation appears. Otherwise, he claims, it would be
impossible to distinguish between a true syncopation and an entirely different metric
or temporal context. This would, for example, be the way to tell the difference
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between an eighth-note pick-up and an identical meter an eighth-note out of phase
with the original. He says: “No event inconsistent with either key or metre will occur
in a piece until sufficient framework (of key or time signature) has been established
for it to be obvious that it ¢s inconsistent.” [Steedman, 1977 p. 557].

The problem with such a view is that people seem to need very little framework
to distinguish between consistency and inconsistency. Also, one has to allow for
changes in key, meter, and tempo, and the possible variations can be quite subtle.
In a transcription program, a change from eighth-notes to triplets in a sufficiently
inaccurate performance could be misrepresented as an accelerando instead of a
constant beat with different subdivisions.

The simplest way to create context the way a listener would is to work through
a piece from left to right, as mentioned above. This is how Steedman’s program
proceeds. Because there are sometimes sections of a piece in which the rhythm
is constant (a “pulse train” or “rhythmic tonicity”), the meter has to be implied
in these areas by some other means, for example melodic patterns. (Actually, as
seen in Yeston's theory, there are several other possible ways.) Steedman’s program
makes two passes through the data, the first searching for rhythmic patterns, and
the second searching for melodic patterns, or repetitions of some fragment of the
melody. He sets the metric grouping implied by a repetition to be equal to the
duration between the figure and its repetition, and he assigns accents to their first
notes.

The fact that the program cannot recognize rhythmic embellishments is a
rather severe limitation. It is quite common to see a pattern with slight elaboration
that is easy for the performer or experienced listener to recognize, but the Steedman
program would see it as entirely new, and not be able to build a metric context
from it. Still, there is enough consistency in his examples that he can say that
his program is usually correct in its metric analysis (for the Bach), and when it is
wrong, he reports that most but not all of the errors occur where there is sufficient
ambiguity that human listeners might err also.
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In an article called “The Perception of Musical Rhythms,” [Longuet-Higgins
and Lee, 1978, their research is continued, strictly in the domain of rhythm. They
state that in many cases, the rhythm of an example is evident merely from the
duration pattern of the notes (without any melodic information). This is certainly
true of percussive music. They reiterate the basic idea of meter as a generative
grammar, representing a simple example as a binary tree:
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They claim that the listener creates this tree while experiencing the music:
“The listener must identify the metre which generates the rhythm, and represent
the latter as a tree structure which accommodates all the notes and rests as terminal
symbols. The goal of a theory of rhythmic perception is then to explain how the
listener accomplishes this task.” (Page 3).

The principal focus of this attempt is to be able to deal with real performance
data instead of mechanical (from the score) timing, by extending the program to
make metrical inferences on relative note durations. Though this is a goal, at the
time of writing of their article the program was still dependent on mechanical, or
notation-derived durations.

2.5. Steps Toward a Global Theory of Rhythm

In the previous section, there was a natural bias toward Western music in the
theoretical approach to rhythm. In this section, we make an attempt to widen the
perspective considerably—we try to orient the reader to rhythm in music from a
global perspective. We are trying to account for the diversity found in world music
in terms of rhythmic paradigms. In the proposed scheme, any rhythmic music can
be identified as belonging to one of four categories described below.
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(Turkey, Buigeria, etc) (western Europe) (Africa)

ADDITIVE DIVISIVE MESO-PERIODIC

H, H,

(indis) (Latin Americe)

Figure 2.2. The Rhythmic Categories.

2.5.1. The Proposed Paradigm

Interest in rhythm has a long history. Plato defined rhythm as “ordered
movement.” Obviously, in music there are ways of “marking time,” of creating
temporal structure by making durations evident. As with perception of pitch, it is
relative durations that are the salient percept, rather than absolute durations. This
will be true in any rhythmic form, but the mechanism by which events are parsed
in the rhythmic domain can be considered in the following categories:

1. Divisive

2. Additive

3. Meso-periodic

4. Hybrids of the above

Figure 2.2 shows how these categories are related, and the following musical
examples are intended to illustrate the nature of the categories. Notation is provided
in lieu of aural examples. It would be preferable to listen to the examples to
discern how they are constructed, especially the non-Western examples for which
the notation is not necessarily an accurate representation. (See Appendix A for
information on how to request taped examples from the author.)
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1) Divisive—Western music: European Classical music, Pop music, etc.

The best example of this category is the march. Divisive music is constructed
rhythmically such that beats are divided into parts, usually as a binary or ternary
tree, that is, into halves or thirds, hierarchically. Typically, the beat is simply one
of the nodes of the tree, with subdivisions going out to the leaves, and the meter is
a higher node of the tree. (See previous section for an example of Longuet-Higgins.)
Almost all Western music is constructed in this way. It is clear that western notation
reflects this hierarchy. For example: 10
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Mozart: Quintet in C, k 515. This example has an obvious rhythmic pulse—
“tonicity” with some rubato, and some syncopation. It is very easy to tap your
foot.
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Stravinsky: Les Noces, 1917. This example has much more complex rhythm
than the previous example of Mozart. Stravinsky based this piece in part on folk
music. The sense of beat is still evident, but with unexpected accents and numerous
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abrupt changes of meter. The notation looks more complex than the music sounds.
2) Additive—Turkish, Greek, Bulgarian, Eastern European music.

This category of music is constructed of small “atoms” of duration. They are
put together to form longer rhythms and melodies; the music is almost always a
concatenation of two's and three's. The underlying pulse is usually fairly constant,
and quite rapid (more than a pulse rate of MM = 300). If one taps one’s foot, it
is to the uneven size of the atoms; they are not subdivided. In fact, in Turkish,
this rhythmic idea is called aksak, which means ‘to limp’ (i.e. an irregular beat
pattern). Kurt Sachs described the difference between divisive and additive rhythm
in this way: “Divisive rhythm shows how the parts are meant to be disposed. It
is regulative. Additive rhythm shows how the parts are actually disposed. It is
configurative.” [Sachs, 1953 p. 25].

Vivace

Bulgaria: Jove Malaj Mome. This has 8 clear “beats” but they are of different
lengths (not regular), so it is quite difficult for us to parse. This music is not
subdivided! It is actually based on an additive scheme of:

18=114+7=/32222/322.
3) Meso-periodic—African music.

Music involves periodicity at many levels, from the signal itself to high-level
structure. In the case of African music, there is a very fertile middle-ground
temporal level that is based on what I call “meso-periodicity,” typically a 1-4 second
long pattern. The pattern is repeated thousands of times, with very small variations
in two modes: 1. rational deviations from the pattern (embelhshmen%), and 2.

minute timing deviations from canonical pattern (“floating”). )

These varations can be introduced by a single player, or more typically, by
several players who deviate in very small amounts from their given patterns, result-
ing in the bimodal deviations described above. This creates a succession (in varying
temporal scope) of tension and release, which is what allows an endlessly repeated
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pattern to remain interesting. The repetition of this single period is fundamentally
different from the other two forms, in which there is a metrical structure supporting
the other aspects of the music. In African music, the meso-period is the focal point
of the music.

This category is possibly the most subtle rhythmically. It is played in reference
to movement, and not in reference to a pulse; that is, there is not a hierarchy
of subdivided beats, but rather a parallel stream of voices (drum parts) that are
“woven” together, in interlocking polyrhythm. More information about African
percussion and how it is constructed is contained the next subsection and in Section
2.6.
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Zimbabwe: Shona people. This is mbira music (African “thumb piano”). Obviously
it is periodic, yet it is difficult to tell where “one” is (the beginning of the eycle).
The low melody is offset from the downbeat, which makes the period seem to begin
late, and creates ambiguity because of its relationship with the high part and the
rattle. There is also a simple polyrhythm between the rattle and the other parts, in
a basic two against three pattern. In contrast to the previous example of Stravinsky,
the notation looks less complex than the music sounds. This is true for most meso-
periodic music.
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Ghana: Sogo Dance (Ewe people). Again, there is obvious meso-periodicity,
and yet it is difficult to parse when one hears it. There are several possible ways of
hearing the parts, and of the polyrhythms between the instruments.

There is another aspect of interest about this category of music, which is the
existence of an underlying rapid pulse, (not a beat!), that I will call the “density
referent” to which all parts relate. Though the interlocking parts may sound
very slow in comparison to the speed of this implied pulse, the density referent
is the common temporal denominator that keeps them together. There is much
combinatoric complexity in the way the density referent is sampled. See the next
subsection for an exposition on the possible relationship between the meso-period
in African music, and the chromatic scale in Western music. It turns out that they

are related in a surprisingly direct way.
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4) Hybrids.

The most distinguishable hybrids are Indian music (hybrid of Additive and
Divisive) and Latin music (hybrid of Divisive and Meso-periodic). In the case of
Indian music, it is evident that there is a practice of subdividing a pulse, but also
odd-numbered sequences are used as indivisible bases. In Latin music, there is a
strong duple meter, with the meso-periodicity still evident.
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Indian drumming: Alla Raka and Zakir Hussain (¢abld). This is the harmonium
accompaniment to the drum, which outlines the basic rhythmic cycle, called tala.
Indian music is rhythmically a hybrid of 1 and 2. This example has 10 beats, parsed
as 4 + 3 + 3. The first 4 is divided as a duple structure, but the following two
groups of 3 are not subdivided; they are atoms as in the additive paradigm.

Some devices for creating tension in this music are:

1. Avoiding downbeat -

2. Increasing density while narrowing tolerance to downbeat

3. Embedding patterns within patterns The peak of tension is reached just
as the longest pattern finally ends on the “downbeat,” or the first beat of the tal
(rhythmic cycle), and the density is at a maximum. Just at this point of resolution,
the density is greatly reduced and the process begins again.
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Brazil: Batucada. This is a hybrid of 1 and 3, even more clearly than in
the previous example. It is obviously in a march-like a duple rhythm, but within
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that scheme, it still has retained many “Africanisms” in both its structure and
methods of variation. Noise is everything in this music. There is no melody; instead,
the extremely diverse percussion instruments cover an enormous bandwidth, from
below 40 Hz to the limit of hearing. Each instrument itself has a wide spectrum,
overlapping the others both in spectrum and in rhythmic patterns.

2.5.2. Anatomy of the Meso-period

We now focus on the third category—the meso-period. After some scrutiny,
rather interesting structure appears, which is not surprising, given that the music
has evolved over many generations with its form evolving and strengthening through
oral tradition. This kind of music is based on repetition of patterns with very strict
rules, and it would be impossible to have a vital form of music based on repetition at
this temporal level (the meso-period of about 1-3 secs.) were it not for some rather
deep cognitive foundations. That is, unlike Western music, which has what might
be called “macro-periodicity,” (A-B-A, sonata form, etc.) or ways to create larger
melodic and harmonic structures, in African music the meso-period sustains the
music through time both by variations in the patterns, and the way the meso-period
is actually constructed.

In any survey of West African drumming, one finds that, embedded in the
polyrhythmic structure, there is a rhythmic “skeleton” that is usually a bell-pattern*
based on special subsampling of a 12-pulse meso-period. All the other rhythmic
strata are conceived and- played in relation to the bell pattern. There are many
patterns used in African music, but by far the two most common are:

JdJ dd anp  JJDNJIJD

A.M. Jones singles out these two patterns in his classic work Studies in African
Musie, as being the most important throughout Africa:

* The bell-pattern is a repeated figure played on a metal bell with a stick; it is the “glue”
of the rhythmic ensemble.
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“This pattern is sometimes made by hand-clapping, sometimes it occurs
as a bell-rhythm, and it is even played on the drums. It occurs in various
forms but always it is basically one and the same pattern. It is found
widely in West Africa, in Central Africa, and in East Africa. In fact both
its ubiquity and its typically African form qualifies it to be called the
African ‘Signature tune’ ... this particular pattern is very deep down in

the African musical mind and is indeed part and parcel of their music.”

This pattern, which defines the meso-period, is not perceived (or generated)
the way a Westerner typically deals with rhythm. As Jones later says:

“No one who has heard a party of villagers clap this pattern could possibly
think that there was the slightest suggestion of syncopation in it, that
is, the suggestion that it is ‘out of step’ with some primary background
existing in the performer’s mind. It simply sounds like a smooth irregular

pattern existing as a complete conception in its own right.”
[Jones, 1959 pp. 210, 212, 224)].

If we represent the above two patterns in terms of relative durations summing
to 12, we have 22323 and 22122 2 1; it turns out that these two patterns
are in fact complements, in the sense that if we play one and tap all the “missing”
beats, we will get the other (figure-ground reversal). It seems rather extraordinary
that if we think of these sequences as semitones of the chromatic scale, they exactly
represent the pentatonic and diatonic scales, respectively. For example, the bell
pattern (2 2 1 2 2 2 1) corresponds exactly to W W H W W W H, which is none
other than the diatonic scale (W = whole step, H = half step). If one looks at
this as a period, and changes the phase (this is equivalent to starting the pattern
in another place), the rhythmic patterns still exist, with a different reference point.
Similarly, in the domain of scales, this difference in “phase” corresponds to the
Greek modes, for example, Dorian, Phrygian, Lydian, etc. Interestingly, if either
the scales or the rhythms are played by themselves, there is no frame of reference,
and no way of distinguishing the modes, rhythmically or tonally. But if there is
a frame of reference (usually another part, or some reference to the “tonic”), then
the phase can be critical to a correct performance or interpretation of the rhythm.
See Fig. 2.3 for a graphical representation of these patterns, and how they relate
to one another.

One wonders if this correspondence is sheer coincidence, or whether in fact
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Figure 2.8. A graphical representation of the basic bell-patterns of the meso-period.
Note that the patterns are embedded in a basic grid of 12. Patterns (1) and (2) are sub-
samplings of the period. They are complements of each other, and as they fit in the period
of 12, they can be perceived in groups of 3 or 4. Thus there is a basic “instability” in terms
of the way one parses the patterns. Note also that if the grid were viewed as the twelve
steps of the chromatic scale, then pattern (1) is the standard diatonic scale, and pattern
(2) is the pentatonic scale. Other rhythmic or melodic modes are created by starting in
different positions in the period. This representation is in some ways more useful than -
conventional notation, because it shows the relationships between the patterns clearly.
Each box represents the density referent, i.e. the fastest regularly occuring pulse. James
Koetting calls this the TUBS notation (Time Unit Box System), and uses it to represent
various kinds of percussive music [Koetting, 1970).

there is some natural combinatoric/musical link between these two systems of music.
It turns out that there is an approach to the meso-periodic structure of African
music which both explains its powerful musical basis, and links it with the Western
notion of scales. Gerry Balzano wrote an article in the Computer Music Journal
in which he investigated the implications of treating the chromatic scale as a cyclic
group of order 12 and its subgroups [Balzano, 1980]. When interpreted in this
way, the cyclic structures common in African music can be seen in many cases as
isomorphic to the pitched cyclic structure of chromatic, diatonic and pentatonic
scales [Pressing, 1979]. The argument for this particular choice of subgroups of the
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12-grain cycle is comparable to the theory put forth by Balzano in his investigations
into scales in Western music. In fact, it seems more appropriate because Balzano
is forced to ignore the actual tuning of intervals for his theory; he only discusses
the number and placement of discrete pitches per octave. By contrast, in reference
to the meso-period, we are actually representing relative durations, so we are not
throwing away information when we represent the sub-sampling of the meso-period
as a pattern.

