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Our research has centered on recognizing and abstracting features of digitized acoustic
signals by combining advanced techniques in signal analysis with knowledge-based
programming methods. The combination of low level feature detection (sigmal
processing) with high level constraints and heuristic programming techniques has been
quite successful, yielding results far superiar to what had been achieved with previous
approaches.

The application domain we chose for this work is the analysis of performed music,
particularly of expressively played 18th century western classical pieces. This domain
was deemed especially appropriate for exploring the integration of signal processing
and high level constraints, due to the large amount of structure inherent in the signals.

Expressive musical performancs typically involves major departures from the metric
relationships implied in a score. A central task for our system has been to recover the
intended metric relationships from the digitized sound of the performance. This turn
allows an analysis of the ways in which the performance differs from the notation.

We have applied our research system to a graded series of musical examples which were
digitized from live performance. Methods have been developed in the following areas:
low-level feature extraction (notably, signal processing techniques for segmentation
and pitch extraction); high-level feature extraction (such as the recognition of
rhythmic and melodic patterns); and control and resource allocation in systems with
multiple levels of description (top-down and bottom-up context building, multi-
criteria decision making, strategies for propagating constraints and/or hypotheses
across levels).

The level of competence currently achieved by our system allows single voice examples
to be transformed into an intermal representation, from which common musical
notation and other descriptions can bde easily derived. Melody lines from works by
Bach, Beethoven, Chopin and Mozart have been performed, recorded and digitized, and
then successfully analyzed. The system has also been applied in the same way to other
musical styles, notably music by Joplin and Afro-Cuban percussion. This has been
possible because the methods used are general in their attempt to capture musical
structure, rather than tightly bound to a very specific style of music. In fact, many of
the ideas developed in the context of our research are applicable to other types of
signals also rich in context, such as speech signals.,



The results achieved on this project provide an important basis for the expansion of this
type of research. The understanding of the system architecture problems we have
derived from our ressarch lead to strong hypotheses about the kind of control structure
needed to handle more complex signals. The analysis of polyphonic sound is the next
major challenge. It requires a solution to the source segregation problem, which can
only be based on the use of the great deal of context and feedback between levels, The
techniques we have established so far provide bduilding bdlocks for the exploration of
this next level of difficulty. Successful approaches developed in this context will be of
primary interest to researchers working in signal analysis in related domains.

This research was sypported by the National Science Foundation under Contract NSF
MCS 80-8012476 and System Development Foundation under Grant SDF #346. The
views and conclusions contained in this document are those of the authors and should
not be interpreted as necessarily representing the official policies, either expressed
or implied, of Stanford University, any agency of the U. S. Government, or of
sponsoring foundations.



L Overall Project Description

This research combines modern techniques in signal analysis with knowledge~ba
programming techniques toward the goal of automatic transcription of musical sou
Questions of system architecture, signal processing methods, high level pattern recognit
and context driving have been investigated by applying the research system to a gra
series of musical examples that were digitized from live performancs. This has resuited
the development of new techniques for signal segmentation, for multiple criteria decis
making, and for the automatic recognition of musical features, both local (such as rhyth
and meiodic patterns) or global (such as meter and key).

In the current implementation, the analysis system is divided into an acoustic analj
subsystem and a musical analysis subsystem, which are largely independent (See Figure 1)

The acoustic analysis subsystem is a front-end primarily concerned with note segmentat
and pitch detection. It constructs the first concise description of the digitized sound, as a
of discrete events. Signal processing routines provide descriptors for each event, includ
the time at which the svent occurs, its estimated frequency and amplitude, and in some c:
the identity of the source (instrument and/or gesture or stroke causing the sound).

The musical analysis subsystem takes as input the event list produced by the acou
analysis front-end. The goal of this subsystem is to infer the musical structure of
performed music, including key signature, meter, and individual note values. It relies
musical knowledge, in the form of hypothesis and pattern generators, constraints, evaluat
criteria, context gathering mechanisms and control strategies, represented by rules or
procedures. This subsystem builds a detailed internal map, from which utility progr:
print musical notation, tempo charts and other data about the performance.
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Figure 1: System Overview

The rest of this report is organized as follows. Subsections 1.1 and 1.2 are devo
respectively to the acoustic analysis and the musical analysis subsystems, Subsection
discusses the system from the point of view of control strategies.

Section 2 gives a much more detailed description of the musical analysis subsystem.
particular, an example of analyszis is followed step by step through the various stages
processing.

Section 3 draws some conclusions and discusses future research. Further information can
found in the publications inciuded as appendicsas.
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1.1 Acoustic Analysis: Signal Procsssing

The lowest level of processing in the system occurs in feature extraction. This is don¢
signal processing algorithms, primarily used for note segmentation (determining onsat tir
and pitch extraction (estimating frequencies). The control structure driving t
algorithms (acoustic analysis subsystem) constructs a note list, which will be the inpu
the higher level processing steps.

A variety of signal processing techniques are nsed. While some of them are standard (suc
FFT-based spectrum analysis), others were developed specifically for this effort. The .
behind the development of signal processing algorithms has besn to provide -reli
detection of the features necessary for each type of music or instrument. The us
particular algorithms is left to the control strategy of the higher level processing.

Signal processing methods wers tested with a variety of musical instruments, inclac
.sound that was synthesized from the same musical scores as those used by the musicians 1
played for the recordings. Certain problems of live performance presented difficuities in
initial evaluation of new techniques. For example, substantial variations in pitch, timbr
amplitude often occur from note to note, or within a note. Also, nots onsets can be obsct
by the ringing of the previous note and/or by room reverberation. The use of synthes
musical data allowed us to provide better controlled inputs for initial tasun.g, before
applied the methods to live performance data

In the current system we have had considerable success using variations of modern spect
analysis algorithms. One example is the pitch-based segmentation procedurs describe
Toward an Intelligent Editor of Digital Audio: Signal Processing Methods (Foster et
1882). (See Appendix 2). In this algorithm the sound data is processed in reversed-time.
processing the sound in reverse, a note can be identified from a cluster of partials by locl
onto it somewhere in the sustained segment, where the note is strong and stable. The at
that follows (in reverss) is usually easy to characterize, particulariy as to the exact mon
that the cluster of partials disintegrates into incoherence. This technique provided |
sccuracy in the note segmentation of single-voiced musical examples. The success r
obtained waere .98 for the piano, .86 for the fluts, and .93 for the violin pizzicato.

Unfortunately, this algorithm was found inadequate for polyphonic inputs (multiple ac
sources). Attempts to generalize the method by tracking several clusters of par
simujtanecusly have been rather unsuccesaful so far. This is largely due to the tendenc
mulitiple voices to sound in consonant harmonic relationships, which means that the par
overlap to a large extent. The solution of this problem will depend on a stronger integra
of the signal processing techniques with artificial intelligence techniques. This was
possible in the current hardware configuration. In the single voice case, at laast, a succas
approach was developed.

Another useful algorithm for note segmentation was implemented using techni(
originally developed for linear predictive coding of speech signals. This algorithm is b
on an autoregressive (AR) model fit of the signal, rather than a Fourier decomposition :
as used in the above method. Essentially, the algorithm detacts events by ohserving the
behavior of an AR model that is recursively fit to the data. By detecting when the mod
no longer a good fit to the data (this typicaily happens at note boundariss), segmentation
be performed. This algorithm yields meaningful results even in fairly complex polyph
examples.
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The algorithms described are but a few of those that have been implemented for
derivation of the note list. The collection of algorithms provide a tool bax for the hij
levels of analysis to use in each particular situation. They were developed as needed for
instrument studied and each processing problem that was identified in the higher levaei
analysis. Together they provide a sufficient detail of analysis of the acoustic signals to a]
processing by the higher levels as described in the following sections.