Another of the elements that make the meso-period come to life is ambiguity of
interpretation, in the existence of several possible meters that one might perceive.
Since there are several divisors of 12, there can be several possible interpretations of
the period. It is not clear which divisor will be heard as dominant, or put another
way, how does one hear (parse) simple polyrhythms? In a very much distilled
experimental context, Oshinsky and Handel tried to see which pattern will be heard
as dominant when listeners are presented with clicks that are in the relationship
of 3 against 4. They found that in the case of 3 against 4, the choice was tempo-
dependent, that is, whether listeners tended to hear the 3 as the dominant pattern,
or the 4 as dominant depended on the rate of the clicks (tempo) [Oshinsky and
Handel, 1978]. Their experiment was not in a musical context, however, in that
they used undifferentiated clicks that were all identical in amplitude and envelope.

2.6. Issues Peculiar to Percussive Music

Because this thesis is concerned with transcribing percussive music, it is worth
examining two areas that are specifically related to percussion: the physical/acous-
tical, and the ensemble issues that are peculiar to African or African-derived music.

2.6.1. Acoustical Considerations

The term “percussive music” is perhaps a misnomer, as it includes instruments
that should perhaps not be classified together. For instance, the piano is a percussion
instrument, and so is the “slit drum” (which is not a drum at all, but rather a gong,
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in the sense that it is an ¢diophone*).

In a study of percussive music, one might begin with the Western orchestral per-
cussion instruments. Of these, the most prominent is the timpani, or kettledrums.
These are large drums with plastic or animal (usually calf) skins stretched over a
metal or fiberglass kettle, or shell. The acoustics of the timpani have been described
briefly by Thomas Rossing, including the reasons these drums elicit a reasonably
clear pitch, when in fact they should be quite inharmonic [Rossing, 1982].

There is a problem with the reasons however, because Rossing's arguments
could apply to many different drums, but there is a tremendous diversity of pitch
clarity, from extremely vague to extremely sharp in various different drums. In fact,
the complex mathematical treatment of vibrating membranes [Morse and Ingard,
1968], although elegant and true in the abstract, makes so many assumptions
about the “ideal membrane” that it reduces most drums to the same imaginary
membrane. The fact is that drums differ enormously in timbre and pitch clarity.
Minute differences in shell size and shape, and the thickness and type of membrane,
contribute a great deal to the unique sound of different drums. The particular sound
of a drum is crucial to its role in the associated musical tradition.

The mallet instruments (marimba, xylophone, vibraphone, glockenspiel), are
more like the piano in their repertoire, and will not be dealt with here. Because
they are acoustically vibrating bars (they are idiophones with individual resonators
for each bar), instead of strings, they will have different acoustical properties, but
they have the same physical layout as the piano.

Orchestral percussion instruments, because of their position in Western music,
are rarely played as solo instruments. If we choose to look at musics in which
percussion plays a more central role, we will quickly gravitate towards certain non-
Western cultures, especially African and African-derived musics, in which percussion
and rhythm are the key to the entire musical structure and vocabulary, and in which
aspects of rhythm have reached their highest level.

* The standard classification of instruments follows the Sachs-Hornbostel scheme of four
major categories: 1. Idiophones (the vibrating material is the same object that is played
(free of any applied tension), e.g. woodblocks, gongs, etc.) 2. Membranophones (the
vibrating material is a stretched membrane, e.g. drums) 3. Chordophones (the vibrating
material is one or more stretched strings e.g. lutes, zithers, etc.) 4. Aerophones (the
vibrating material is a column of air, e.g. flutes, oboes, etc.).




2.6 ISSUES PECULIAR TO PERCUSSIVE MUSIC Page 49

One important difference between African and Western percussion is the notion
of a “stroke-space,” which can be defined as the universe of possiblities of ways of
striking the drum,; it is the vocabulary of strokes. Although in Western percussion
the emphasis is usually on uniformity of tone, in African percussion, how the drum
is struck is almost as important as when. For transcription, it is important to be
able to distinguish between different strokes automatically, as we show in the next
chapter. The importance of notating different strokes is stressed by A.M. Jones,
who says:

“African drummers vary not only in pitch but also in quality. If the
wrong quality of note is played in any particular African drum-pattern,
that pattern is no longer what it is intended to be and becomes another
pattern. So it is much more important in the case of drumming, to know
which hand a performer used for any given note, and how he played that
note, than is the case with Western music. The score should ideally show
not only the rhythm and the pitch of the notes but also how each note

was made.”
[Jones, 1959 p. 11].

One interpretation of this is that the idea of “tonality” in Western music can
be modified to apply to completely different musical contexts. Instead of referring
to scale patterns and harmonic structure, one can think of any organization of the
sonic material that allows recognizable structure to appear; that is, permutations
or reorderings of a basic set that allows “features” to be perceived. For example,
for inharmonic instruments, where standard pitch perceptions do not apply, this
could be a sequence of different textures, or different amounts of damping, which is
recognizable as different decay rates, or overall amplitude contours.

In the case of drum ensembles, the tonality can be thought of as the different
strokes that imply different rates of damping and different spectra. The musical
material is the ordering and overall periodicity of patterns made up of these elements
instead of notes in a scale. There may be a “tonal center” in this set of objects,
but perhaps not a hierarchy as we think of with regard to a musical scale. Still,
similar pattern-seeking algorithms may be applied to this material, looking for the
equivalent building-blocks and repeated figures, structures one would find in tonal
music. Expectation is created by repetition as well as by form. It is interesting to
note that the patterns created in drumming music are in some sense more abstract
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than melodic music is. That is, there is ultimately a somewhat different mechanism
for perceiving the drum patterns than for melody.

In the example that is analyzed in Chapter 3, there are eight basic strokes.
We now describe these strokes that the program determines to be distinct sources.
These stroke-types could be considered canonical in that almost all drumming will
have at least a subset of strokes that resemble these basic strokes. They are as
follows:

OPEN - high or low drum. (Hand snaps away from drumhead, allowing
maximum ringing of drumhead in normal mode.)

MUFTF - high or low drum. (Hand “sticks” to drumhead, damping and also
raising pitch of tone by about a minor third.)

BASS - high or low drum. (Palm of hand hits center of drumhead, causing
lowest perceived pitch.)*

SLAP - high or low drum. (Hand hits center of drumhead while damping edge,
causing sharp attack and higher perceived pitch.)*

It is safe to say that one must at least be able to distinguish these strokes to
make an adequate transcription. For plots of typical examples of the time waveforms
of these strokes on a conga drum, see figures Fig. 2.4 — Fig. 2.7. The associated
spectra are shown in Section 3.2.7.

2.6.2. Ensemble Considerations

The communal nature of African or African-derived music is well-known. This
refers to the tendency to play the music using several musicians (sharing the parts
that add up to the piece) when it could physically be played by one person. Instead,
the parts are “woven” together, that is, they are interlocked to form one overall
melody or rhythm. An anthropologist would probably see this as an example of
music imitating life, that is, in a communal society many tasks will be naturally
put together in this way.

This socio-musicological approach is probably valid; however, this way of con-
structing the music also has an interesting, nontrivial, and strictly musical effect:

* These strokes elicit a very unclear pitch, but there is a definite relative percept of
“highest” and “lowest”.
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Figure 2.4. Time waveform of open tone on
a. high drum
b. low drum.

it creates tension. This is because the separate parts that fit together to make
a whole are each subject to the same kind of intentional and unintentional slight
variations in timing. Because each player represents an independent source that is
nevertheless in a feedback loop with all the other players (via the players’ ears), the
overall pattern moves in a rather complex way around the intended music. This
allows the music to “breathe,” and imparts more life to the tone and rhythm. The
liveliness is thus probably a result of:

1. Timing complexity—the interlocked parts are floating in independent ways,
but are synchronized by the players.

2. Spatial and tonal complexity added by the actual distance between players.
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Figure 2.5. Time waveform of muff tone on
a. high drum
b. low drum.

This is one reason why recorded music is not as interesting as live music (the speakers
cannot adequately represent the space that the players occupy).

Each player needs to deviate only slightly from his or her pattern in order to
create an overall impression of fluidity and constant flux. This is very important—
only the soloist (if there is one) will deviate significantly from a given pattern, and
yet the cumulative effect of all the tiny variations is quite striking.

As mentioned earlier, this kind of music depends heavily on repetition. This
is the meaning of the term meso-periodic. Aside from the timing variations just
mentioned, there are polyrhythms, or cross-rhythms that are embedded in the
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Figure 2.8, Time waveform of bass tone on
a. high drum
b. low drum.

music. Typically in this music, there will be at least two ways to parse the meso-
period, and they compete for the listener’s attention. It is the abstract quality of
percussive music (it is not melodic), that promotes the percept of polyrhythm as a
salient feature. As mentioned earlier, this is another way to create tension.

A.M. Jones, who lived as a missionary for twenty-one years in Northern Rhod-
esia, wrote Studies in African Music based on both his observations in Africa and
his sessions with Mr. Desmond K. Tay, who was a master drummer from the Ewe
tribe in Ghana. The experiments were carried out at the School of African and
Oriental Studies in London, where Mr. Tay was requested to try to play traditional
drum ensemble music in separate parts so they could be transcribed.
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Figure 2.7. Time waveform of slap tone on
a. high drum
b. low drum.

To do the transcriptions, A.M. Jones designed and implemented an apparatus
for analyzing African drum patterns. The machine was quite simple; the drummer
taps on a metal plate with a metal rod, and each tap of the plate completes an
electrical connection that then makes marks on a paper roll moving at a constant
rate of speed. The time patterns correspond to the intended rhythms. It can be
seen that this method is similar in principle to Seashore and his colleagues’ attempts
to build the “piano camera,” in that the machine, if is working correctly, will mark
distances that correspond to exact timings. No attempt is made to evaluate the
timing information automatically; that is done by hand at a later date, but at least
the raw temporal data should be dependable.
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Jones was able to transcribe separate parts by having the drummer play them
one at a time, with a common bell-pattern being played for a reference beat. Since
the device gives no aural feedback, the efficacy of the experiment depended heavily
on the musicianship and tremendous aural imagination of the master drummer.
This is because great accuracy is required, and the player does not have the other
parts to refer to while playing each part; he is translating and condensing a full
performance into this restricted laboratory situation. Also Mr. Tay was asked to
report how the drum is struck for each note, as the machine is incapable of making
any distictions between strokes. Finally Jones was able, using the machine, to
transcribe a number of African drum rhythms that stand today as being accurate
transcriptions.

In closing this section, it should be mentioned that the effect of percussive music
(especially meso-periodic music), can go beyond just being interesting. That is, per-
cussive music in many parts of the world can exert considerable power over listeners,
and is often used to induce trance states. This is such a universal phenomenon that
it prompted the anthropologist Rodney Needham to discuss it in an article entitled
“Percussion and Transition” [Needham, 1967] in which he observes that in almost all
rites of passage and other important ceremonies around the world, especially those
in which the participants reach a trance state, percussion is the primary source
of the music. Numerous other writers have come to the same conclusion; see for
example [Didszegi, 1962; Neher, 1962].

Needham and other researchers have no exact explanation, but we might sug-
gest that beyond the specific social/cultural setting, it has to do with:

1. The multiplicity or ambiguity of possible “meters.”

2. The physical correlates of the source, e.g. typical broad bandwidth of drums
and rattles, sharp attacks, high volume associated with percussion. The broad
bandwidth is important for two reasons: physiologically, in that it may result in
a wider breadth of neural excitation patterns, and cognitively, in that it obscures
pitch, which results in the abstraction of melody and the resultant strengthening
of the pure rhythmic impact.
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Chapter 3

Methods

“Without ezception, the best and most practical solutions were provid-
ed not by estimation algorithms that have proved thesr usefulness
elsewhere, but by methods evolved by smaginative researchers familiar
with speech problems. Thus, in spite of the evolution of more and
more powerful statistical estsmation algorithms, sintimate knowledge
of the signal and the idiosyncrasies of its source have been paramount
and will continue to be s0.”

— from Schroeder, 1970

3.1. Introduction

In Chapter 2, we described various characterizations and theories of rhythm at
several levels. In particular, in Section 2.2, an historical review of major attempts
at automatic transcription of music was presented. Here we focus on percussive
music, which has some different problems. For instance, we are very concerned with
accurate onset detection, and not as concerned with pitch detection. Because many
of the signals are not periodic, we follow a different approach towards segmentation. *

In Section 3.2, the operations on the signal are described. Here the analysis
proceeds from segmentation to source detection, which in this case reduces to trying
to identify the various strokes used on the drum. This is done first by determining

* Segmentation may be defined as any method of breaking the sample into pieces, which
correspond to musical (or in the case of speech, phonetic) events.

57




Page 58 METHODS 3.1

whether a stroke is damped or undamped; an estimation of f{au, the exponential
decay constant, facilitates this decision. Next, the program automatically analyzes
the spectrum of the waveform at a location that depends on the damped/undamped
decision. By comparing the spectral distribution of the given tone with a data base,
the type of stroke can be identified.

At this point, we have the “event-list.” From here, it is possible to go in several
directions, either relating to resynthesis or to higher analysis. In Section 3.3, we
describe the higher-level methods by which we can track tempo, derive meter, and
reach a level of representation resembling Western notation.

3.2. Approach to the Low-Level Analysis

The most direct response to percussive music is nominally in terms of energy,
or rise-time; therefore we want to detect a sudden increase in amplitude of the
signal. This might not seem to be the right approach at first, and indeed there are
many difficulties with trying to segment by amplitude. In a sense, amplitude is a
“weak” characteristic of musical material, but it is certainly a crucial parameter
to consider for any careful study of timing in music. Perceptual onset is probably
most closely correlated with amplitude slope [Gordon, 1984].

So, in order to successfully parse percussive music from the acoustic waveform,
we need automatic slope detection algorithms. As mentioned in Section 2.2.5, some
of the simpler approaches to slope detection, such as 1-point differencing, do not
work, because there can be a considerable amount of noise, ringing, reverberation,
and substantial overlap between events. For this reason, methods that work well on
synthetic data will often fail when applied to real data. In automatic transcription
efforts, as in psychoacoustics experiments, synthetic data does not approach the
complexity of real data, and therefore can lead to misleading results.

After much experimentation, a slope-detector based on amplitude was imple-
mented that worked in a wide variety of situations. It is based on the envelope of
the signal, derived as follows.

3.2.1. Envelope Derivation

The derivation of envelope is done by operating in a very intuitive way on the
amplitude envelope. The envelope is created by finding the maxima and minima




3.2 APPROACH TO THE LOW-LEVEL ANALYSIS Page 59

(peaks) of the waveform in each cycle; that is, the max and min in a window that
moves through the data. The only difficulty is in setting the size of the window,
which depends of the lowest frequency expected in the data. For periodic signals,
the best results are obtained when the window is precisely one period long. Since
percussive sounds are not usually periodic, it is prudent to pick a window that is
sufficiently large; if the lowest frequency is fo Hz, then the window must be no
smaller than Tp = 1/ fo seconds. This is because one wants to trace only the peaks,
and if the window is smaller than the period of the waveform, one begins to track
the intra-period excursions instead of the peaks. If, on the other hand, the window
is too large, time resolution is lost. For example, if the lowest frequency is 100
Hz, it is safe to pick a window of at least 10 ms. This envelope represents a data
reduction of about 200 : 1 from the original sound file.

Figure 3.1 shows what this process looks like when applied to data that cor-
responds to a single note. If the calculation is carried out over an entire excerpt,
it looks like Fig. 3.2, where it is apparent that there is some kind of periodicity, or
pattern, but it is not obvious exactly how large it is, or how it is constructed. The
answer to this question will unfold as the process of transcription is described.
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Figure 8.1. Finding the envelope by “connecting the dots” — find the max and min in a

moving window, and store as the amplitude envelope. This is a single note, with its envelope
superimposed.
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Figure 8.2. The result of finding the envelope as in Fig. 3.1, but done for the entire
excerpt. The overall rhythmic periodicity in this example is suggested visually, but it is

difficult to describe as yet. The measures are marked here by hand, and a goal is to find
them automatically.
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¢ = y; — (mz; + ) = y; ~mz; — b

(zi,93)

Figure 8.8. This figure and Fig. 3.4 show how the “surfboard” method is derived. A linear
regression is performed on a few points of the amplitude envelope at a tie, by minimizing the
least squares error criterion: ) ;o ¢:® = Y 0 _ (vi — mz; — b).

3.2.2. Slope Detection

Once the envelope has been created, a novel slope detector is applied to it. The
slope detector works by calculating a linear regression over several points of the
amplitude envelope using least squares error, as depicted in Fig. 3.3. The regression
moves one point at a time through the envelope, approximating n points at a time
(n is usually four to eight). This does not create a piecewise linear approximation
to the amplitude envelope, but rather, a sequence of overlapping line segments that
“float” over the data, and are not greatly affected by noise. (See Fig. 3.4). The
slope of each line segment is recorded, and segmentation of the material proceeds

based the slope array {S,} (defined for each point S,) and the rules described in
the next section.

3.2.3. Segmentation Rules

The following rules are used to segment musical material, based on the slope ar-
ray {Sn}. The program proceeds automatically, and has several run-time parameters
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Figure 8.4. The “surfboard” method applied to a real envelope extracted from Fig. 3.2. x’s
are data points of envelope; line segments are approximating 4 points at a time. Note that the
lines are not tangent to the curve, but rather approximate groups of overlapping points.

that can be changed; this process is repeated as many times as the user wishes.
Typically, the parameters are set on a small segment (excerpt) of the desired musi-
cal example, and when the user is satisfied with the results, this procedure is applied
to the whole piece. The parameters are described in the next section.

1. Search through slope array {S,} looking for an abrupt increase in slope over
a given duration. This is where the first attack is, where the music starts. This is
the same method used to measure perceptual attack time, as it seems to yield the
best correlation with experimental data (Gordon, 1984).

2. After the attack, assume a “forbidden attack region” for n msec; skip ahead
by n msec. There is no new attack allowed for this duration; it is used to avoid
detecting spurious attacks that are within n msec. of the previous attack. This
parameter is adjustable, as are all the parameters, over each segment.

3. Search for a local maximum in the data after the forbidden region. This
local maximum must occur where the slope changes sign, i.e. Sp—; > € and S, <
—¢ (mean value theorem). Save the location and the value of the local maximum.

4. After the local maximum, progress through the data, checking to see if the
moving average of the power of the signal (over some given duration) obeys the
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inequality
Moving Average < .01 X (Local Maximum)Z.

These samples are thus below the noise floor, and we call this a rest, waiting for
the next attack. The rest detector is not triggered very often, because in reality,
reverberation tends to sustain events at a level above the noise floor. Actually, many
rests are not detected that should be, and this issue needs more work. Luckily, what
is most important is inter-attack time (see Section 2.3.3.).

5. Search for a local minimum, that is, a point where S,—; < —e and S, > e.
Record value and location.

6. If (4) or (5) occurs, begin searching for the next attack.

7. For each attack found, send window of data between local max and local
min to “Source-detector” that classifies type of stroke, amount of damping, and
which drum. (See Section 3.2.7).

3.2.4. Setting Segmentation Parameters

As mentioned above, in order to “tune” the system to a particular set of ex-
amples, it is necessary to run it on a segment of data repeatedly, checking inter-
mediate results. These parameters, set during runtime, will affect the segmentation
results. The values given are default values (shown below) that have been found to
be fairly robust, in that 0% accuracy was achieved in most test examples. The
first three depend on the size of a point of the amplitude envelope, usually 2 msec.
per point.

Span(4) Onset(2) LengthofDecay(3) Threshold(1) Epsilon(.001) Display(F)
or M

The interpretation of these parameters is as follows:

o Span — the length of the “surfboard,” in this case 4 X 2 = 8 msec. (each
point is 2 ms).

e Onset — refers to the “forbidden region” described above; is set to 4 ms.

o LengthofDecay — refers to the size of the window over which the moving
average of the power of the signal is taken for rest detection.

e Threshold — The threshold for slope to trigger an attack. A dimensionless
quantity.
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Figure 8.5. An enlargement of “bar 1” from Fig. 3.2, positive values only.
a) The envelope as given. _
b) The program’s attempt to mark detected attacks.

e Epsilon — a number near 0. Its value is not critical, but it is kept as a
parameter for generality.

o Display — Boolean used to display extra information for debugging.

Fig. 3.5 shows a typical example of the interactive segmentation display. It is
also interesting to look at the slope array, {Sn}, which is shown in Fig. 3.6. One
can see, in Fig. 3.6, the contours of the different decay types.
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Figure 3.8. The slope array, {Sa}, for the previous example (Fig. 3.5). Note that the shape
of {Sa} reflects the behavior of the attack characteristics, and is much less noisy.

a) Original envelope.

b) Slope array {Sa}.

3.2.5. Perceptual Attack Time

. There is a discrepancy between the physical attack time, which is being measured
here, and the perceptual attack time (PAT), the instant a listener perceives the at-
tack. It is necessary to correct for this discrepancy, because the system cannot have
a priori knowledge of the delay. In fact, it is not a serious problem in this analysis
for two reasons:

1. The physical attack times are very short (steep), assuring little delay be-
tween the physical attack and the percept of the attack. (See Fig. 3.7).
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Figure 8.7. Perceptual onset vs. physical onset. Close-up of a typical percussive attack.
There is always some delay between the physical onset and perceptual onset. In instruments
with very sharp attacks like this one, it will be about 5 msec. The time scale here is 1 ms per
tick.

2. Whatever error is made tends to be equally made for all attacks from a
given source, so the interattack time remains fairly stable. In any case, an attempt
has been made to deal with.this problem as described in Section 2.3.2.

3.2.6. High-Pass Filtering to Facilitate Segmentation

It turns out that the above procedure will fail to detect notes during passages
in which adjacent notes are ringing substantially. In Fig. 3.8 (a) we see a fragment
of music in which it is impossible to tell by the amplitude how many notes there
are. Nor will the previously described methods work; certainly a pitch detector
will not detect the seven attacks, nor will the segmenter based on autoregressive
modeling (AR), because the AR segmenter cannot detect repeated notes in general,
as mentioned in Section 2.2.5.

If we look closely at this excerpt, we see that what is happening is that at each
attack there is bit of high frequency noise, but more importantly, there is a phase
discontinuity at the moment the drum is struck. Figure 3.8 (b) and (c) show this
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clearly. Intuitively, this corresponds to the reinitialization of the membrane at a
random moment when the hand strikes the oscillating drumhead. The cusp in the
waveform (sharp corner) causes a wide spread in the frequency domain. Thus, if we
high-pass the signal, the attacks become quite obvious, as shown in Fig. 3.9 (b). If
we change the cut-off of the filter, the results look as in Fig. 3.10.
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Figure 8.8. A segment that is impossible to parse from the original signal.
a) The original waveform
b) Closeup

c) The key spot. There is high frequency noise at this spot, and also a phase discontinuity.
The phase discontinuity seems to account for the perception of a new attack more than the
high frequency noise.
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Flgure 8.9.

a) The original waveform.

b) High-passed with elliptic filter (6 poles, 6 zeros) at 2.2 kHz. The attacks are easy to
detect.
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Figure 8.10. The envelope of Fig. 3.8 (a), with three high-pass filters with increasing cut-off
frequencies, first 2.2 kHz, then 4 kHz, and then 5 kHz. The sound of this example is surprising;
after the original figure played on the drum, the sequence sounds as if it is repeated on a set
of three increasingly tiny “soprano maracas,” while the rhythm remains absolutely clear.

An interesting perceptual sidelight to this phenomenon is the fact that, if we
add only low amplitude noise to the signal at this point, but retain the initial phase
relationship, we hear a click at this point, but not a new attack.* If, conversely, we
add no noise, but instead artificially create a phase discontinuity (for example, 180°)
at the same moment, we do hear a new attack. Sensitivity to phase in this setting
could imply that the auditory system is modeling or tracking the temporal aspects
of the waveform, or alternatively that the ear is acting as a finely tuned resonator,
responding to the phase shift. Von Békésy thought the latter: “If a resonator is
exposed to a tone whose phase is suddenly altered, say by 180°, the amplitude of
the resonator falls to 0 and then builds up again.” [von Békésy, 1960, p. 412].
He tried to test this hypothesis with a listening experiment, but his experiments
with phase reversals were unsuccessful. He was unable to observe the phenomenon,
probably because of the imprecise analog equipment available at the time. See Fig.
3.11 for examples of phase reversal vs. added noise, and their perceptual effects in
the case of a synthesized sinusiod.

* Based on an informal listening experiment with several subjects. See Fig. 3.11.
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Figure 8.11. Experiment done to test the independent effect of high frequency noise vs. phase
discontinuity on percept of a new attack.

a) A 200 Hz sine tone with high frequency, low amplitude noise added for the duration of
one period (5 msec). One simply hears a click at the moment of the noise.

b) A 200 Hz sine tone with no added noise, but instead a sudden 180° phase reversal
(exactly 1/2 period removed). One hears a definite new attack at the point of the phase
reversal.
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3.2.7. Source-identification

————am—

Now that the data have been segmented, the system tries to discriminate among
possible ways the drum was struck. The following methods are generalizable to
some extent, at least for other kinds of percussive instruments.

Finding 7

The first objective is to decide whether the stroke is damped or undamped.
This decision is critical to the structure of the rhythm. Because of the expected
approximate exponential decay for a vibrating membrane, it would be convenient
to assign a single value to the decay rate. This is done by determining 7 (tau),
the exponential decay constant, for each stroke. If we express the envelope yn as a
sampled exponential function with sampling period T,

Yn = e_nT/r’
then .
Ynsr = e MHNT/T — (e""T/')(e’T/’) = yne T/7,

If we let

a= e—T/f’
then

Un+1 == OYp = 6%Ypn—y = @®Yp—g = --- = a"*'yp.
The coefficient a yields 7 in the following way:
-T )
T=— (T = sample period). (3.1)

In(a)’

We must find @ in order to compute 7. To find a, form the sum

N-2

N-2 N-2
E YnUns1 = Z YnlYn =23 E ynzy

n==0 N==0 Na=0
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where N is the total number of points in the amplitude envelope.

Solving for a, we have

NS Ynnsr
Enso y”

a=

In this derivation for a, what we have really done is to express the autocorrela-
tion method for Linear Prediction as applied to the first-order case, for which it
reduces to the above calculation [Markel and Grey, 1976].

Thus, we find tau by first calculating a from the one-pole fit to the envelope,
and setting 7 from (3.1) above. The rate of decay is thus characterized for the
amplitude envelope passed to this routine by the segmenter, from the maximum to
the minimum of a given note. A one-pole fit is particularly effective here, because it
fits an exponential decay to the curve with minimum error, no matter what portion
of the envelope is passed to it—it is not important if the piece of envelope it is given
is missing points before, during or after the segment given.* Figure 3.12 shows a
typical example.

Once tau is found, a heuristically derived threshold is used to label the event
as a damped or undamped stroke. (The difference in decay rate between damped
and undamped strokes is usually quite pronounced, so the threshold value is not
difficult to set.) This decision is reported to the main process, and the next step of
analysis is performed.

Identifying Strokes

Next, a portion of the stroke, (depending on the damped/undamped decision)
is sent to the stroke-detector. If the note was determined to be undamped, a
window in the middle of the time-waveform (100 — 200 msec.) is analyzed by a
pitch detector. The undamped stroke, though its spectrum is changing rapidly,
has a nominal “steady state.” That is, unlike the various damped strokes, one can
identify a pitch for about 500 ms. subsequent to the attack.

* Note that 7 cannot be easily computed by trying to minimize |JA(n) — ¢~"7/"|| over r
by least squares.
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Figure 3.12, Determining 7, the €Xponentia] decay constant,
a) Origina} time waveform

b) Envelope of above Waveform, ( beginning ¢ the maximym amplitude), with overiay of
1-pole fit to the envelope.