1.2 Musical Analysis: Construct Recognition

Thcinpnttotm;mhsymianormanythawentnstpmdncedbytheaeouﬁcfront-
(Dmgatheredd!recﬂytromahyboqdmdso‘bouodnmpnt). In either case,
primary goal is to turn the acoustic description of the performed music into mu:
notation. A

‘One of the first problems which arise is to convert frequency estimates to pitches ¢
musical scale. With the exception of percussive music, for which we simply omit pitch s
analysis, our examples use the standard twelve semitone scale. Currently, the conversio
Pitches to scale degrees is simply done by rounding the appropriate function of frequenc
the nearest semitone on the scale. While this approach lacks generality, and will fai
complex situations, it has behaved adequately with the various examples we have consids
80 far. More sophisticated schemes have not been implemented for this reason.

Thogreaterpartottheetfortinmemnsicalanalydssnhsystemhasbeenalmedattamp
analysis. The problem is to turn numbers reprasenting performed durations into me
values. This is far from obvious, except in the case of mechanical performances of sin
music. Previous attempts at antomatic transcription have either been limited to those sin
situations, or have relied on the user to provide additional input (tempo, beats or b
and/or meter). ' .

By contrast, our research is aimed at realistically complex examples. We have alre
mentioned that the current system does not handle poiyphony. However, within
horizon of monophonic signals, our goal has been to handle a great variety of sitnations.
particular, we have found it important to allow much natural expressiveness in
performance of the pieces. This implies that simple approximation schemas cannot be trus
to give good answers.

Since patterns and context come to play a major role in the search for plausible me
notation, we are led to the use of Al techniques similar to those found in other percespt
systems, such as speech understanding systems. We use musical knowledge for
recognition of musical structures (such as rhythmic and melodic patterns) in the sequenc:
performed pitches and durations. Pattern recognition, hypothesis generation, and cont
building heuristics such as island driving are ail important aspects of the approach.

In addition to the use of knowledge-based programming techniques, a key idea in

temporal analysis is to separate global tempo fluctuation from local fluctnation in the tim
of individual notes. The problem of assigning metric proportions throughout the piec
first addressed at the global level (structural anchors) before the local level (individ
notes). The concept of tempo line was introduced in order to capture the global ten
fluctuation. This was already a Xey concept in the CMJ paper (Toward an Intelligent Edi
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of Digital Audio: Musical Construct Recognition [Chafe et al., 1982], see Appendix 1). Sir
then, we have extensively augmented and revised the methods of hypothesis generation a
evaluation, and the strategies used for arbitration and context driving. Yet, the tempo I
concept has retained its central role. This is quite apparent in Figure 2, which summart
the flow of information in the current system. Also note the use of multiple methods !
generating temporal clues. All this will be discussed in detail in Section 2.

4 ¢ $ ) i
e * Smcccccc-- R + - + . +
| [ [ | | | | |
| RHYTHMIC | | MELODIC | | OTHER | { STATISTICAL | | PULSE |
{ ACCENTS : : ACCENTS : : ACCENTS : : PROFILES : : TRAINS |
|
i | | | |
! | | | |
| | ! | i
| ¢ l ¢ $
| D e + | *
Y] | - | i
i INITIAL | ! IMPORTANT |
: ANCHORS : | DURATIONS :
. |
A o e i o i - + -+
o P
bmm————— -tg CHOICE OF METRIC UNIT |e———eemee= T
| |
| + |
i | |
| | I
| $ |
| |
L -> o > > (> s o >

 ————

|
TEMPO LINE DECISIONS |

NOTE VALUE DECISIONS

$ ———t
—_

——

Figure 2: Simplified Data Flow of Musical Analysis

The improvements made since the CMJ paper have allowed the system to deal successfu
with highly syncopated music, such as ragtimes or African percussion, while continuing
perform well on the earlier examples (18th Century music) whose analysis relies mostly
very different structural clues. In the case of the Afro-Cuban rhythms, the system |
provided standard notation (that experts determined to be correct) for music that is usua
not transcribed by anyone, and that Western musicians typically find difficuit to transcri
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partly because the sounds and the musical patterns are less familiar to them. and p
because the event density is quite high. :

The success of the method ultimately reliss on the ability of the program to take adva
of complementary approaches which capturs aitarnative clues to the musical structurs
us {llustrate this point at two successive levels of the analysis cf durations. At the lc
level, features are extracted aeither from contrasts in duration. or from regularity
absence of contrast). The only situation in which the program fails to pick up any clt
this level is when successive durations stay in the gray zone between aimost equa
clearly different. Fortunately, in most music, rhythmic interest cannot be maintained
long in that gray zome, so the music is not performed that way. The program is
guaranteed to almost always find significant clues at the lowest level of duration proces

The next lavel of analysis begins with a search for simpie patterns in the melody, &
succession of structural accents, and in the consistency of nots durations. All these si
patterns provide hints to- the .temporal structure, and. the program . uses them sing'
combined in order to form tempo line hypotheses. Music whosae accents do not follow si
timing patterns. such as syncopated rhythms, will normally have comparatively little t
fluctuation, and vice~versa. This may be traced back to the fact that most music is wr
and played for listeners who rely on the presence of pattarns of one kind or another in «
to perceive meaning in the music. This principle seems to apply to music of many cul
and periods. A general music recognition program should be able to identify the

important kinds of patterns, and to use them as structural clues. This is what our sy
does, in a limited but aiready quits powerful way, in its analysis of temporal structure.

The current version of the system has been quite successful with the transcription
presented. It has proved capable of dealing with syncopation, tempo fluctuation and nu
of phrasing without losing track of tempo. Performances of pieces composed by |
Beethoven, Chopin and Mozart have been analyzed with excellent resuits. Other s
(ragtimes, Afro-Cuban rhythms, ...) have been handled with similar accuracy. In secti
we will examine in detail the performance of the system on an 18th Century piece tha
been played quite expressively.

1.3 Control Strategies

The level of performance achieved by the system shows that important steps have
taken in the direction of robustness and generality. A closer look reveals that the sy
derives its strength not so much from the individual analysis techniques, ail of whic
useful but limited, as from the strategies which order the use of the various techniques.

The problem-solving environment for this research shares many aspects with environn
used in speech recognition ressarch. Mulitiple layers exist within the system, with fea
or hypotheses corresponding to varying levels of abstraction from the original s
Constraints may be active within a single layer, indicating the degree of compatibili
hypotheses at a given lavel of description. They may also act across layers, in which
they may be used to propagate hypothesis in bottom-up order (i.e., data-driven) or
down order (i.e., goal-driven) or both. Besides, constraints may express soft prefel
criteria or hard consistency rules.
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We will now discuss hypothesis evaluation and pruning, and introduce the use of dominz
relations. First, it is clear that excessive pruning during the early stages of analysis of
results in missing desired solutions. Too little pruning, on the other hand, not only ca
inefficiency, but also hides patterns that can could otherwise be used for context driv
This will be further discussed below. The system should therefore have ways to mainta
balanced degree of indecision.

Pruning methods rely on hypothesis evaluation criteria. In our system, multiple evalua
criteria are usually obtained from a variety of considerations. In such a multiple crit
situation, a popular approach is to use a weighting scheme to produce a single numeric rai
from all the available criteria. However, we consider this to be a method of last res
because all too oftan it leads to erroneous decisions. Trying to improve the approach
making the weighting scheme dependent on context leaves the problem unchanged for ini
decisions (which must be made befors sufficient context is established) and forces on:
develop ways of changing the weights as a function of context, a rather hazard
enterprise.

We have chosen instead to retain the multiplicity of criteria as long as poasible, anc
particular during pruning stages. The initial idea behind the scheme we use is quite sim
if hypothesis A is no worse than hypothesis B in any of the criteria, and better in at least
criterion, then (and only then) B should be pruned. This corresponds to the standard pa:
ordering of the N-dimensional space of criteria. We have genseraiized this idea to arbitx
partial orderings, which we call dominance relations, defined in the space of criteria.
say that an hypothesis is dominated if it is less than some other hypothesis, with respec
the chosen partial ordering. Undominated hypotheses are those that corrsspond to mini
elements in the space of criteria. Whenever arbitration is needed between compe:
hypotheses, the various criteria are formed, and we prune all dominated hypotheses.