Otherwise, for damped strokes, the stroke-detector is sent the entire duratjop
of the attack (0—100 ms), and a k-cell Partition of the Spectrum is cregteqd (k=3
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moment it is set by hand to roughly capture the spectral variety in these particular
data. The best method would be to implement a general search that proposes the
optimal number of bins (called ay), and their relative width over a given set of
spectra that maximizes distinctions between sources. In Fig. 3.13 — Fig. 3.17 we
see the particular spectra of interest in this study. (The time waveforms from which
these FFT's were made are shown in Section 2.6.2).

The partitions were selected to facilitate the distinction between the possible
strokes, and are set to the following ranges of the spectrum:

ay: [0—-1kHz].

az: [1—17 kH2).

as : [7 kHz — Nyquist].*

* 1/2 the sampling rate, in this case, 12 kHz.
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Figure 8.18. FFT of open tone on high drum, (100—200 ms). Normalized to peak; Blackman
window (defined as W[i] = 1 + .10685cos(27i/N) — 1.19685cos(4xi/ N')).

a) 0 — 12 kHz displayed, showing a regions.

b) Close-up: 0 — 2 kHz. Note inharmonic peaks in spectrum.

c) Another example of the same kind of stroke, automatically extracted at random from
a larger excerpt. Note that the major peaks are close to those in (b). This is included to verify
that indeed the peaks do not vary greatly in different instances, and it is therefore valid to
look at their ratios. 100 msec. corresponds to about 20 cycles of the waveform.
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Figure 3.14. FFT of open tone on low drum, (100—200 ms). Normalized to peak; Blackman
window.

a) 0 — 12 kHz displayed, showing a regions.
b) Close-up: 0 — 2 kHz. Note inharmonic peaks in spectrum.
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Figure 8.15. FFT of muff tone, (0 — 100 ms). 0 — 12 kHz displayed, showing a regions.
Normalized to peak; Blackman window. '

a) high drum.

b) low drum.

Given the partition (any partition can be used for any data, but some partitions
will work much better than others), the program has a learning capability for dealing
with new input. Currently, it expects a set of “canonical” samples of strokes, that
are played or otherwise provided by the user as good examples of each kind of
stroke. The user provides several examples of each stroke type, along with a name
for each.

The program then automatically isolates each stroke based on the segmentation
methods described, calculates the energy in each bin, finds the mean and standard
deviation of the points, and the spectral peak, and updates its data base with these
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Figure 8.16. FFT of slap tone, (0 — 100 ms). 0 — 12 kHz displayed, showing a regions.
Normalized to peak; Blackman window.

a) high drum.

b) low drum.

values, as shown in Table 3.1. In this way, it is possible to “train” the program to
deal with new data played on different drums or played by a different performer,
because the database will be updated to reflect the new types of strokes.
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Figure 8.17. FFT of bass tone, (0 — 100 ms). 0—12 kHz displayed, showing a regions.
Normalized to peak; Blackman window.

a) high drum.

b) low drum.
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Data Base for Stroke Search
STROKE o ag a3 SD PEAK [No. Ex.
H — OPEN 1.0000 0.0001 0.0000 0.0541 220.0 2.0
L—OPEN 1.0000 | 0.0001 | 0.0000 | 0.0541 | 185.0 2.0
H—-MUFF 0.6560 0.3400 0.0077 0.0784 240.0 10.0
L—- MUFF 0.5390 0.4370 0.0251 0.1110 195.0 9.0
H - SLAP 0.3630 | 0.6100 | 0.0287 | 0.0377 | 415.0 9.0
L— SLAP 0.3269 | 0.6217 | 0.0536 | 0.4365 | 479.8 8.0
H — BASS 0.3706 0.5839 0.0471 0.0276 52.26 7.0
L— BASS 0.4666 | 0.5237 | 0.0122 | 0.0458 | 53.21 6.0

Table 8.1. Data that are compiled automatically by the program when the user
provides sample “canonical” input. These values are compared with unknown
values as explained in Fig. 3.18. Note that, for example, for the open strokes on
both high and low drums, virtually all the energy is in the first frequency bin (a;).
a's are the energy in eacljfrequency bin, SD is the standard deviation of the a’s,
PEAK is the average peak of the spectrum for each stroke, and No. Ex. is the
number of sample strokes of each type. The open tones tend to be fairly consistent,
so only two examples were used to set data points for these.

When then confronted with a real example, the system computes the normal-
ized distance from a given 3-tuple to canonical values in the data base, and picks the
minimum value that corresponds to one of the strokes. Normalized in this context
means that the distance to the various stored values is divided by the SD (standard
deviation) for each value. This has the effect of “partitioning” the spectral space
in the following way: if a particular stroke is not played uniformly, it will occupy
a large region of the spectral space, and therefore the probability of an unknown
stroke being in that category is higher than it would be in the case of another
stroke that is the same distance away, but with a smaller SD. The small value for
the SD would imply that the latter stroke is more constrained, and is played more
uniformly (see Fig. 3.18).

At this point, a confidence measure (0 < m < 1) is reported for each stroke,
according to how well the various aspects of the process “agree” by a simple
weighting scheme, based on:

1. Closeness of fit of spectrum to one of the values in the database.

2. Closeness of fit of spectral peak to corresponding peak in database.

3. Agreement between damped/undamped decision based on tau vs. that
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implied by spectral shape.

The stroke names originally given by the user are retained in the note field as
tokens, which are used by the higher level for scoring and pattern detection, and
also directly for resynthesis of various kinds.

An example of the auxillary output for debugging purposes is shown in Fig.
3.19. Note that this whole page can be condensed to a single line of Fig. 3.20,
which is the output of this part of the program, and the input to the next section
(§ 3.3). It can be called a “notelist,” as it represents the actual performance; it is
an unabstracted representation of the music.
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Figure 8.18. The scheme for source detection.

a) The spectra of all strokes is partitioned as shown, to maximize the difference between
strokes.

b) The energy in each bin is computed, and compared with values that are stored in Table
3.1. For each unknown stroke, the token, or stroke, that corresponds to the minimum value of

Eﬁ%‘d, is retained.
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Figure 8.19. This is a log of a session, that includes all changes, or repeated runs with
different parameters. Note the confidence measure, which is a weighting value for how well

various aspects of the analysis “add up.”

note) in the notelist, shown in Fig. 3.20.

This whole page boils down to one line (the first
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PLAY;

PARS IGN BEG OUR FRO AW INSp

d berl: -

pluck, .053, .455, 577.968, .1, HSLAP;
pluek, .588, .183, 577.963, .1, HBASSs
pluck, .631, .285, 194.726, .1, LOPENs

pluck, .976, .@71, 227.456, .1, HBASSs
pluck, 1.847, .857, 261.383, .1, LSLAP:
pluck, 1,104, .129, 241.935, .1, LMUFF;
pluck, 1.234, .163, 329.188, .1, LBASS;
pluck, 1,398, .166, 228.183, .1, HOPEN:
pluek, 1.562, .388, 228.214, .1, HOPEN;

s
pluck, 1.878, .434, 194.666, .1, LOPENs
pluek, 2,305, .185, 227.963, .1, HOPEN:
pluek, 2.469, .299, 227.72S, .1, HOPEN:

2.783, 498,
pluck, 2.917, .185, §78.725, .1, LSLAPs
pluck, 3.882, .147, 228.813, .1, HOPENs
pluck, 3.229, .155, 227.823, .1, HOPEN:
pluck, 3.384, .283, 194,735, .1, LOPEN;

d bar3y

pluck, 3.678, .088, 228.127, .1, HWFF;
pluek, 3.757, .187, 227.861, .1, HWFF;
pluck, 3.864, .186, 194.738, .1, LOPEN;

pluck, 4.950, .213, 194.718, .1, LOPEN;

d mivsing noteg

pluck, 4.263, .283, 227.992, .1, HOPENs
pluck, 4.546, .444, 576.9588, .1, LSLAP;
pluck, 4,998, .183, 576.634, .1, HSLAP;
pluck, S.174, .287, 194.61S, .1, LOPENs

d bardy

pluek, 5.461, .@97, 227.9%4, .1, HILFFs
227.934, .1, HOPEN:;

@ missing notes

piuck, 5.743, .182, 228.217, .1, HOPEN;
pluck, 5.84S, .85, 227.948, .1, s
pluck, 5.931, .038, 227.951, .1, HRFF;
pluck, 6.028, .281, 194.591, .1, LOPEN;

pluck, 6.318, .450, 386.001, .1, LSLAPs
6.789, .157, 857, .1, HOPENs
pluck, 6,917, .318, 134.725, .1, LOPENs

pivek, 7,227, .151, 228.248, .1, HWFF;
pluck, 7.378, .288, 399.818, .1, HSLAP;

7.66%, .166, 536.222, .1, LSLAP;
pluck, 7.832, .292, 227.655, .1, HOPEN;

pluck, 8,124, ,1S5, 386.876, .1, LSLAP;
pluck, 8,279, .165, 391.838, .1, HSLAP;

8.436, .151, 194.138, .1, HMLFF;
pluck, 8.584, .146, 194.568, .1, LOPEN;
pluck, 8.738, .283, 195.202, .1, LOPEN;

Figure 8.20. This level of analysis, which is the output of all analysis carried on so far, is the
input to resynthesis routines and high-level analysis described in the next section (§ 3.3). Its
fields include BEG (begin time) DUR (duration—inter-attack time), AMP (amplitude, currently
ignored), and STROKE (the token that describes the stroke-type). In this example, there are
three missing (undetected) notes in a total of fifty-five, a success rate of about 95%. (Refer to
this figure, called the notelist, throughout Section 3.3.)
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3.2.8. On Pitch Detection

Drums present an interesting problem in pitch perception: as vibrating mem-
branes, they have intrinsically inharmonic spectra, yet many drums elicit a relatively
clear sense of pitch. An ideal circular membrane will have modes that are in the
relation 1: 1.59 : 2.14 : 2.30 : 2.65 : 2.92, which is anything but harmonic [Morse
and Ingard, 1968]. As any percussionist knows, membranophones span a large space
of “pitch clarity,” ranging from large bass drums that elicit almost no sense of pitch,
to the North Indian tabld, with a very clear pitch. Two-headed drums generally
have the weakest pitch clarity, due to interference between the two membranes,
and the coupled air mass joining them. Single-headed drums are in the middle; for
instance, orchestral timpani and the conga drum under study here are fairly well-
behaved in terms of perceived pitch. (There is a second-order effect in these drums
in which modes are slightly altered due to acoustic coupling with the shell; both
of these drums are topologically hemispheres rather than cylinders.) The clearest
sense of pitch is elicited by those drums, like the tabld, Burmese pa waing, and
Cuban batd that utilize a tuning paste in the center of the membrane whose mass
tends to damp out most of the inharmonic modes.

Of the numerous mechanisms by which the modes of a vibrating membrane are
brought closer to integral relationships, the most important is probably the effect
of air-mass loading; the mass of air that oscillates with the membrane causes the
frequencies of the modes to be lowered significantly. In the case of the timpani, this
causes the modes to be close to the relation 2 : 3: 4: 5 : 6 [Rossing, 1982]. In the
case of the conga drum, the relationships are instead (assuming the highest peak to
be the fundamental): 1: 1.66 : 2.32 : 3.28 : 4.90 for the high drum (f; = 220.9 Hz),
and 1:1.73:2.62:3.40 : 4.61 for the low drum (f, = 193.2 Hz).*

It seems, from listening to the drum and identifying the pitch informally, that
the sense of pitch for the conga drum (and probably other drums) is overwhelmingly
due to the “fundamental” in the undamped strokes; the higher partials are con-
siderably lower in amplitude, as shown in Fig. 3.13 and Fig. 3.14. For the purposes
of transcription, it suffices to note the peak of the spectrum in the case of undamped
strokes. Damped strokes do not elicit a sense of pitch; it is better described as a
relative sense of “higher” or “lower.”

* Identified from spectral analysis. See Fig. 3.13 and Fig. 3.14.
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For damped strokes, the source detector attempts to distinguish high drum
from low drum on the basis of spectral “profile,”, but makes some mistakes in this
process. However, it is not always possible for the listener to distinguish between
these either, and this decision is most crucial (and obvious to the listener) for the
undamped strokes, which are easy for the program to distinguish. The sense of
the pattern can be adequately represented by a notation that simply represents
high and low drums; the exact pitch is interesting to note but not crucial to the
structure of the music. It is clear that the question of pitch perception of drums as
a theoretical issue should be pursued further, but for the purposes of transcription,
the method of finding the peak of the spectrum of the undamped strokes will suffice.

On Accent Detection

Detection of accents could be considered a subtask of detection of articulation,
which is a very difficult task [Strawn, 1982]. In the case of percussive music, it
seems that the key to an intrinsic accent (as opposed to an implied accent, which is
induced by musical context) is steepness of slope of envelope coupled with spectral
width. For this reason, the slap is heard as an accent. Surprisingly, amplitude per
se is not as important a clue. At the moment, the program identifies the slap as an
accent. This is indeed what listeners report when listening to examples.

On Rest Detection

As mentioned in Section 2.3.3, what really matters in describing a given rhythm
is inter-attack time. The duration of a certain note, if it ends before the next attack,
defines the remaining time as a rest. This partial duration, and the rest following
it, are not as perceptually salient as the full duration implied by the time interval
between attacks. In fact, one might say that the latter defines the rhythm, whereas
the former defines the articulation of the rhythm. For this reason, more emphasis
is put on detecting attacks than detecting rests.
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3.3. Approach to the High-level Analysis

Now that the analysis has proceeded to the level of the notelist we have an
accurate description of the musical events. This is a significant point of arrival, but
it is clearly not the end result; in fact, if we were to proceed from keyboard data
instead of from the acoustic signal, this would be the point of departure. There are
many possible directions leading from this level of analysis, toward an abstraction of
the numbers (a score), or in the direction of performance/synthesis; one can use the
notelist to drive other instruments in arbitrarily complex relations to the original
music. These directions are interrelated.

To proceed towards a musical transcription from this notelist, we need “hooks”
into the data, or ways of extracting what is musically meaningful from a list of
numbers. Since we are dealing mostly with rhythm here, we will be concerned
first of all with timing information and tempo. As mentioned earlier, tempo and
performance fluctuations can result in an eighth note in one part of a piece being
longer in duration than a quarter note not far away. It is clear that the numbers
cannot just be plotted as they are. Although this kind of map has some useful
features, it is not musically enlightening.

The next level of analysis, intended to proceed from the notelist to the score, is
based on work by Bernard Mont-Reynaud that was not originally designed to deal
with percussive music. (See [Mont-Reynaud, 1984] for a more detailed description
of this part of the system.) It is interesting to note that this higher-level program,
though it was originally intended for application to tonal music, is sufficiently
general (not attached to a particular style) that it can be applied to these data
with considerable success. Its concentration on temporal analysis is an interesting
feature that will be described in this section.

It turns out that the basic problems of tempo and meter can be approached
via simple primitives in the music. The method is sufficiently robust that it not
only handles diverse styles, but also performances that are far from mechanical.
(Of course, mechanical performances are difficult to listen to but easy to analyze.)
The foremost goal is to “factor out” the tempo variations.

In this section, we will continue with the analysis of the excerpt of drumming
whose notelist is shown in Fig. 3.20.
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3.3.1. Important Durations

The first step is to scan the durations of the notes in the notelist, and look for
sequences of repeated durations (within a certain tolerance for accepted fluctuation
and minimal number in sequence). The average duration of each sequence found
is noted, and the span during which the durations were repeated is marked. This
group of repeated durations is called a “pulse train.” For example, in the notelist
(Fig. 3.20), we can see that from time 2.769 to 3.384, there are four successive notes
of nearly equal duration, whose average value (.154) is saved as a pulse train in Fig.
3.22.

Spans in which there are no such pulse trains are also marked, and broken
into smaller pieces by the program until they are short enough so that duration
relations will not be obscured by tempo changes, but long enough to have statistical
significance. Within this span, we look for frequently-occurring durations, (not
contiguous, as in the pulse train). To find this most frequent duration, the program
creates smoothed histograms of durations during the non-pulse-train spans, and
looks for predominant peaks.

In Fig. 3.21, we see a histogram from the last section of the example. It is
designed to show important durations and their relationships in several ways. First,
a logarithmic scale for durations is used, because ratios are more important than
differences in the rhythmic (macro-temporal) domain, just as in the domain of pitch
(micro-temporal) at the lower level. Second, each duration value in the histogram
is weighted by its square root, in order to emphasize longer durations. We do not
want the short notes to dominate the histogram, as they are much more common.
Thirdly, the histograms are smoothed; each duration contributes to neighboring
cells, in a sort of convolution of the data with a Gaussian curve. The highest
peak in the described histogram during its span of time is chosen as the important
duration.
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3.3
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Figure 3.21. Example of smoothed histogram of durations where no pulse is found. The
vertical scale (duration) is logarithmic, and the histogram is weighted to avoid overem-

phasis of the more common shorter durations.
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PULSE LINE
Time range Value count Pulse e Units = Norm (method used)
. -- 2.769 10 167 = 1/2 = .33% (profile)
2.% - 5.384 4 166 « 172 ® ,388 (pulse train)
3.384 -- 8.124 20 281 =« 171 = .281 (profile)
8.124 -~ 8.738 4 162 = 1/2 = .383 (pulse train)
8.730 -- 11.407 11 297 =« 171 = .297 (profile)

Figure 8.22. Summary of pulse train and histograms.

Now that we have two complementary notions of important durations, they
can be summarized for the whole piece, as shown in Fig. 3.22. Included in this
table are the important durations (Pulse), their derivation (method used— average
of pulse train or peak in histogram, as described above), the time span over which
it was computed (Time range), the number of events in the associated span (Value
count), and a first approximation of ratios between successive values (Units), with
an associated “warping” value that makes the ratio exact (Norm).

- 3.3.2. Accents and Anchor Points

At this point, the reference unit begins to be established; this is a canonical
unit in terms of which all durations are represented. Context plays a large part in
driving this decision, though it may be difficult to determine better than a factor
of two above or below the actual unit of the time signature (if indeed there is a
time signature). For example, in 4/4 time, the reference unit may be found to be
the eighth note instead of the quarter note. There is not a great loss of generality
here. The decision is based on finding a pulse that is most commensurate with other
values found.

Some definition of “commensurate” is needed here. The simplest ratio is of
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course 1:1, after that, 2:1, 1:2, 1:3 etc. The goal is to combine accuracy of the
ratios with goodness of fit. An approach to this problem is described in the next
section.

The first approximation to important durations will enable further analysis,
when combined with another fundamental feature in the data, that of important
events. A simple, but powerful insight into this problem stems from defining
important events (indeed, anchor points in the music), as agogic accents. That
is, we search in the data for a “short-long” pattern, marking the long as a rhythmic
accent if it is significantly longer than the previous duration, and is not followed by
a longer duration by the same criterion. The details of this heuristic are described
in [Chafe, et al., 1982]. There is a large body of work that points to this duration
rule as a fundamental one. See Section 2.3.2 for references regarding agogic accents
in general.

This identification of anchor points is carried throughout the analysis. The
rhythmic structure of a large body of music typically bears an identifiable relation
to repetitions at regular intervals of these accents. This allows the system to try
to divide the span between accents into metrical pieces, or multiples of a basic
pulse. In fact, the establishment of rhythmic accents allows us to take the first step
in establishing a tempo line. Figure 3.23 shows how the spans between rhythmic
accents break this example into fifteen segments.

So far, the rhythmic accents, as shown in Fig. 3.23, and the pulse line, as
shown in Fig. 3.22, have not been integrated. At this point, the system has enough
information to create a line-segment approximation that maps physical time to
metronomic time. This map, called a tempo line, has powerful implications. Once
determined, it allows us to “factor out” tempo variations, and see what stylistic
variations are accounted for by alterations in the regular metronomic structure.
This is tantamount to Gabrielsson’s SYVAR (Systematic Variations—see [Bengtsson
and Gabrielsson, 1980]).

The endpoints of the line segments will correspond to the rhythmic accents.
We try to adjust the local tempo segment so that:

o Successive bridges are commensurate.

e Bridges are commensurate with associated pulse values.
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INITIAL BRIDGES

bridge from .853 to .691, dur .638 (using swoothsd durs)
bridge from .691 to 1.878, (using smoothed durs)
bridge from 1.878 to 2.469, dur .599 (using smoothed durs)
bridge from 2.469 to 3.384, dur .915 (using emoothed durs)
bridge from 3.384 to 4.546, dur 1.162 (using smoothed durs)
bridge from 4.546 to 5.174, dur .628 (using smoothed durs)
bridge from S5.174 to 6.318, dur 1.138 (using smoothed durs)
bridge from 6.318 to 6.917, dur .687 (using smoothed durs)
bridge from 6.917 to 7.378, dur .461 (using smoothed durs)
bridge from 7.378 to 7.832, dur +454 {(using smoothed durs)
bridge from 7.832 to 8.738, dur .838 (using emoothed durs)
bridge from 8.738 to 9.189, dur «459 (using smoothed durs)

dur

dur

dur

g
3

bridge from 9.189 to 9.640, +451 (using emoothed durs)
bridge from 9.648 to 18.787, 1.147 (using smoothed dure)
bridge from 18.787 to 11.487, .628 (using smoothed durs)

Figure 8.28. Summary of intervals defined by rhythmic accents, and their durations.

3.3.3. Rational Approximation to Metric Unit

What does commensurate mean and how do we quantify it? This question goes
to the heart of the issue of rhythm. As we saw in Chapter 2, a global theory of
rhythm, though approached through very different paradigms, still is couched in
some level of categorical perception of duration. That is, although the notion of
subdivision is mainly a Western idea, it is still necessary to put different durations
in different categories in order to recognize rhythmic patterns. The “trickier” a
rhythmic pattern is, the more crititcal it is to play it accurately. This implies that
the timing tolerance within a given musical context goes down with syncopated
passages, lending credence to the possibility of distinguishing tempo fluctuation
from syncopation at the level of the analysis system: “nasty” syncopation has to
be played accurately (close to rational subdivisions); otherwise the effect of the
syncopation is lost. Conversely, simple, regular, easily parsed figures can deviate
much more from the normative time values and still be interpreted correctly. There
is a tendency to “normalize” durations; to find simple rational approximations to a
given time span. This means that though there will always be intentional deviations
from “ideal” patterns, we must make an attempt to rationalize durations if we are
to create a coherent representation of what we hear.
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The implication here is that we need a robust, tunable rational approximation
method that finds simple metric proportions between performed durations. There
is obviously a trade-off here between closeness of fit to the data, and simplicity of
the fraction, in the analysis method as well as in the performance. The dichotomy
exists in the music; the analysis is merely recognizing it.

There is not necessarily a single best answer to this problem. The rational
approximation generator will rate possible fractions, and retain a small set of
possible solutions. It is given a set of acceptable fraction denominators, constraints
on numerators, a criterion to determine relative simplicity of fractions, and a
measure of fit between a given number and a rational approximation. There is also
a partial ordering established in the two dimensions of simplicity and fit, defined as
follows: (21, y1) dominates (z2, y2) if z; < z2 and y; < y; and (24, 1) # (z2,¥2).
Here, z could be a measure of simplicity of a fraction, and y could be its fit to a
rational number. (For further detail on the rational approximation methods, see
[Mont-Reynaud, 1984, pp. 20-22].)

Since context can be an important factor in making decisions as to the rational
approximations, the program will redefine some fractions as being simpler if they
fit an hypothesis for meter, for example in ternary meter, 2/3 might dominate 1/4
in terms of simplicity.

At this point, an attempt is made to integrate the bridge lengths with the
pulse train and profile statistics. They have been determined independently. The
intention is to account for the relation between bridge length and local pulse/profile,
that is, to use the rational approximation generator as applied in the following way:
using the set of rules given in Fig. 3.24, estimate the local unit during each bridge
by comparing rational approximations to the bridge unit vs. the pulse unit, and
decide on the best number of reference units for each bridge. In this way, tempo
variations are determined piece-wise linearly with each segment equal to the length
of the respective bridge.
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In evaiusting the rules, we use the fallouing symboies
- D is the duration of the bridges
« PU is the iccal eetimate of the referencs unit, from the pules line;
- BU ie the focal estimate of the reference unit, from previous briagess
= spproxisate(D, U) returns & set of rationsl spproximatione of O/,
The ruies are defined belous

Let PH = approxisste(D, PU)s
Lot BH = spproxisate(D, BU)s

uni que or unique
AND best(BH) « beet(PH)
THEN choose best (BH)

AGREETENT RILE:
IF stands_out (BH)
AND stands_out (PH)
AND best{BH) = best (PH)
THEN choose best(BH)

Let CU = (BU + PUI/2s
Lot CH « spproxinate(D, CU);
UNIQUE COMPRONMISE RULE:

INITIAL FALL-BACK RULE:
IF _thera are no previcus bridges
THEN choose beet (CH)

COMBINED COST AULE:
choose_| east_combined_coat_hyp_in (CH)

Figure 8.24. Rule system for tempo line decisions. In this figure, the predicate unique(H)
is true if the set H of hypotheses contains a single member. The function best(H) returns
the hypothesis with minimum cost in H. Cost means the linear combination of complexity
and fit computed by the approximation number generator.

The combined cost rule selects an hypothesis with minimum combined cost in CH,
the set obtained from the compromise estimate. The combined cost of hypothesis H for
duration D is the sum of separate costs, expressing the fact that one wants both a good
relationship to CU, the duration of the compromise reference unit, and to the duration and
metric value of the previous bridge. Note that the hypothesis selected is not always the
one preferred by BU, PU or even CU ratings, and that it does not always have the simplest
relationship to the previous bridge either. Thus all these criteria carry some weight in the
decision, but one resorts to numerical combinations of ratings only when stronger forms
of selection have all failed. (Above figure and caption from [Mont-Reynaud, 1984])
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TEMPO LINE
BEG DUR UNITS UDUR M1 MPOS
.883 .638 2/1 .32 188 a/1
.691 1.179 4/1 .29 284 2/1
1.876 .599 2/1 .30 288 6/1
2.469 .915 3/1 .31 197 8/1
3.3864 1.162 4/1 .29 207 11/
4.546 .628 2/1 .31 191 1521
6.176 1.136 4/1 .28 211 17/1
6.3186 .687 2/1 .38 1898 21/1
6.917 .4861 372 .31 195 23/1
7.378 .454 3/72 .30 188 49/2
7.832 .898 371 .30 2080 26/1
8.730 .453 372 .31 1% 2971
9.189 .451 3/2 .30 2080 61/2
9.648 1.147 4/1 .29 289 3271
10.787 .628 2/1 .31 19 36/1
11.407 38/1
unit durstion, min= ,284, max= .319 seconds

Figure 8.25. The first approximation of a tempo line.

3.3.4. Tempo Line

Upon completion of the rule-based bridge vs. pulse decisions, it is possible to
create a first approximation of a tempo line, which is shown in Fig. 3.25. Now, the
UNITS column is a direct summary of the units in each bridge.

The MPOS column is a running sum of these chosen metric units, whose
durations fluctuate slightly around the value .30 seconds (UDUR). We can now
compute musical time as a metronome marking for each bridge (MM column). It
is evident from the MM column that this example is relatively stable with respect
to tempo, but even the amount of tempo variation found here would be enough to
perturb results were it not for this process.

The choice of the reference unit is based mostly on statistical analysis of
individual note durations, which makes sense. There should be also be a way to
look for a longer periodicity, composed of groups of the metric unit, that we call
the base unit. It corresponds roughly to the level of a measure in music that has
bars (in Class 3 music, it would correspond to the meso-period, modulo a power of
2).
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STATISTICS FOR CHOICE OF BASE UNIT

bridge lengths (in reverse temporal order)
%ﬁ. &/1, 372, 372, 3/1, 3/2, 3/2, 2/1, &/1, 2/1, &/%, 3/1, 2/1, 4/1,
histogram of bridge lengths (associating up to 3 successive lengths)

671 (9,,), 2/1 (5,,), 4/1 (4,,), 3/1 (4,,),
372 2,,), 8/71 @2,,)

histogram using multiplier support

6/1 (29.71,,), 2/1 (24.5@8,,), 3/1 (21.277,,), 4/1 (18.17%,,),
3/2 (13.908,,), 8/1 (9.672,,)

selected base unit: 6/1

Figure 8.28. Searching for the choice of Base Unit.