Since the retained hypotheses are minimal in the partial ordering, they trade one crite
for another: one hypothesis might be closer to the observed data while the other is sim
but farther from the data, and a third is intermediate in both respects. When using

algorithm in practices, it is often the case that a single (minimum) hypothesis remains, for
g£reatest benefit of subsequent processing. When there are several minimal hypotheses, t
are all passed along to higher levels of processing. Usually, we also order them according
weighting scheme, but the weights do not affect pruning. The use of dominance relat
yields an elegant solution to the pruning problem, since the pruning criterion always t
the same form, yet leaves much flexibility in the choice of an appropriate partial order
In our application, it is so effective that it is hard to imagine using any other technique.

Another technique we have found useful is the optional use of context in the generation
evaluation of hypotheses. Optional use means that generators and evaluators can wor!
the absence of context parameters (this is typically needed during an initial bottom-up p
but will take advantage of contextual information when and if it has been collected.
form taken by contextual information varies. It is is often produced via statistics, or o
ways of characterizing group behavior in a set of previously generated hypotht
Contextual information is nsually translated to soft constraints rather than hard ones.
example, a change in some of the evaluation criteria may bias the system towards hypoth
that are similar to other ones, but does not remove any hypothesis from consideration. '
allows local deviations from the observed group behavior. This use of context prov
feedback from the global levels to local levels. It does so by influencing an essenti
bottom-up scheme via top-down constraints or by peer pressure.
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Specific examples of the application of these ideas will be discussed in the next section, af
the necessary objects and properties are defined. For the purposes of the current discussi
consider instead a hypothetical sitnation, where we assume that the program has someh
produced a 1.0 seconds estimate for the duration of the bar. In such a sitnation, adding |
contextual assumption that the piece is in 3/4 meter should maks it easier to interpre
duration of 0.4 sec as 1/3 of a bar (a quarter-note). On the other hand, if we assumed 4
meter, the same duration of 0.4 sec would more likely correspond either to 1/2 of a bar
haif-note) or to 3/8 of a bar (a dotted quarter). In a top-down scheme, such context:
assumptions might be tried in succesion.

In fact, our system uses a different approach. It gathers statistical information which
highly correlated with the choice of meter, and uses this metric context to influer
hypothesis evaination. befors any choice is made regarding meter. This happens via pe
pressure: for example, if hypothesized metric values of 1/3 are obtained with a high rat
much more frequently than are 3/8.or 1/2, this should maks it more likely to interpret |
as 1/3. Peer pressure can only be applied to push the interprstation of rather ambiguc
situations in the direction already taken for less ambiguous ones. It cannot be used uni
there is a fair number of somewhat obvious situations in the first place. Experience w!
the system has shown this type of reasoning to be quite heipful.

A further aspect of control strategies that we have not yeu sufficiently mastered |
concrete implementation is optimizing the trade-off between the expected cost and expec!
returns of alternative methods of gathering information. Decisions regarding such trac
offs are currently built into the program. Yet, we have taken some steps in the direction
dynamic planning, by exploring this idea at a more formal level. The discussion of
Information-Theoretic Approach to Search Strategies in Expert Syszems (Rockmore a
Green, 1982) is included in Appendix 3.

To summarize, the art of control strategies is expressed throughout the system in a varie
of ways. No single uniform strategy has beem found to solve all problems, but we ha
found several useful techniques (or design principles) of broad applicability. The three m
important ones, which permeate the design of our research system, are (a) approachi
multiple criteria decisions in a uniform manner, based on dominance reiations (this
critical in maintaining a balanced level of hypothesis pruning); (b) applying peer pressure
form of context driving in which one summarizes the group behavior of hypothe
previously selected at some level, in order to influence subsequent hypothesis generati
and/or evaluation at the same level; and (c) providing alternative approaches to hypothe
generation. The combined use of these techniques increases performance (notab
robustness) while keeping computational demands low, which is largely the aim of cont:
strategies.
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2. Musical Analysis: Detailed Description

In this section, we follow in some detail the operation of the musical analysis subsystem.
order of presentation follows the analysis of a single example. Successive steps
illustrated with intermediate output from the program. This mode of presentation
occasionally interrupted to allow for a more abstract presentation of some methods or issu

The example used for this description is an Etude by Chopin, Opus 28, No. 15 from which
initial section was selected (see Figure 3a). Naturally, since the system does not yet d
with polyphonic inputs, we have recorded and analyzed a single voice piano rendition of t
section of the piece (see Figure 3b).

This example was chosen because it is relatively short, allowing a more thorough account
the program than would otherwise be possible. The CMJ paper focused on a larger exam
(Mozart Sonata) but provided less detail in its description of the system.

*

2.1 Input and Preprocessing

The melody line of the Chopin Etude was played on the piano, recorded. and digitized. It v
then handed to the acoustic analysis subsystem, which determined note attacks and provic
amplitude and frequency estimates. Figure 4a shows the input file used by the musi
analysis. It consists of the output of the acoustic analysis, together with some informat:
that was added by hand, for debugging convenience. In the figure, the line beginning w
PARS (for parameters) indicates the nature and the order of the input fields in the note !
that follows.

PARS BEG DUR FRQ AMP UVAL;

The field BEG is the estimated time (in seconds) at which the note occurs, and DUR is the ti
elapsed until the beginning of the next note. Obsarve that DUR is not necessarily the durat
of the note, since the acoustic analysis does not detect a trailing rest, only tLe beginning
the next note. (The last note is treated specially).

Since the fields BEG and DUR are related, it is sufficient to provide one of them. All other fie
are optional. In order to run, the analysis only needs either BEG or DUR data. Of coursse, -
program makes use of additional data (such as frequency, amplitude, ...) when given.

The field FRQ is the estimated frequency in Hertz. (In the analysis of percussion examp.
this field is omitted, but a stroke description field is normally provided). The field AMP gi-
an average energy estimate for the event.
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TITLE Chopin Prelude (Opus 28, NolS) ;
BARS 4/1 0/1;

PARS BEG DUR FRQ AMP  UVAL;

.000 .800 701. .740 3/4
.800 .256 S53. .534 1/4
1.056 1.824 416. .596 2/1
2.880 .960 467. .769 1/1

3.840 2.752 522. .383 3/1;
6,592 .992 5583. .733 1/1

7.584 .768 624. .773 3/4
8.352 .256 701, .807 1/4
8.608 1.920 740. .557 2/1
10.528 .992 697. .506 1/1

11.520 1.408 701, .S73 372
12,928 .576 621. .451 1/2
13.504 1.088 552. .498 1/1
14.592 .224- 620. .447 1/7
14.816 .192 702. .795 1/7
15.008 .160 624. .644 1/7
15.168 .160 585. .546 1/7
15.328 .192 621. .729 1/7
15.520 .160 702. .999 1/7
15.680 .256 740. .608 1/7

15.936 .864 701. .913 13/4
16.800 .320 553. .349 1/4
17.120 1.824 416. .389 2/1
18,944 1.024 467. .350 1/1

19,968 2.624 522. .505 3/1
22.592 1.088 S54. .590 1/1;

23.680 .800 624. .809 3/4
24.480 ,.288 702. .907 1/4
24,768 1.888 740. .567 2/1
26. 656 1.024 701. .643 1/1

27.680 1.536 698. .528 3/2
29.216 .608 619. .180 1/2
29.824 2.160 554. .170 2/1

wows e we
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s we we e

wrwrwswe -e
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Figure 4a: Input to Musical Analysis
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The fields described so far are outputs of the the acoustic analysis. There are other optio
fields, which may be added by the user to help check the results of the musical analysis. 1
field UVAL (User's preferred value) represents the rhythmic value that the user believes to
correct for this note. It is expressed as a fraction of the reference unit, chosen arbitrarily
the user. The choice used here (quarter-note) is typical.