The approach here is first to count the metric units concatenated that are
shown in Fig. 3.25, column 3. In this example, the candidate 2/1 occurs four times.
Looking for frequency is important for a base unit, but equally important is that it
must be a central ratio in terms of itself and its simple divisors and multiples (again
the idea of salient units being commensurate). We call this multiplier support, as
shown in Fig. 3.26. This is a measure of occurrence of the unit and its closest
multiplicative neighbors. In this example, the base unit found (6/1) corresponds
to six eighth notes, which implies that the meter is in a group of six units, an
encouraging result at this point.

3.3.5. Tempo Line Refinement

A refinement of the tempo line from the base unit is shown in Fig. 3.27. Here
we are trying to divide the bridges into smaller pieces that are some multiple of the
base unit. This division is repeated until either the new interval is shorter than the
base unit, or there is no event whose onset is close enough to the target division.
Conversely, if the bridge length is smaller than the base unit, an attempt is made
to omit the intermediate anchor if another anchor point can be found whose value
is an integral number of units beyond. The result is shown in Fig. 3.28. The new
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BRIDGE MODIFICATIONS
remove anchor at .691 to get @ 6/1 unit bridge from .853 to 1.878

remove anchor at 4.546 to get a 6/1 unit bridge from 3.384 to S.174
remove anchor at 6.318 to get @ 6/1 unit bridge from 5.174 to 6.917
remove anchor at 18.787 to get a 6/1 unit bridge from 9.648 to 11.487

Figure 8.237. Trying to divide the bridges into smaller pieces that are some multiple of
the chosen base unit.

TEMPO LINE
BEG DUR UNITS UOUR M MPOS

.883 1.817 6/1 .30 1398 0/1
1.87¢ .599 2/1 .38 2089 6/1
2,469 .915 3/1 .31 197 8/1
3.384 1.7% 6/1 .30 201 1121
8.174 1.743 6/1 .29 207 171
8.917 .481 372 «31 195 23721
7.378 .454 372 .30 198 49/2
7.832 .838 3/1 .38 280 26/1
8.738 .453 372 .31 1% 2971
9.183 .451 372 .30 280 61/2
9.640 1.767 6/1 29 284 32/1

11.487 38/1

unit duration, min= .231, maxe .387 seconds

Figure 3.28. Revised tempo line, based on new bridge lengths. The UNITS column has
been simplified from that of Fig. 3.25.

tempo line has, in the UNITS column, much simpler ratios than the previous tempo
line shown in Fig. 3.25.




3.3 APPROACH TO THE HIGH-LEVEL ANALYSIS Page 99

A set of possible rhythmic values for each note in the example can now be
assigned in terms of the reference unit. This is tantamount to generating rational
approximations for each duration, based on the unit length in seconds of Fig. 3.28.
There will typically be several candidates for a given value, that decrease in closeness
of fit to the target value. Figure 3.29 shows, in the APPROX field, collections
of such rational approximations to the field called RDUR, which is the smoothed
duration (Sdur) divided by the unit duration (UDUR from Fig. 3.28).

The VAL field in Fig. 3.29 is partially filled. This first pass at filling it in
is realized by trying the closest fitting rational approximation (which is therefore
defined to be lowest cost), for each note, and seeing whether the collection of these
during each bridge adds up to the total number of bridge units. If so, these values
are written in. This process does not involve a search; it simply checks for obvious
answers, and in so doing, creates a strong context.

It is helpful to use the context created by the values already found. Figure
3.30 shows how we will bias the rational approximation generator by finding the
“popularity” of the possible units, and use this to change the cost of choosing one
rational candidate over another. The COUNT field is just the total of occurrences
in the VAL field plus occurrences in the first position of APPROX field in Fig. 3.29.
The COST is 1/(COUNT+1).

3.3.6. Determining Normalized Rhythmic Values

Figure 3.31 shows how the APPROX field has been altered and pruned because
of the change of priorities of the rational approximations. For example, in bar 1, we
see that for the fifth note, the rational approximations are (1/4, 1/6, 1/3), whereas
in Fig. 3.29 they were (1/6, 1/4, 1/8, 1/3). The change is due to the lower penalty
for 1/4 (cost = .20) as opposed to a cost of .5 for 1/6 (see Fig. 3.30). Often the
different order of possible values for rational approximations will allow more VAL
entries to be filled in without a search, if the first values in the APPROX field sum
correctly. In this particular case, we do not have more VAL entries in Fig. 3.31
than in Fig. 3.29, but since the wanted value (WVAL) for this note is 1/4, the new
first choice for the rational approximation is in fact correct, and this will facilitate
the next step.

At this point there are still several VAL entries that have not been filled, because
the sum of the first entries in each APPROX field does not equal the correct number
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MY BE6 DOUR SBEGC SDUR Bu Rdur WAL 0K WVAL UBAR  UrPOS APPROX;
PLAY;
3 BAR L (from hints);
WSLAP  .053 .455 .83 .455 6/1 1.2 ? ? 3 § W1 (372, 271, 1)
WSASS .588 133 .50 .188 / . ? ? w2 1 8273, 172, 3/4);
LOPEN .891 .285 .881 .285 / 841 ? 2 /L L M6 /1, 34, 2/3, /3, SI6, 372, 172, S/9);
WBRES .97¢ .871 .97¢ .871 / .23 ? ? 174 1 3/8 (1/4, 1N, 1/B);
LSLAP 1.047 .057 1.847 .057 / .18 ? ? 174 1 13/732(1/8, V/4, 1/8, 1/3);
LMUFF  1.106 .130 1.184 .130 / 428 ? ? 72 3 77180172, 3/8, 1/3);
LBASS 1.236 .182 1.23¢ .162 / .83 ? ? 172 1 /2 (1/72)
NOPEN 1.388 .168 1.3%8 .16 / .S48 ? ? 12 1 180172, 2/3)
HOPEM 1.582 .388 1.562 .388 ¢ 1817 ? 7 /1 1 S/8 (1/1, &/3, 3/h, S/6, 372, 2/3, 2/1, $/3);
3 BAR 2 (trem hintsj;
LOPEN 1.870 .438 1.878 .438 271 1.452 372 1/ 372 2 /% (372, 473, 2/1, 1/1)¢
HOPEN 2.308 .184 2.308 .184 / .848 172 / 1/2 2 /16172, 2/73);
HOPEN 2.488 .300 2.480 .38 3/1 .98 1/} / 1 2 16 /), 374, 473, 8/6, 2/3, 3/2, 172, $/3);
LELAP 2,780 .148 2.789 .1%4 / .884 172 / 172 2 38 (1/72);
LOLAP 2,017 .168 2.823 .154 / .88 172 / 172 2 7/18(1/2);
NOPEN 3.082 .147 3.077 .18¢ / .8 172 / 172 2 W2 /72
HOPEM 3.228 .188 3.23¢ .184 / .58 112 / 172 2 9/18(172);
LOPEN 3.384 .284 3.384 .204 8/1 .888 ? ? /1 2 S/8 (171, 3/4, &/3, S/4, 273, 372, 172, $/3)
AR 3 (irem hints);
HRFF 3.478 .078 3.878 .079 / .28 ? ? /3 3 W1 (1/4, 173, A72)
WWFF 3.767 .107 3.787 .187 / 358 ? ? 3 3 /264173, 38, /D)
LOPEN 3.804 .108 J3.884 .188 / .63 ? ? 2/3 3 V120273, /2, 3/4, L/
CORNENT NISSING 173 ; .
LOPEN 4.058 .213 4.080 .213 / .74 ? ? 2/3 3 1/8 (273, /4, L/L, L/2);
CONNENT NISSING /3
HOPEN 4.263 .283 4.283 .283 / .M ? 7 W13 16 (L, 3, 273, W73, S/, 372, 172, S/
LSLAP 4.548 .444 4.548 .44 / L1488 ? ? 2 3 W 72, &3, 2/%, V1) .
HELAP 4.900 .184 4.988 .184 / .817 - ? ? /2 3 W18, 172, 3/8);
LOPEN §.174 .287 5.174 .287 /1 .988 1/1 1/1 /1 3 §/8 (1/1, 34, &/3, §/6, 2/3, 372, \/2, §/B);
2 BAR ¢ (from hints);
HWUFF S.481 .097 S.481 .097 / .3% 1/8 / 73 & W1 W3, )
HOPEN 5.558 .188 S5.558 .18 / .637 273 /U3 4 L/2002/3, V12, 3/%, /1)
COMMENT NISSING /3
HOPEN 8.743 .102 5.743 .182 / .381 1/3 / 173 4 /8 (173, 3/8, L/2);
HOPEN B8.845 .888 5.845 .088 / .2m 1/3 / /3 4 /8 (1/3, L/8, 3/8, 1/72);
HWRUFF 5.831 .097 §5.931 .807 / .3% 1/3 / 73 & 8/24(1/3, 1/2);
LOPEN 6.028 .232 8.028 .282 / .971 /1 / VY & 6 (171, 374, 473, 2/3, 8/4, 372, 172, §/3);
LSLAP §.318 .448 8.318 .449 / 1.848 32 /%2 & 38 (372, &N3, §/3, 2/1, L/1);
HOPEN 6.768 .158 6.759 .158 / .54 172 / 172 4 9/18(172, 2/3);
LOPEN 6.817 .310 6.817 .310 3/2 1.888 /1 / 1/1 & S/8 (1/1, 473, 3/6, S/, 372, 2/3, 2/1, S/
3 BAR § (irom hinte); .
WAUFF  7.227 L0861 7.227 .181 /7 .81 12 / 72 S 81 (1/2)
HSLAP 7.378 .287 7.378 .207 3/2 M8 /) / 71 8 W18/, 3/, 2/3, A/3, §/4, 372, 172, §/3);
LSLAP 7.088 .187 7.888 .17 / .882 172 / 172 § 3/18(1/72, 2/3);
NOPEN 7.832 .282 7.882 .282 3/1 .978 1/1 / 71 S 1/6 (171, 374, &/3, 273, S/4, 372, 172, §/%);
LSLAP 8.124 .188 8.124 .182 / .S88 172 / 172 S V8 (1/2);
HSLAP 8.278 .188 8.278 .182 / .58 172 / 2 8 7/18(1/2)
WWUFF  8.43¢ .188 8.427 .162 / .88 122 / 172 $ /2 (1/72);
LOPEN &8.884 .148 8.878 .152 / .58 172 / 72 S 9181/,
LOPEN 8.730 .28 8.730 .28 3/2 .84 1/ / 1/ S §/8 (1/1, 3/4, 273, &/3, §/4, 372, 172, §/3);
dIAR 8 (trom hints);
NSLAP 8.018 .170 9.819 .17¢ / .S58 172 / V2 8 W1 /2, 2/3);
LSLAP §.180 .200 0.188 .200 372 .85 1/1 /11 & /18171, 3/4, 4/3, 273, §/4, 372, 172, §/3);
LSLAP 8.478 .181 98.479 .181 s .838 (/2 / 172 6 3/16(1/2);
HOPEN 8.840 . 9.840 .20 3/1 .893 7 ? 171 6 1/6 (171, 3/4, 2/3, W/2);
HAUFF 9.883 ,873 9.983 .878 / .48 ? ? 1/3 6 3/8 (1/4, 173, 1/8);
HNUFF  9.97¢ .077 %.97¢ .977 / .281 ? ? 173 8 S/12(1/4, 173, 172);
HOPEN 10.053 .030 10.953 .089 / .32 ? ? 173 8 11/24¢1/3, 1/4, 3/8, 1/2);
HOPEN 10.142 .102 10.142 .102 / .38 ? ? /3 & 1/2 (1/3, 3/8, 1/2);
LOPEN 10.2¢4 .088 18.244 .008 / .323 ? ? 173 6 13/24(1/3, L/72);
WOPEN 10.330 .118 18.339 .i18 / . ? ? 13 6 7/12(3/8, 173, 1/2);
WOPEN 10.458 .332 18.458 .332 / 1.127 ? ? 171 8 §/8 (1/3, 4/3, 5/8, 3/8, 271, 2/3);
d BAR 7 (from hinte);
LSLAP 18.787 .828 10.787 .820 / 2.188 2/% 1/1 /A 7 W1 @/
FINISH;

Figure 8.29. Notelist with Rational Approximations, and the first guess at the value
(VAL) for each duration. ART—Articulation. BEG—Begin time. DUR—Duration. SBEG,
SDUR—Smoothed beg and dur. Bu—Bridge Unit. Rdur—Relative Unit. VAL—Rational

Approximation for durations. OK—For debugging.

‘1/1' or ‘/’ means correct

value.

WVAL—Wanted value. WBAR—For debugging. Tells what measure you're in. WrPOS—
Wanted metric position in each bar. (Also for debugging). APPROX—List of rational
approximations ordered by closeness to normalized duration given.
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METRIC CONTEXT

VALUE COUNT COST
172 31 .31
1/1 22 .843
1/3 12 877
2/3 6 .143
372 6 .143
174 4 +200
2/1 2 .333
3/8 1 .500
1/6 1 .508

Figure 8.30. Note value statistics. Find the “popularity” of the possible base units, and
use this to recalculate the rational approximations for durations.

of units in the respective bridge. Now, a combinatorial search through all the values
in APPROX is needed to find the correct solutions.