When UVAL is defined, the system prints out the differences between the praferred values a
the values actually produced by the analysis, which facilitates debugging. In addition, |
BARS input line now takes effsct. It gives the number of units per bar, and the met
position of the first bar. In the currsnt example, BARS 4/1 0/1 indicates that there are f¢
units per bar, and that the first bar occurs at the first note. This hint concerning !
placement is again used by the program for formatting the output, and/or countf
deviations between desired and actual behavior, but not to influence program decisions
any way. This terminates the discussion of the input format.

While the input file is scanned, some pre—-processing steps are performed, including varic
error checks.

First, since the current version of the program is monophonic, and the signal process!
routines do not handle rests, the duration of an event is taken to be the difference betw:
the attack time of the event and the attack time of the next event. Thus BEG and DUR .
redundant. If both are given as input, the invariant that relates them is checked withi
numerical tolerance. If instaad only one of BEG and DUR is given, the other is antomatica
derived using the invariant.

-~

Amplitude estimates are normalized to the maximum amplitude in the piece.

Frequency estimates (in Hertz) are translated to pitches on a 12 semitone scale. There
currently no analysis of the tuning system implied by the data. The program assumes the "
of a standard scale and standard tuning. It would be desirable to have at least a rob
retuning method, which could be achieved in a number of ways, but sincs it has not b
necessary so far, we have not impiemented it. In Figure 4b, the CT'S column gives deviati(
in cents from the standard tuning. For example, the first note is 7 cents above the stand.
frequency of the F in the §th octave, and the second nots is § cents below the standard B {
in the same octave. Since there are 100 cents in a samitone, the maximum possible round
error is 50 cents. Note that in the example, deviations do not exceed 10 cents. If they w
larger, an investigation of tuning would be in order.

In any case. after input frequencies have been used to determine positions on the semit:
scale, subsequent processing uses only these positions. Tuning and conversion to semito:
should probably be handled by the acoustic analysis back-end, rather than the muxsi
analysis front-end.
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TITLE Chopin Prelude (Opus 28, Nols)

BARS 4/1

jor

KEY C ma
SIGNATURE C:

PARS
BEG DUR

3 BAR 1;
.000 .3800
. 800 .256
1.056 1.824
2.880 .960

3 BAR 2;
3.840 2.752
6.592 .992

3 BAR 3;
7.584 .768
8.352 .25%
8. 608 1.920
10.528 .992

3 BAR 4;
11.520 1.408
12.928 .576
13.504 1.088
14,592 224
14,816 .192
15.008 . 160
15. 168 .160
15.328 .192
15.520 .160

18,944 1,024
3 BAR 6;

19.968 2.624

22. 592 1.088
3 BAR 7;

’
23.680 .800
24.480 288
24.768 1.888
26. 656 1.024

8 BAR 8;
27. 680 1.536
29.216 .608
29.824 2.160

3 PARS
BEG DUR

Figure 4b: Preprocessed Input

0/1

AMP

. 740
. 534
.596
. 769

.383
. 753

773
. 807
. 857
. S06

.573
. 451
. 498
. 447
. 798
. 644
. 546
. 729
. 999
. 608

. 913
. 349
. 389
. 350

. S0S
L 590

. 809
. 907
. 567
. 643

.528

. 180
. 170

AMP

FREQ CTS
701. 7
553. -4
416. 4
467. 4
522. -4
§53. -4
624. 6
701, 7
740. b
697. -4
701. 7
621, -4
553. -4
620. -6
702. 10
624. 6
585. -7
621. -4
702. 10
740. 1
701, 7
§53. -4
416. 4
467, 4
$22. -4
554, -1
624. 6
702. 10
740. b
701. 7
698, -1
619. -9
§54. -1
FREQ CTS

PIT UVAL

F5S
EfS
D£S

3/4
1/4
2/1
1/1

/1
/1

374

1/1

3/2
1/2
2/1

PIT UVAL

UMPOS

0/1
3/4

3/1

4/1
7/1

8/1
35/4
9/1
11/1

12/1
27/2
14/1
15/1
106/7
107/7
108/7
109/7
110/7
11177

16/1
67/4
17/1
19/1

20/1
23/1

24/1
99/4
25/1
27/1

28/1

§9/2
30/1

UMPOS

wswe ws wswe ve we

wevwsvewe

wewiwewews wevewe e We

wewswe we wewe wtwe we we
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In Figure 4b also, the UMPOS column (User-provided metric position) results from summatic
of the UVAL input, beginning at 0/1. This column keeps track of musical time according to tt
user, as opposed to musical time as determined by the program, for the purpose of checkir
the latter. In particular, whenever the metric position (minus the metric offset ak
provided by the user -- 0 in this example) becomes a mulitiple of the bar length, a bar mar:
printed. -

Some easily identifiable signal processing errors can be corrected at this early stage. Not
which have either an extremely low amplitude, or both a low amplitude and a low curatio:
are suspected of being false attacks, due to errors in the acoustic analysis. They are compare
to surrounding notes, in terms of both duration and amplitude. If they turn out to !}
significantly low in the context of their neighbors, they are rsmoved from the note lis
Simple rules (based on pitch comparisons) determine whether the spurious note is mergs
with the previous one or the next. Adjacent attack times and durations are ad justed. In t!
current example, no signal processing artifacts are present. (In the analysis of the Moza
Sonata, five false attacks are corrected. and this greatly facilitates the subsequent analysis
Ideally, once an event is suspect and an appropriate context has been established, it would !
best to feed this information back to the acoustic analysis for further investigatio
Feedback links from the musical analysis to the acoustic analysis are not possible in ti
current hardware configuration, but such links will be added as soon as possible.

After these pre-processing steps, real work may begin.

2.2 Important Events and Accents

The current system has two initial sets of handles on temporal structure: important even
and important durations. The heuristic methods that detect important events a
independent from those which detect important durations, and focus on different aspects «
the data. This is a source of strength for the program, since either type of handle may !
useful at any point in a piece. Important durations are discussed in Section 2.3.

The importance of structural accents was discussed at some length in the CMJ paper. Ths
are potential anchor points for the temporal structure of a piece. The program must be ab
to identify structural accents quite early in the analysis, at a time when little if any
understood about the piece. (Thus, the notion of accent used here is not necessarily th
which a music analyst would use). There are currently two kinds of accents, rhythm
accents and melodic accents. Dynamic accents have not been implemented, awaiting a bett
model of their perception.

Rhythmic accents essentially correspond to long notes (agogic accents). To be precise, a no
gets an accent if it is clearly longer than the previous note, and the following nots does n:
deserve an accent by the same rule. The training methcd used to define the meaning
clearly longer, and the related psycho-acoustic research, were fully discussed in the C)
paper, so we will omit this discunssion here.

Melodic accents are related to particular patterns of pitch and duration. A search for specit
pitch patterms is made within sequences of notes of roughly equal duration. The patter
currently include stepwise ascending and descending sequences, and trills. Tunat
thresholds control the minimum length necessary for the pattern to firs. Sequences
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roughly equal duration may be extended to include a longer note at either end, and t
changes the length thresholds for pattern detection.