Thus, the last step in finding the normalized metric values for the performed
durations involves a recursive search of possible intra-bridge combinations using the
refined cost measure as shown in Fig. 3.32. When this is finished, we see in Fig.
3.33 that the VAL field is completely filled in, and all values sum correctly.
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METHODS

3.3

ARY SEC OUR SBEGC SDUR Bu Rdur VAL Ok WVAL UBAR  UrPOS RPPROX;
PLAY;
d BAR 1 (irom hints);

HSLAP  .853 .455 .0S3 .455 6/1 1.582 ? ? 372 1 W1 /2, 171, 2/1);
NBRSS .56 .183 . 183 / .88 ? ? 172 1 3/18(2/3, 1/2);

LOPEN .691 .285 .001 .285 / .s41 ? ? /1 1 /6 (173, 2/3, 372, 1/2)
HBASS .876 .071 .97 .071 / .23 ? ? 4 X /8 (L/4, 1/3);

LOLAP 1.847 .857 1.847 .057 / .188 ? ? 1/4 1 13/32(1/4, 1/8, 1/3);
LWUFF 1.186 .138 1.184 .138 / .429 ? ? 12 1 18(8/72, 1/3);

LRSS 1.236 .162 1.234 .182 / .835 ? ? 172 1 172 /2y

HOPEM 1.396 .166 1.396¢ .168 / .548 ? ? 172 1 Wi8(1/72, 2/3);

HOPEN 1.582 .388 1.562 .388 / 1.817 ? ? 171 1 S/8 /4, 3/2, 2/3);
3 OAR 2 (irom hints);

LOPEN 1.878 .435 1.878 .438 2/1 1.452 372 /1 372 2 ¥/1 (372, /1, 2/1);
HOPEN 2.385 .184 2.305 .184 / .548 172 / 172 2 3/18€172, 2/3);

HOPEN 2.468 .300 2.468 .388 3/1 .88 L/1 /M1 2 1A (23, 2/3, 372, 1/2)4
LSLAP 2.788 .148 2.768 .154 / .58 172 / 172 2 3/8 (1/2)

LSLAP 2.817 .168 2.323 .184 / .58 172 / 2 2 17180/

NOPEN 3.082 .147 3.077 .184 / .58 112 / 172 2 W2 W2

HOPEN 3.229 .155 3,238 .154 / .54 1/2 / 2 2  9/18(1/2);

LOPEN 3.384 .204 3.384 .294 G/1 .985 ? ? 171 2 S/8 /1, 2/3, 372, 1/2);
d BAR 3 (frem hints);

HRUFF 3.878 .87% 3.878 .¢79 / .288 ? ? /3 3 /1 (/4 173, 172)
WNUFF 3.787 .107 3.7%7 .187 / .3%9 ? ? 173 3 1724C1/3, 1/72);

LOPEN 3.084 .188 3.064 .188 / .83 ? ? 2/3 3 W12Q/3, L/2)
CONMENT NISSING /3 3

LOPEN 4.068 .213 4.880 .213 / 714 ? ? /3 3 1/8 (273, 171, 172);
COMNENT NISSING 173 3
4,263 .283 4.203 . /7 949 ? ? 171 3 W6 WY, 273, 372, 172)s

LSLAP 4.548 .444 4.548 444 / L4888 ? ? 372 3 W8 (32, /1, 2/1);
HSLAP 4.800 .184 4.990 .184 / .817 ? ? 172 3 9/18(2/3, 1/2);

LOPEN S.174 .287 S.174 .287 6/1 .%8 /1 A/} A 3 8/8 (1/1, 2/3, 372, 1/72)
d BAR & (frem hints);

WNUFF 8.481 .097 S.461 .097 / .33 173 / 173 4 W1 (173, 1/2);

HOPEW §.558 .185 §5.558 .188 / .837 2/3 / 2/3 & 12273, 172, /M)
COMMENT NISSING /3

HOPEN 8.743 .102 S8.743 .102 / .381 1/3 / 1/3 4 /8 (1/3, 1/2);

HOPEN S5.845 .088 S5.845 .088 / .298 1/3 / 173 & 1/8 (1/3, VA, L/2)
WUFF 5.831 .097 5.831 .007 / .33 /3 / 1/3 4 8/24(1/3, 1/72);

LOPEN 6.028 .22 6.028 .282 / .87 W1 /W1 & M6 1/, 273, 372, V/2)4
LSLAP 6.310 .449 6.310 .M8 / 1.848 372 / /72 4 /8 72, 271, 1/1)y
HOPEN 6.759 .158 6.739 .158 / .S44 172 / /2 4 31801/2)

LOPEN 6.917 .318 6.817 .316 3/2 L.088 1/1  / Vi 6 S/8 1/, 32, 2/3);
dUAR S (trem hints);

NWFF  7.227 181 7.227 181 /481 122 / 172 § &1 /2

HSLAP 7.378 .287 7.378 .287 3/2 .48 1/ 7 V1 8 1718171, 2/3, 372, 1/2);
LSLAP 7.885 .187 7.688 .187 / .882 172 / 172 S 3/1841/2, 2/3);

NOPEN 7.832 .202 7.832 .2%2 3/t .976 /1 / 71 S /4 /), 273, 372, V72
LSLAP 8.124 .188 8.124 .12 / .58 L2 / V2 8 3/8 (172

HELAP §8.279 .188 8.275 .182 / .S 172 / 172 § 7/18¢1/2)

WNUFF  8.434 .150 8.427 .162 / .58 1/2 / 172 $ 172 (1/72)

LOPEN 8.584 .148 8.578 .152 / .88 172 / 172§ 9/1841/2);

LOPEN 8.738 .209 8.738 .28% 3/2 .94 1/t / 71 S S/8 (1/1, 2/3, 372, 1/2);
d BAR 6 (frem hints);

HSLAP 9.018 .170 8.019 .17 / .S58 172 / 172 8 /1 (172, 2/3)

LOLAP 9.128 .230 $.188 .29¢ 3/2 .985 1/1 / 171 § 1/18(1/8, 2/3, 372, 1/72);
LOLAP 9.479 .181 9.478 .18 / .538 172 / 172 ¢ 3/18(1/72)s

HOPEN 9.640 .23 9.8480 .203 /1 .883 7 ? 1 8 174 1/, 2/3, 172, 3/4)
HMUFF 9.803 .873 8.883 .073 / .248 ? ? 173 8 3/8 (1/4, 1/3);

HRUFF 9.87¢ .077 8.97¢8 .077 281 ? ? 173 8 S/12¢1/4, 1/3, 1/72);
HOPEN 10.883 .888 10.053 .e88 / .392 ? ? 173 8 11/24(1/3, /4, 1/2);
HOPEN 10.142 .182 10.142 .182 / .38 ? ? 173 8 172 (1/3, 1/2);

LOPEN 10.244 .088 10.244 .08 / .32% ? ? 173 6 137240173, 1/2)s

HOPEN 10.339 .116 18.339 .118 / .384 ? ? 13§ 17120173, 172, 3/8);
HOPEN 18.485 .332 10.455 .332 / 1.127 ? ? 1 6 S/8 (171, 2/3, 2/%);

d BRR 7 (from hints);

LSLAP 18.787 .828 10.787 .828 / 2.188 2/1 W% 221 7 &1 /1)
FINISH:

Figure 8.81. Notelist with APPROX fleld recalculated based on new metric context.
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SERARCH IN BRIDGE FRON 053 TO 1.878 (GOAL Sum: 6/1)

3 PARS
ART  BEG DUR SBEG SDUR Bu Rdur VAL  OK WVAL WBAR  WrPOS APPROX;
d0AR 1 (trom hints);

NSLAP  .053 .45 .0S3 .485 68/1 1.582 ? ? 32 1 w1 @372, 11, 270
HBRSS .508 .183 .508 .18 / .eM ? ? 172 1 ¥/18Q2/73, 172);
LOPEN .851 .285 .691 .28 / .81 ? ? 11 1 /8 /%, 2/3, 372, 172);
WBRSS .97¢ .71 .976 .&7% / .23 ? ? 174 1 38 /8, /3
LSLAP 1.847 .057 1.047 .087 / .18 ? ? 174 1 13/32(1/8, 1/8, 1/3);
LIUFF  1.104 .130 1.184 .130 / 429 ? ? 2 1 7718472, 1/3);
LBASS 1.234 .162 1.234 .182 / 538 ? ? 172 1 2 /2
HOPEN 1.396 .186 1.386 .188 / .548 ? ? 172 1 /180172, 2/73);
HOPEM 1.562 .388 1.562 .38 / 1.817 ? ? m 1 S/8 /1, 372, 2/9);
SEARCH STARTED
/2 U3 V1 w4 WA W2 /2 W2 /1 wreng peum
[ ] [ ] L] ] [ ] [] L] [ ] 3/2 wreng paum
] » L] L] [ ] ] [ L] 2/3  wrong paun
[] [ ] ] [ ] ] [ ] [ ] 2/3  1/1  wrong peum
[ ] [ ] [ ] [ ] [] [ ] [ ] [ ] 3/2 wrong psue
[ ] [ ] [ ] [ ] [ ] [ ] L] ] 2/3  cée 12 errs 788 3/2, 2/3, V/1, MG, V/G, 172, 172, 2/3, 2/3
L [} [ » [} 173 172 172 /1 cds 12 erre .884 3/2, 2/3, /L, 174, VA, M3, A/2, 172, W0
[ ] [ ] [ ] [] [ [] ] 3/2 wrong psum
[] [] a [] [ ] [ ] [} ] 2/3  wrong psum
s ] s ] a . m 2/3 ... Cutoff (error cost)
[ ] [ ] [ ] ] /8 12 172 /2 /1 weong pmum
] L] ] ] L] L] L] 3/2  wreong paun
[ ] [ ] L} .a [ ] [ ] [} L] 2/3  wreng psus
[] ] [ ] [ ] L] [ ] [} 273 ... Cutoff (errer cost)
[ ] [ ] [} . [} 173 i et ees  Cutett (error cost)
L] ] [ ] [ ] /3 ces cee ees eee  Cuteff (error cost)
[ ] [ ] ] 173 M4 i wee see ees  Cutoft (error cest)
. L] [ ] L] 178 172 172 1/2 1/1 wreng psum
s [ ] s ] ] ] [ ] ] 3/2 wrong psum
] [] [ ] [} [ ] [ ] . [ ] 2/3  wreng psus

(ete...)

SOLUTIONS RETRINED
cde § orre 598 cost= 1.308 3/2, 172, 1/1, 1/3, 1/8, 172, 3/2, /2, W/}
>»> cds & orrs 588 coste 1.107 3/2, 172, V/L, VW4, L/6, L72, 872, 172, /2

Figure 8.32. Example of recursive search through rational approximations, using refined
cost measure, for bar 1. Final solution is correct.
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PLrY BEG DOUR SBEGC SDUR Bu Rdur VAL OK NVAL WBAR  UrPOS APPROX;
Y3
dBAR 1 (from hints);
HSLAP  .853 .455 053 .4S5 6/1 1.582 372 1/% 32 1 /1 (372, 1/, 2/1)
HAASS .588 .183 .588 .183 / .88 172 / 172 1 3/18(2/3, 1/2);
LOPEN  .601 .205 .691 .285 / .81 L/1 /M1 1 1/& (171, 273, 3/2, 1/2);
HBASS .976 .871 .976 .8071 / .234 /4 /4 1 /8 (174, /3
LSLAP 1.047 .087 1.847 .857 / .188 1/4 / 174 1 13/32(1/4, 1/8, 1/3);
LRUFF  1.104 .130 1.104 .130 / .429 172 / 172 1 77164172, 1/3);
LBASS 1.234 .182 1.234 .182 / .535 172 / 172 1 172 (1/72)
HOPEN 1.398 .168 1.396 .168 / .548 1/2 / 172 1 9/18Q172, 2/3);
HOPEN 1.582 .388 1.562 .3e8 / 1.817 1/t / 171 1 S5/8 (171, 372, 2/3);
3 BAR 2 (from hints);
LOPEN 1.878 .435 1.878 .435 2/1 1.482 3/2 /32 2 W1 372, V1, 2/1);
HOPEN 2.305 .164 2,308 .184 / .548 1/2 / 172 2 3/18(172, 2/3)
HOPEN 2.488 .308 2.489 .38 3/1 .884 /1 / i 2 W6 /1, 278, 372, 1/2);
LSLAP 2.768 .148 2.769 .154 / .584 112 / 172 2 Y8 (172);
LSLAP 2.917 .105 2.923 .14 / .S58 172 / 172 2 7/16(1/72);
HOPEN 3.882 .147 3.877 .184 /7 .8M 172 / 172 2 172 (1/72);
HOPEN 3.220 .155 3.238 .1584 / .58 112 / 72 2 9/18(1/2);
LOPEN 3.384 .2804 3.384 . 6/1 .988 1/1 / 7t 2 S/8 /1, 273, 3/2, 1/72);
d BAR 3 (from hints);
HRUFF 3.878 .079 3.878 .879 / .285 1/2 372 1/3 3  8/1 (1/4, 173, 1/72);
WIUFF 3.787 .107 3.7687 .187 / .388 172 / 13 3 17240173, 1/2)
LOPEN 3.884 .188 3.884 .188 / .623 1/2 3/4 /3 3 1/12(2/3, /2
COMMENT RISSING /3 ;
LOPEN 4.060 .218 4.060 .213 / 714 172 / 273 3 1/8 (273, \/1, 1/2)
CORNENT NISSING 173 3
HOPEN 4.283 .283 4.263 .283 / .88 11 124 1 3 176 (171, 273, 372, 1/2)
LSLAP 4.8548 444 4,848 444 /7 1.488 32 / 372 3  3/8 (372, 1/1, 2/1)
HSLAP 4.080 .134 4.890 .184 / .817 172 / 72 3 /18273, 1/2);
LOPEN 5.174 .287 S5.174 .287 6/1 888 1/1 /M1 3 §/8 (171, 2/3, 3/2, M/2)s
dBAR & (from hints);
NRUFF S.481 .897 S.481 .07 / .3% 173/ /3 & W1 /3, 1/72)
HOPEN 8.588 .188 S5.558 .18 / .37 273 /23 4 17240278, V2, 1/1);
CONMENT NISSING /3,
HOPEN §.743 .182 6.743 .182 / .381 1/3 /7 U3 & 1/8 173, 3/2);
HOPEN. 6.845 .086 S.84S .08 / .208 1/3 / 173 4 1/8 (173, 174, 1/2);
HNUFF §5.931 .097 5.931 .097 / .3% 113 / 1/3 4 57240173, 1/2);
LOPEN 6.028 .282 6.828 .282 / .971 /1 / V4 & /6 (78, 273, 372, 1/2);
LSLAP 6.310 .449 6.3180 .449 / 1.%48 32 / 372 4 378 372, 2/, V1)
WOPEN §.758 .188 6.789 .158 / .84 172 / 172 4 9/16(172);
LOPEN 6.817 .310 6.917 .318 3/2 1.8 1/1 / /1 4 S§/8 (171, 372, 2/3);
d BAR § (irem hints);
WWFF 7,227 .181 7,227 .181 / 481 172 / 172 5 &1 (1/2)
HSLAP 7.378 .287 7.378 .287 3/2 .48 1/ / v 8 wisasi, /3, 3/2, 1/2)
LSLAP 7.088 .167 7.088 .187 / .%82 102 / 172 5 /18172, 273);
HOPEN 7.832 .292 7.832 .292 S/1 .978 1/1 / /1 S /6 (173, 273, 372, 1/2);
LSLAP 8.124 .1§5 8.124 .152 / .s88 11722 / 172 S /8 (1/2)s
HSLAP 8.279 .15 8.275 .152 / .%588 172 / 172 § 7/18(1/2);
WRUFF  8.434 .150 8.427 .152 / .588 172 / V2 S 172 (2
LOPEN 8.584 .146 8.8578 .152 / .588 172 / 172 5 9/18(1/2);
LOPEN 8.730 .289 &.730 .289 372 .84 /1 / pV2Y S §/8 (1/1, 273, 372, 1/2);
d UAR 8 (frem hinte);
HSLAP 0.019 .178 8.019 .178 / .85 172 / 172 6 8/1 (172, 2/3);
LSLAP 5.189 .290 5.189 .200 3/2 .985 1/1 / /1 ¢ 1/18(1/3, 273, 3/2, 1/72);
LSLAP 0.479 .181 0.479 .181 / .538 172 / /2 & 3/18(1/2);
9.840 .283 9.640..263 €/% .8383 1/1 / jV2 3 8 1/4 /3, /3, 1/2, 3/4);