TITLE Chopin Prelude (Opus 28, Nol%S) ;
BARS 4/1 0/1 ;

KEY Df major ;
SIGNATURE Df: Bf Ef Af Df Gf ;

PARS
BEG DUR D PIT pr TRS;

d BAR 1;
.000 .800 » FS T- ~;
. 800 .256 < DS J- ~;
1.056 1.824 » A4 S+ R ;
2.880 .960 < B4 S+ ~
3 BAR 2
3.840 2.752 » CS S+ R ;
6.592 .9%2 > DS S+ ~
3 BAR 3; .
7.584 768 > ES S+ ~;
8.352 .256 « FS S+ ~
8.608 1.920 > GS S- R ;
10.528 .992 < Fs .. =~
3 BAR 4;
11.520 1,408 > FS S- R ;
12.928 .576 < ES 5- ~;
13.504 1.088 » DS S+ R
14.592 .224 = E5 S+ ~ ;
14,816 .192 = F5 §- ~;
15.008 .160 = ES S- ~
15.168 .160 = EffS5S S+ =~ ;
15,328 .192 = ES S+ ~
15.520 .160 < FS S+ ~
15.680 .256 ¢ GS S- ~
3 BAR S;
15.936 .864 > FS T- R
16. 800 .320 « BS J- ~ 3
17.120 1.824 > A4 S+ R ;
18.944 1.024 < B4 S+ ~
3 BAR 63
19.968 2.624 > CS S+ R ;
22.592 1.088 » DS S+ ~:
3 BAR 7
23. 680 .800 » ES S« =~ ;
24.480 .288 < F5 S+ ~
24.768 1.888 > GS S- R ;
26. 656 1.024 < FS .. -~
3 BAR 8;
27.680 1.536 > FS S- R ;
29. 216 .608 < ES S- ~;
29.824 2.160 > DS.. R
3 PARS

BEG DOUR D PIT pr TRS;

Figure §: Accents, Pitch, Key
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Pigure 5 shows the accents that were cbtained in the current example. The column label
shows duration relationships (clearly longer, about equal, clearly shorter) printed as >, =,
< respectively. The resulting rhythmic accents show with an R under the TRS heading.

Also under the TRS heading, an S is used to indicate a sequence accent, while s marks the o1
potes in the sequence. Similarly, T marks the beginning of a trill, and t marks the other n
in the trill. It is possible for a note to be both a rhythmic and a melodic accent (sequenc
trill). However, in this example, the simple melodic patterns recognized here do not occuw

The accents just determined provide a list of important events, which is useful in sev
ways. The first use is to guide the determination of the key in which the piece is writ
The current method assumes that the entire piece is in a single key. It is described in the
paper (see Appendix 1). In this case, the program has determined that the key is DI m2
and announces the five flats in the key signature (Bf Ef Af Df GI). The use of this
signature is implied in all subsequent printing of the pitch names. The interested reader:
compare the names of the pitches in Figure 4b, before the key is known (C 3ajor is use«
default), and Figure 5.

The second use of the accents is to provide anchors for the temporal structure. T.
important events, together with the first and the last event, constitute the initial struct
_anchors, used in the determination of the tempo line, which is our next topic. The in
bridges are the time spans from accent to accent (see Figure 6).

INITIAL BRIDGES

bridge from .000 to 1.056, dur 1. 0S6
bridge from 1.056 to 1J.840, dur 2.784
pridge from 3.840 to 8.608, dur 4.768
bridge from 8.608 to 11.520, dur 2. 912
bridge from 11.520 to 13.504, dur 1. 984
nridge from 13.504 to 15.936, dur  2.432
bridge from 15.936 to 17.120, dur 1. 184
bridge from 17.120 to 19.968, dur 2. 848
bridge from 19.968 to 24.768, dur 4,300
brid;e from 24.768 to 27.680, dur 2. 912
bridge from 27.680 to 29.824, dur 2. 144
bridge from 29.824 to l1.584, dur 2. 160

Figure §: Accent to Accent Intervals

2.3 Important Durations and Pulses

The CMJ paper (Appendix 1) went on from here to de'term.ine the tempo line, but the me
does not extend to syncopated rhythms, and we need an independent source of clues
tempo variation. These will be provided by what we call important durations.

There are two ways that a duration can become important. The first is to be the avi
duratic:: in a pulse train, which is a group of successive repeated durations. This inw
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thresholds for the maximum acceptable variation within the group. and for the mini
group length The notes included in a given pulse train will later be treated as if they w
the same duration.

The other way for a duration to be important is to occur frequently. This statist
approach is used in intervals (time ranges) not covered by pulse trains. If a time rang
very small, statistics would be worthless, and the important duration is propagated from
previous pulse train. If instead the time range is quite large, so that it could encompass a :
amount of global tempo fluctuation, it gets divided recursively untii the time range is st

enough.

The important duration for a given time range corresponds to the highest peak in a speci:
constructed histogram of the durations in the range. Figure 7 shows the last histog
obtained for the performance of the Chopin piece {the time rangs is from 24.5 to 32 seconc

A first peculiarity of this histogram is that we use a logarithmic scale for durations. Thi
because the ratios of durations are more important to the analysis than their differences.
discrete scale uses an integer number of divisions for every factor of 2 in duration, so t
ratios equal to a power of 2 correspond to a shift in index. In addition, since we use
divisions per factor of 2, ratios of 6; 3, 3/2, 3/4, ..., and their inverses also corresponc
integer shifts (with a negligible error). This is because the ratioc of 3/2 corresponds alm
exactly to 7 divisions on the scale, a fact that will not surprise anyone familiar with
construction of the equal tempered scale, in which the interval of a fifth (3/2) is v
closely approximated by 7 semitones.
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SMOOTHED HISTOGRAM OF LOG(DUR), tize range ([ 24.480 -- 31.984]

DURATION | DENSITY (pulse is 1.498)
.088 | :
.094 |
.099 |
. 108 |
L1111
.118 |
.125 |
L1321
. 140 |
. 149 |
L1587
. 167 |
L1771
. 187 |
. 198 |
.210 1
<223 |
. 236 |

. 250 jecaccnas

e 265 |emmemmcnmc e

.281 1 - -

. 297 §

315 |eemmrenanaaeea

334 | emcmmaee

. 354 e=-

.378 -

.397 |

.420 |

. 445 | .

.472 |- .

. 500 |eee=-

530 |wmmmnmancaaa

.561 |

. 595 |

.630 |

667 |

707 | emmeeeeca-

749 |wm== :
.794 |-~

841 jeeonee

891 |emccccccananaa
. 344 |

1. 000 |

1.259 | -

1,122 | ,

1. 189 |-=ccmmccccaca-

1. 260 [e-eccocccan-

1.335 |

1.414 |

1. 498 [ 2229229222022 2R 2R LR RRRERRLRRERRANRSS

1.587 |

Figure 7: Puise Detection, Sample Histogram
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A second peculiarity of the histograms is that a weighting scheme is used to emphasize lon;
notes. Without the weights, short notes would seem comparatively too important, si1
they occur much more frequently. Making the weights proportional to the duratic
themselves would instead favor the longer notes. The compromise used is to give duratio:
the weight w(D) = Ds«P, where the power P is chosen between O and 1 (the value P=0.4 ]
been chosen empirically).

Thirdly, histograms are smoothed. Each duration contributes to a number of neighbor ce
in the histogram. This amounts to a convolution of the unsmoothed histogram with a b
shaped curve of appropriate bandwith. The effect is a partial correction of quantizati
noise, and an averaging effect of moderately distant durations.

The important duration selected for a given time range is the highest peak in the smoott
histogram. Secondary peaks are significant as well. but are currently not used.

2.4 Pulse Line and Reference Unit

The important durations found in this analysis, from either of the available techniques, :
summarized in the pulse line (see Figure 8). This table gives for each important durati
called a puise for short, the pulse value, the time range over which it is active, the meth
used to compute it (pulse train or statistical profile) and the number of events upon whi
the pulse is based. In addition, successive pulses are compared, and guesses are m:
‘concerning their ratio. The next section explains how this is done. For example,
successive pulses are 0.37 and 0.71, one would interpret this as a change in metric unit b;
factor of 2/1, combined with tempo adjustment by the factor 0.71/(2*0.37) = 0.71/0.7«
0.986. . '

PULSE LINE

Time range Value count Pulse = Units = Norm (method used)

.000 -- 8,352 S .944 = 1/1 « 944 (profile)
8.352 -- 14,816 [ 1.000 = 1/1 « 1,000 (profile)
14,816 -- 15.680 S 173 s 1/6 « 1.037 (pulse train)
15. 680 -- 24, 480 6 1.000 = 171 =« 1,000 (profile)
24,480 -~ 31.984 4 1.498 = 3/72 = .999 (profile)

Figure 8: Summary of important Durations

Another decision is made from the combined set of pulses: the choice of a reference unit .
metric values. This unit is needed to express metric value hypotheses in terms of
consistent unit. All metric values from then on, beginning with those in the pulse line,
expressed in terms of the reference unit.

The reference unit is typically a half-note, a quarter-note or an eighth-note. Which one i
does not matter at this point. In the current example, the reference unit turns out to be
beat (quarter-note).
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The decision is made by choosing, among the pulses, one that has maximally sin
relationships with all other pulses. The simplest relationship is the 1:1 relationship. N
come 2:1 and 1:2. Relationships such as 3:4, 4:3, 1:8 or 6:1 more complex, but not as comg
as, say, 5:7 or 27:32. The topic of rational approximations and their complexity is discus
in the next section. The current scheme for choosing the reference unit, even thoug
handles many cases quite well, can be fooled by a rapid accelerando, sustained over
extended period of time. A better schems, whose implementation is planned, will integh
the rules used to makse pulse line decisions with similar rules concerning the tampo line.
latter are discussed in section 2.8.

2.5 Rational Approximation Generation

An important aspect of the operation of a transcription program is that it approximi
relationships between performed darations by simple metric proportions. Since the meth
used to generate rational approximations are critical to the success of the program,
discuss this topic in some detail.

To get started, suppose that we have a local estimate of the metric unit, say 1.5 seconds,
that we want to assign a metric value to a performed duration of 0.6 seconds. The r
0.6/1.5 = 0.4 is the target to be approximated by a reasonable fraction of the metric u
Hypotheses such as 1/2, 1/3 and 3/8 should definitely be considered. On the other hand, :
3/4 and 1/1 should probably be rejected for not being ciose encugh to the target. We wc
also reject 2/5, even though it is remarkably close to 0.4, if a stylistic constraint exclu
denominators with factors other than 2 and 3; in a different situation within the progr
or under different stylistic constraints, the ratio 2/5 might be perfectly acceptable, but
necessarily the best hypothesis.

The choice of rational approximations must take into account at least two criteria: close:
to the data (or fit) and simplicity of the fraction. The latter must be understood in term
how simple or natural the resulting musical notation would be. It is also clear that
context of a note, both locally (e.g., the durations of nearby notes) and globally (e.g., m«
hypotheses) should have a part in the final choice. Since most contextunal constraints can
be expressed until metric hypotheses are formulated over an entire region, we must rely ¢
rational approximation generator to supply a number of hypotheses, and postpone the ch
between the generated hypotheses until sufficient context has been acquired. A g
rational approximation generator is one that produces all reasonable hypotheses, and v
few unreasonabie ones, while being given little contextual information.

The following control parameters are supplied to the generator: a set of accsptable frac!
denominators, given explicitly or via generation rules; a set of constraints on numerat
(fractions are always expressed in lowest terms); a way to compars the simplicity of f
fractions; and a measure of the fit between a given real number and a fractic
approximation. The basic idea of the algorithm is to consider (at least implicitly) all poss
fractions N/D, to rate them by the two criteria of simplicity and fit, and to retain only
fractions which compare reasonably well with others in terms of both criteria.
comparison uses a suitable partial ordering of the two-dimensional space of criteria, basec
the given orderings of individual criteria. Only the hypotheses that are minimal in
partial ordering are retained.
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For the partial ordering in two dimensions, we currently use the standard cross-product
the (partial or total) orderings of individual criteria. We say that (x1,y1) dominates (x2,3
if if x1sx2 and y1lsy2, and (x1, y1) is not equal to (x2, y2). The selection of miniz
hypotheses amounts to the elimination of dominated hypotheses. :

When both criteria are totally ordered, the selection rule can be implemented wvi
efficiently, provided one can generate hypotheses in increasing order of one of the crite;
The program currently uses a scheme which allows more freedom in the choice of crite
and ordering relations, but still leads to a reasonable implementation. One maintains at
times a set of undominated hypotheses. A newly generated hypothesis is discarded if it
found to be dominated. Otherwise, it is added to the current set, which may cause ot
hypotheses to be discarded, if they become dominated.

Returning to the example, we want to find approximations for 0.4 (obtained as the ratio ¢
duration of 0.6 sec to a hypothesized local metric unit of 1.5 sec). Let us suppose that -
acceptablie denominators include 1, 2, 4, 8, 16, as well as 3, 6, 12, and that numerators

unconstrained. For the measure of fit, let us use absolute differencs, with the usual tc
order, and a worst fit threshold of 0.3. For intrinsic complexity, assume for now that
complexity of a reduced fraction N1/D1 is less or squal that of N2/D2 iff N1 divides N2 :
D1 divides D2. According to this partial ordering, which is a rather weak one, 1/2 is simp
than 3/2 or 1/4 or 1/6, but none of the last three fractions is simpler than another. Un
these conditions. the algorithm yields five approximations of 0.4. Ordered by increasing
(given in parentheses), they are: §/12 (.0168), 3/8 (.025), 7/16 (.0376), 1/3 (.066), and :
(.1). Note that 1/1 (.6) has not been considered because .6 exceeds the fit threshold of .3, :
that 1/4 (.15) has been discarded because it is dominated by 1/2 {.1).

Suppose that we used a stronger complexity ordering, according to which the complexity
N1/D1 is less or equal that of N2/D2 if N1sN2 and D1<D2. The effect would be to disc
7/18 (.0375), which is now dominated by 3/8 (.025), leaving us with the four hypothe:
&/12, 3/8, 1/3, and 1/2. If we also had a constraint on numerators which excludes 5,
would be left with three hypothesas, 3/8, 1/3 and 1/2.

The earlier result and its variations illustrate the range of behaviors of the system's ratio
approximation generator. The main point is that the generator operates on local informati
and leaves a small number of reasonable hypotheses for consideration in larger contexts. '
concept of dominance plays a major role in the construction of a good generator.

The program relies on the same generator for a variety of different tasks., by vary
parameters such as the acceptable numerators and denominators, the measure of complex
and the error thresholds. The most obvious use is in the gemeration of hypotheses
individual note values. We have discussed another use in the preceding section, ie,
construction of the pulse line. Further uses are discussed below and in the next section.

The actual program differs from the description above in minor ways. First, the genera
refrains from forming linear combinations of criteria in its selection rules, but it d
embody an overall rating, called the cost of the hypothesis, computed as a linear combinat
of closeness of fit and simplicity. The fractions returned ares ordered by increasing cost
heip calling routines when they need to make an easy decision among the retur
hypotheses.
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Second, the generator is not given as input the ratio dur 1/dur2 between the duration du
to be approximated, and the reference duration dur2. Instead, it is given both durations du
and dur2. This allows the program to deal with numbers expressed a known physical sc
(e.g. milliseconds) so that the uncertainty in the given durations can be taken into accou
The effect of throwing in small uncertainty margins is negligible when the durations
large. but in the case of small durations this tends to orient approximations towards simp
ones, which is desirable. For example, one may want to consider fewer distinct hypothe
for .08/1.0 than for .40/5.0, because smail differences in the first case are perceptua
indistinguishable.

Another property of the implementation is that the complexity measure for metric fractic
changes over time. The a priori measure (used before any context is available) is la
replaced by an a posteriori measure which takes context into account. For exam;
fractions such as 1/3 and 2/3 may become simpler than 1/4 or 1/2 after sufficient statisti
avidence of termary meter has been gathered. The implementation of this idea will
discussed in the sequel. \

2.8 Tempo Line Decisions

After this long digression, which allowed us to discuss the generation of ratio
approximations, we return to the step by step description of the program. So far, we h:
chosen a set of accentsd notes, soon to be used as structural anchors, and we have used
independent source of cues to determine important durations (called pulses) in success
time ranges. We have also astablished simple rational relationships between success
pulses, and chosen a reference pulse, which gives the unit in which aill metric values v
now be expressed.