73 9.903 8073 / 248 /3 / 173 6 3/8 (1/4, 1/73);

877 8.976 .877 / .281 1/3 /7 173 8 S/12(1/4, 173, 1/2);
HOPEN 10.083 .038 10.083 .889 / . W3 /W38 117240178, 178, L/
HOPEN 10.142 .102 10.142 .102 / .38 1/3 / 173 ¢ 1/2 (173, 1/2);
LOPEN 19.244 .008 10.2¢4 .085 / . 173 / 173 8 13/24(1/3, 1/2);
HOPEN 10.339 .118 18.339 .118 / .384 1/3 / 173 & 7/120(1/3, 172, 3/8);
HOPEN 18.455 .332 19.485 .332 / 1.127 N1 / v 8 S/8 (/) /3, 2/1)
3 BAR 7 (irom hints);
LSLAP 10.787 .620 10.787 .828 / 2.188 271 / 2/1 7 %1 /1)
FINISH;

Figure 8.88. The final notelist, with value field complete. Now musical values have been
given for all durations, so the notation can follow from here automatically. The score is
shown in Fig. 3.34.
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3.3.7. The Musical Map

It now remains to decide whether these values are correct. This is not a trivial
question, because for improvised music there is no score to verify the program'’s
conclusion. Careful listening and introspection (the player is listening to his own
improvisation) are required, and one advantage here is that in this case the per-
former is also the verifier and author, and presumably knows what his musical
intentions were. With all due caution, it is safe to say that these are indeed the
“correct” values.

The example can now be notated, as the VAL field reduces the task to a simple
translation. The metric hierarchy does not yet indicate the meter. Figure 3.34,
which shows the end result of the program'’s efforts, shows a bit more than the
program actually provided, namely the time signature, bar lines, and beaming.
All else is provided by the program automatically. Note that the stroke-types
are labeled beneath the note heads, with an X to indicate damped and a regular
notehead to indicate undamped.

This example looks simple once it is written; though it is quite regular, many
experienced listeners had trouble parsing it. The program performed quite well in
finding all the correct metric values, and tracking the inevitable local fluctuations
in the performance.
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Figure 8.84. The score; the result of all the analysis described up to now.

a) A transcription done by ear. Extra information is coded in the following way:

High and low drums are notated on separate lines. Damped notes are notated with an
x; undamped (open) with normal noteheads. Stroke-identification is denoted with italic letters
beneath noteheads: '

S—slap. M—muff. B—bass. Note that there are three note stems without noteheads.
(Measure 3 has two and measure 4 has one). These are notated in this way because they were
actually played, but not detected by the segmenter, and we need to know what the program
did with them. (Refer to (b)).

b) A transcription done by the program. Note that this transcription is extremely close
to the one done by ear. The strokes are coded with the following signs:

Accent—slap. Underbar—muff. Dot—bass. Note that the damped/undamped decision is
implied by this notation—noteheads without marks are undamped. If we look at the places
where the signal processing missed three attacks, the higher level gracefully notated the rhythm
as it might be without these notes. (Measures 3 and 4). Segmentation omissions do not
propogate beyond the beat they are in.




Chapter 4

Conclusions

“He who makes a mistake 13 stsll our friend;

He who adds to, or shortens, a melody is still our friend;
But he who violates a rhythm unawares

Can no longer be our friend.”

—Ishaq ibn Ibrahim (767-850 A.D.)

4.1. Summary

In this dissertation, we discussed rhythm from a number of vantage points, from
historical, theoretical, philosophical, pyschological, and musical. We have described
an analysis system that expects a real performance as input, and generates a score
automatically from the acoustic waveform. We have traced the system as it is
applied to a short improvised drum example, and tried to verify that the result is
correct.

It is not obvious what it means to prove a transcription is correct, if one
is working from an improvised example, because if there is no score, there is no
“answer in the back of the book.” The best criterion for success is resynthesis at
different levels, which is what is done in this thesis; most types of errors become
quite obvious in the context of resynthesis. What this means is that in the context
of this thesis, the experiment and the transcription are completely linked. Early
attempts to do automatic transcription did not have the advantage of resynthesis
capability. Although it is not the whole story, A.M. Jones said: “When a person
can transcribe an African song or drumming and 13 able to prove he is right, he
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is well on the way to understanding the music.” [Jones, 1959, p. 10]. He meant
that verification of a transcription is not a trivial matter, especially if the original
performer is not able or available to judge the results. Although transcription is
a highly subjective matter, one wishes to impose some criterion for accuracy. The
best method is resynthesis from the program’s output.

The realm of percussion was chosen as a specific area out of a particular interest
in rhythm, but the transcription system described is applicable in a more general
musical context. The automatic segmentation and the tempo tracking methods are
fairly general, and do not make many assumptions about the input.

4.2. Implications

There are two general areas to which this work contributes. The first is
the basic problem of automatic transcription, some of which is solved herein (see
Chapter 3). The other is in the more theoretical level of trying to define and
characterize rhythm and meter. We have outlined rhythmic paradigms, and posited
a special category for African and African-derived music.

One of the areas that has not been explored in previous automatic transcription
projects is the problem of automatic tempo tracking. As described in Chapter 2,
this problem was skirted in various ways by previous researchers, sometimes by just
ignoring it, or typically, giving the system “hints” about meter and tempo.

In this transcription system, we track tempo automatically, and although the
methods are not fully robust, they work in a large variety of examples. It is
interesting to view the tempo-tracker as an “automatic foot-tapper,” and in fact, it
was surprising to observe that in test examples many listeners had trouble finding
the meter and the beat, whereas the program was very close. The example used is
nontrivial, and the meter is not obvious.

Usually, we would not expect the program to do better than a human listener;
in fact,"we should be suspicious when this happens. In the realm of Artificial
Intelligence, we know that it is easy to do better than a person in particular formal
tasks, but typically, perceptual skills are extremely difficult to emulate. When a
particular machine skill has been developed and tailored primarily for appealing
to a perceptual response, then “superior” performance by the machine certainly
requires a critical view. It turns out that the program does better in this particular
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case, but there is a peculiar trade-off: the program needs to “hear” the whole piece
before it knows how to “tap its foot.” It does not process the data from left to
right, whereas a listener always does. The listener, in the other hand, will start
tapping fairly soon, and might applaud at the end, but certainly won’t wait until
the end of the piece to tap his or her foot! A real-time version of the program, that
responds more as a person, would have to proceed from left to right.

4.3. Future Research

Though the system described herein covers new ground with respect to automatic
transcription and analysis of rhythm, much terrain remains to be explored. Here,
we will discuss briefly some of the intriguing directions possible.

4.3.1. Polyphony

The word “polyphony” is probably misleading here, because we do not mean
polyphony as it is used in Western music, but rather a much more general concept
of combining several simultaneous musical sources, voices, or layers, which will
be found in almost any context. Dealing with polyphony is a challenge from the
point of view of any automatic analysis system. Some of the methods, like the
segmentation algorithm, can be applied to multiple-voice music, but will require a
considerable amount of work to deal effectively with the problems introduced by
polyphony. Another approach is to process each voice separately, which is possible
if one has control over the recording process. It is so easy for people to distinguish
different sources (for instance the “cocktail party effect”*) that one is motivated to
try to duplicate this task at some level of competence.

In percussive music, one would like to be able to compare the different concur-
rent rhythmic components and examine exactly how they are related. This kind
of work was done (by hand) by ethnomusicologists at UCLA (see [Koetting, 1970]),
and it would be a significant advance to automate it.

Another aspect of the problem is identifying patterns in the music. This
problem applies to single-voice music and is directly extendable to polyphonic

* This refers to the well-known ability of people to comprehend a certain speaker in the

midst of many other speakers, using one ear, or more effectively, both ears
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music. Bernard Mont-Reynaud, working on the National Science Foundation grant
at CCRMA described in Section 2.2.5, has developed several pattern detection
schemes that are currently being tested on single-voice data, and will be used to help
deal with polyphony and to determine meter by some kind of “minimum entropy”
method.

4.3.2. Analysis of Style via Timing Studies

In Chapter 2, we reviewed numerous studies of timing in music. It is clear that
timing is one of the most important aspects of performance practice in any musical
tradition; for example, in piano music, it is the primary parameter.* The studies
by Gabrielsson on rhythmic performance [Gabrielsson, 1974, 1980, 1983] point to
many more experiments that can be done, and that would benefit a great deal from
the analysis methods described herein (Section 3.2). The data would be both more
accurate and more dependable, because more examples could be analyzed.

4.3.3. Synthesis of Percussive Sounds

It is clear that resynthesis is an important aspect of this work. Until recently,
it was quite difficult to verify analysis results. Now, we can automatically generate
aural instantiations of the analysis at any level. So far, we have been either
resynthesizing with a plucked-string algorithm (see [Jaffe and Smith, 1983]), or
reconstructing exact timings by concatenating small soundfiles (digitized individual
drumstrokes) at the exact timings indicated by the analysis. It would be very
desirable to have an adequate synthesis technique for percussive sounds. Most of
the familiar ones are just not satisfying at the moment.

Subtractive synthesis methods that model the signal as a sum of damped
sinusoids would seem to be promising for synthesizing drum sounds. Using Prony’s

* The piano is the most obvious example of an instrument for which timing issues are the
most important aspect of performance. That is, unlike most other instruments, the piano
is not capable of any articulation and timbre control within a single note. (Pianists will
likely disagree with this idea, but it is true.) What makes Richter sound different from
Ashkenazy is attributable in large measure to complex time-intensity patterns. The result
is that style can be approached via a careful study of timing issues. Obviously this won’t
reveal everything, but it is a crucial element.
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method [Kay and Marple, 1981], we have tried to find pole-zero models for several
drum tones, and up to now the recults have not been very satisfying. It is likely
that more effort to synthesize percussive tones using this method or others will be
fruitful in the near future.

4.3.4. Intelligent Editor of Musical Sound

As digital recording becomes more and more widespread and eventually be-
comes the standard recording medium, it will be more and more crucial to have
sophisticated high-level editors of musical sound (see [Foster, et al., 1982] and
[Chafe, et al., 1082]). It is now possible to edit digitized music down to the sample,
which is delightfully accurate, but at 44.1 kHz per channel (sampling rate of the
Sony PCM F1 digital tape recorder), the profusion of data is immense, and it is
quite difficult to “find your way around” in the music. It is clear that what is needed
is an intelligent editor of musical sound, an editor that knows about music, in much
the same way that a text editor knows about written text (a structure editor). For
instance, instead of saying “skip to the second word in the last paragraph,” one
could say “skip to the trumpet entrance after the fifty-second measure.” Actually,
the musical editor is a far more difficult task, because we wish to begin from the
signal. It is analogous to a text editor that goes from the spoken word, in other
words, a speech recognition program linked to a word processor, which is still a
long way off.

The automatic transcription capability described in this thesis will be a good
first step in the development of the intelligent editor. It is precisely these techniques
of segmentation and tempo-tracking that, when generalized, will provide the first
few levels of structure, e.g. beats, measures, sections, tempo. This is a vast subject
which will undoubtedly be dealt with soon.

4.3.5. Interactive Performance

As mentioned earlier, one goal is to have a real-time version of the system.
This is dependent as much on programming strategy as it is on having very fast
processing. The idea of processing from “left to right” is very simple and appealing,
but it is a major restriction that is not always possible to implement. Motivation
is high for achieving a real-time version, and one of the most compelling reasons
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is the possibility for the composer of having an intelligent partner for interactive
performance.

When a composer writes a piece for computer and instrument(s), it should no
longer be necessary for the computer part to be prerecorded computer-generated
music, which is very restrictive in performance because tape is a completely unex-
pressive, unresponsive medium incapable of adjusting to any tempo changes by the
instrumentalist(s). There is little possibility of real ensemble (in the sense of inter-
action between the players) in any performance using tape, because performance is
constrained by the tape part—tape is an absolutely “tyrannical” performer. The
other performance choice, in which the players’ sound is processed by electronic
means, as was done in the electronic music of the 1960’s, is too passive, offering
little or no material that is not a direct result of what the players are doing.

Using the kind of musical knowledge available to the automatic transcription
system, it will be possible for the computer to “listen” to the other players, and
respond by making high-level musical decisions, predetermined at any level by
the composer. Suddenly, the machine-performer is neither passive nor tyrannical,
but becomes a viable performer in its own right, reflecting the intentions of the
composer.

This aspect of computer music has barely been tapped to date. As computers
become less expensive and more powerful, and more programs are written that
expand on some of the issues raised in this thesis, we should see a new area of
interactive musical performance emerge.




Appendix A. Contents of Tape of Musical Examples

A cassette with the following sound examples that accompany the text can be
requested from the author by writing to:

Andrew Schloss

CCRMA /Music Department

Stanford University

Stanford, CA 94305

A. The Rhythmic Paradigm examples (Section 2.5).
1. Mozart: Quintet in C, k 515.
2. Stravinsky: Les Noces 1917.
3. Bulgaria: Jove Malaj Mome
4. Ghana: Sogo Dance (Ewe people).
5. Indian drumming: Alla Raka and Zakir Hussain (tabla).
6. Brazil: Batucada.
B. The roll examples (high-pass filtering).
1. Changing the cut-off frequency (see Figure 3.10).
2. Noise vs. phase discontinuity (see Figure 3.11).
C. The stroke types.
1. Individual strokes (see Figures 2.4-2.7).
2. Improvisation in free rhythm.
3. Resynthesis by concatenation of sound-files.
4. Unison w/synthesized guitar.
D. The transcription example.
1. Original performance (see Figure 3.34).
2. Resynthesis by concatenation of sound-files.
3. Unison w/synthesized guitar.

4. “Normalized” resynthesis from score.
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