The next step is to construct a line-segment approximation to the correspondencs betw:
physical time (the actual performance timings) and mausical time (the notated time). T
will be the initial tempo line. For the endpoints of the line segments, which we «
structural anchors, we use the attack times of accented notes (as well as the first and ]
attack). The problem at hand is thus to assign a metric value to each of the intarv
between structural anchors, called bridges.

The method we use reprasents a compromise between two types of clues. The first type
clue is that successive bridge lengths should be in simple rational relationships with e
other. The older version of the program, described in the CMJ paper, relied exclusively
this type of clue, which seemed sufficient for the 18th Century pieces considered. The n
for a second type of clue became obvious when we analyzed ragtimes and percussive mu
which have more syncopation. This is what led us to use pulses, and eventually to build
pulse line. According to this second clue to tempo, bridge lengths should be in sim
rational relationships to the local pulse values.

Since the rational approximation generator essentially trades closeness of fit for simplicit]
ratios, the simpler the ratios are, the more timing fluctuation is tolerated. This work
principle of the rational approximation generator seems to reflect a similar principle ab
how people perceive music. While the older program essentially relied on fixed threshold
tempo fluctuation from bridgs to bridge, the current version is much more adaptive.
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In order to keep things reasonably simple, the decisions are made from left to right, that
the number of units assigned to various bridges is determined in temporal order. In sc
cases, it might seem better to use a different order (safest first) but this would complic
the control structure a great deal, and make the program less stream-oriented.

The program combines the different available clues in the following way. Suppose we w
to assign to the current bridge, whose duration is D seconds, a rational number of refere:
units. It would seem that this is done by first applying the rational approximation genera
to D and U, where U is the local estimate of the reference unit, in seconds, and then someh
choosing one of the produced approximations. However, we do not have a single value ¢
to consider. The pulse line gives a local estimate PU of the duration on the reference m
Another estimate, BU, of the same quantity is based on past bridges: we divide the combi;
duration of the last N bridges by their combined numbers of units, which have been assig)
by recent decisions. A suitable value of N is chosen, typically N=2.

When using BU (resp., PU) for an estimate of the local reference unit, one deals with bridge
bridge (resp., bridge to pulse) tempo fluctuation. In this way, we gain access to -
information on which the two types of clues are based. The rational approximat:
generator is applied to obtain metric hypotheses for the bridge duration D, separately
both estimates BU and PU. The program then uses a number of rules to make its decisio
based on the hypothesis sets BH and PH returned by the generator. The rules form a s
production system. which is shown in Figure 8. The first rule which fires makes °
decision. No further rules ars evaluated.
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In evaluating the rules, we use the fsllowiang symbols:

- D is the duration of the bridge;

- PU is the local estimate of the reference unit, from the pulse line;

- BU {s the local estimate of the refereance unit, from previous bridges;

- approximate(D, U) returns a set of rational approximations of D/U.
The rules are defined below:

"Let PH = approximate (D, PD;
Let BH = approximate(D, BU);

STRONG AGREEMENT RULE:
IF (unique (BH) or unique (PH))
AND best (BH) = best(Ph)
THEN choose best (BH)

WEAX AGREEMENT RULE:
F stands_out (BH)
AND stands_out (PH)
AND best(BH) = best(FH)
THEN choose best (BH)

Let CU = (BU +» PN /2;
Let CH = approximate(D, CU);

UNIQUE COMPROMISE RULE:
IF unique (CH)
THEN choose best (CHD

SUBSET RULE:
[F unique (BH)
THEN choose best (BH)
ELSE [F unique (PH)
THEN choose best (PH)

INITIAL FALL-BACX RULE: :
IF there are no previous bridges
THEN choose best (CH)

COMBINED COST RULE:
choose_least_combined_cost_hyp._in (CH)

Figure S: Rule System for Tempo Line Decisions

In this figure, the predicate unique () is true if the set H of hypotheses contains a sing
member. The function best (H) returns the hypothesis with minimum cost in H. Cost mea
the linear combination of complexity and fit computed by the approximation numb
generator. Figure 10a shows the production rules in action on the Chopin example.

Aa -
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AT .000, bridge of length 1,056

PU 1s .944, guesses for 1.056 are
BU is .944, guesses for 1.056 are 1/1
STRONG AGREEMENT RULE =--> treat

AT 1.056, bridge of length 2.784

PU {s .944, guesses for 2.784 are 3/1
BU is 1.056, guesses for 2.784 are 5/2
CU i{s 1.000, guesses for 2.784 are 3/1
UNIQUE COMPROMISE RULE --> treat 2.784

AT 3.840, bridge of length 4,768

PU is .944, guesses for 4,768 are 5/1
BU is .960, guesses for 4.768 are
STRONG AGREEMENT RULE --> treat

AT 8.608, bridge of length 2.512

PU {s 1.000, guesses for 2.912 are
BU is .644, guesses for 2.912 are
STRONG AGREEMENT RULE --> treat 2.912

AT 11.520, bridge of length 1,984

PU is 1.000, guesses for 1.984 are
BU is .960, guesses for 1.984 are 2/1
STRONG AGREEMENT RULE --> treat

AT 13.504, bridge of length 2.432

PU is 1.037, guesses for 2.432 are 5/2
BU is .979, guesses for 2.432 are
STRONG AGREEMENT RULE --> treat 2.432

AT 15.936, bridge of length 1.184

PU is 1.000, guesses for 1,184 are
BU {s .981, guesses for 1.184 are
STRONG AGREEMENT RULE --> treat

AT 17 .120, bridge of length 2.848

PU is 1.000, guesses for 2.848 are
BU 1s 1. 033, guesses for 2.848 are
STRONG AGREEMENT RULE --~> treat 2.848

AT 19.968, bridge of length 4.800

PU is 1.000, guesses for 4,800 are 5/1
BU is 1.008, guesses for 4.800 are
- STRONG AGREEMENT RULE ~-> treat

AT 24.768, bridge of length 2.912

PU is .999, guesses for 2.912 are
BU is .956. guesses for 2.912 are
STRONG AGREEMENT RULE --> treat

AT 27,680, bridge of length 2.124

PU is .999, guesses for 2.144 are 2/1
BU is .964, guesses for 2.144 are
STRONG AGREEMENT RULE --> treat 2.144

AT 29,824, bridge of length 2.160

PU is .999, guesses for 2.160 are
BU {s 1.011, guesses for 2.160 are
STRONG AGREEME "I RULE --> treat

( .08792)
( .087%2)
as 1/1 units

( .02767)
(.1173D)
(.08625
as 3/1 units

( .06474)
( .06090)
as S/1 units

( .04151)
( .0383%6)
as 3/1 units

.00773)
(.0310D
as 2/1 unizs

(.12495), 2/1 (.16368)
( .0672%8) ‘
as 5/2 units

(.13862)
(.15268), 3/2 (.1917%
as 1/1 units

( .06391)
(.09791)
as J/1 units

( .0983%0)
( .10786)
as 5/1 units

( .04034)
( .02625)
as 3/1 units

( .06922)
(.10222)
as 2/1 units

(.07662)
( .06493)
as 2/1 units

Figure 10a: Tempo Line Decisions



Intelligent Analysis of Acoustic Signals

The combined cost rule, used only when ail alse fails, is not needed in the Chopin examp.
Figure 10b contains some excerpts from the analysis of a different example, the Moza
Sonata discussed in the CMJ paper, which illustrate the operation of the combined cost ru
This rule selects an hypothesis with minimum combined cost in CH, the set obtained from t
compromise estimate. The combined cost of hypothesis H for duration D is the sum of separa
costs, expressir.g the fact that one wants both a good relationship to CU, the duration of t
compromise reference unit, and to the duration and metric value of the previous brid;
Note that the hypothesis selected is not always the one prefarred by BU, PU or even CU ratiny
and that it does not always have the simplest relationship to the previous bridge eith:
Thus all these criteria carry some weight in the decision, but one resorts to numeric
combinations of ratings only when stronger forms of selection have all failed.
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AT 22.158, bridge of length 1.701
PU { . 235, guesses for 1.701 are 8/1 ( .07007),
BU 1s . 249, guesses for 1.701 are 7/1 ( .066095),
CU is- .242, guesses for 1.701 are 7/1 ( .05559),

cost combinations Left Right Ratio
.287 1701 . 169

1/1 7/1 1/7

. 070 . 056 . 10§

1/1 8/1 1/8

. 070 . 084 . 182

COMBINED COST RULE --> treat 1.701 as 7/1 units

“oe

AT 25.859, bricdge of length 2.084
PU is .223, guesses for 2.084 are 10/1 ( .09674),
BU is .247, guesses for 2.084 are 8/1 ( .04860),
CU is .235, guesses for 2.084 are S/1 ( .08068),

cost combinations Left Right Ratio
’ 2.000 2.084 . 960

8/1 9/1 8/9

. 01§ . 081 . 130

8/1 8/1 1/1

.015  .082  .054
COMBINED COST RULE --> treat 2.084 as 8/1 units

as e
s e e

AT 31.022, bridge of length 2.862
PU is .265, guesses for 2.862 are 11/1 ( .08466),
BU is .257, guesses for 2.862 are 12/1 ( .07357),

CU is .261, guesses for 2.862 are 11/1 ( .07297),
cost combinations Left Right Ratio

2.061 2.862 . 720
8/1 11/1 8/11

. 023 .073 . 044

8/1 12/71 2/3

. 023 . 085 121

COMBINED COST RULE --> treat 2.862 as 11/1 units

71«

. 07026)

6/1 ( .08751)
8/1 (.08404)

Sum of

. 230

. 306

9/1
9/1
8/1

Sum of

~esS

. 225

. 151

1271
1171 (
1271 «(

Sum of

. 140

Figure 10b: Tempo Line Decisions (use of combined cost rule)

costs

.09732)
. 11472)
.08163)

Costs

.09649)
. 08167
. 0851

costs
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The result of the successive tempo line decisions, for the Chopin exampls, is shown in Fi,
11, in the UNITS ADDED column. The UNITS TOTAL column shows the chosen metric t©
summed from the beginning of the piece. One can track the evolution of the tempo with
UNIT LENGTH, where the referencs unit is given both in seconds and in metronomic m
(number of units per minuts).

TEMPO LINE
REAL TIME UNITS UNIT LENGTH
(SEQ) (TOTAL) (ADDED) (SEQ) o)
. 000 0/1 /1 1. 086 §7
1. 056 /1 3/1 .928 65
3. 840 4/1 5/1 . 954 63
8. 608 9/1 /1 .971 62
11. 520 1271 2/1 . 992 60
13. 504 14/1 5/2 . 973 62
15.936 3372 1/1 1.184 s1
17.120 3572 3/ . 949 63
19.968 41/2 5/1 - L9640 63
24.768 81,2 3/1 . 971 62
7. 680 5772 2/1 1. 072 56
29. 824 61/2 2/1 1. 080 56
29. 824 65/2

Figure 11: Tempo Line (before modifications)

2.7 Tempo Line Modification

The tempo line decisions made so far are not final. In fact, since they were based on 1
criteria. no attempt had been made to cast them in the larger context of global me
regularities. This will be now be done.

First of all. the reference unit chosen is typically a rather small unit, e.g. an eight-nota .
quarter-note. A primitive form of metric regularity is represented by the choics of a lar
grouping unit — let us call it the base unit -- which captures periodicities roughly at
level of a bar (it could be also be two bars, or a hailf of one).

The base unit js determined by looking for periodicities in the tempo line, ie. in

distribution of metric bridge lengths. In order to collect possible pericds (candidate !
units), the program uses both individual bridge lengths, and the lengths resuiting o
associating up to three successive bridges. Local syncopation in the metric accents, whet
truly present in the music or resulting from erroneous decisions in the program, cre:
strange trees which obscure the forest (the metric hierarchy). These potential difficul
are alleviated to some degree by the use of local grouping, together with statistics

mutual support of simply related metric lengths. The method below, first described us
the current example, gives a first approximation of the metric hierarchy.

As shown in Figure 12, successive metric bridgs lengths are collected. and the sums of uj
3 successive lengths are formed. leaving out fractions which do not represent an inte;
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The statistic of how many times each number of units occurs is only mildly interesting.
the Chopin example, the three highest counts are obtained by 3, § and 8 metric units, e
with a count of 4. Next come 2 and 4 units, with counts of 3. A much more interest
statistic is obtained by the use of multiplier support. The idea is that 4 units, for exam;
becomes a better choice of the base unit if simple multiples (8, 12 or 16 units) and sim
divisors (1 or 2 units) also have high counts. Thus, we arrange for multipliers and divis
to contribute to candidate units, in proportion of their own count, but with a weight t.
depends on the multiplier or divisor chosen. Only powers of 2 and 3 are used he
representing a definite bias towards the commonly useful hierarchicai relationships.

STATISTICS FOR CHOICE OF BASE UNIT

bridge lengths (in reverse temporal order)
27y, 271, 371, S8/, 3/%, /3, S5/2, 2/1, 3/%, 5/%, 3/1, /1

ccunts of integral bridge lengths, cumulating up to 3 successive lengths

7/t ( 1.000), i0/1 ( 2.000), 1/1 ( 2.0000, 9/1 ( 2.000),
1171 ( 2.000), 4/1 ( 3.00%), 2/1 ( 3.000), 5/1 ( 4.000),
8/1 ( 4.72030), 3/1 ( 4.000)

counts augmented by multiplier support

7/1 ( 1.000), 11/1 ( 2.000), 9/1 ( 3.333), 10/1 ( 4.000),
S/1 (5.000), 3/1 (5.333), 1/1 ( 6.083), 8/1 ( 6.500),
2/1 ( 6.500), 4/1 ( 7.000)

selected base unit: 4/1

Figure 12: Choice of Base Unit

In the example, the highest rating (with multiplier support) is obtained by the candid
consisting of 4 reference units, and the program makes this the base unit. The next lov
ratings are 2 units, 8 units, and 1 unit. These are excellent choices for the piece, sinca "
base unit (4 units) turns out to be the bar, and the 2- and 1-unit divisions are the pro
subdivisions (the piece is in 4/4). Furthermore, the 8-unit grouping reflects the two-
structure present in the piece.

The base unit algorithm has been successful with a variety of pieces, distinct in meter (4
3/4 or 6/8) and style (common practice, ragtime, afro~cuban). The algorithm explained
far essentially produces a first draft of the metric hierarchy, to be refined by furt
examination of the macro-periodicities. We have not yet extended the approach to explici
spell out decisions about meter, but a major step is this direction has clearly been made.

For now, we use the chosen base unit for something rather mundane but quite useful. "
idea is to rearrange the tempo line into a more regular patterm, which reflects whene-
possible the desired groupings. Figure 13 is a trace of the rearrangement rules in action.
idea is to rearrange structural anchors from left to right as follows. If the metric length ¢
bridge exceeds the base unit, the program tries to find a structural anchor at a dividing po
that correspond to some multiple of the base unit. If several options are present, the t
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match is used. The division procsss may be repeated recursively. It stops either when
bridge length becomes less than or equal to the base unit, or when no good match is fo
that is, when there is no note close enough to the targst attack time. On the other
when the length of a bridge is strictly less than the base unit, and the next length is 1
multiple of the base unit, the rearrangement algorithm considers eliminating
intermediate anchor. This is done if another anchor point can be found, at a whole numb
base units ahead of the current position.

BRIDGE MODIFICATIONS

remove anchor at 1.056 to get a 4/1 unit bridge from .000 to 3.840
attenpting to divide 4/1 units between . 000 and 3. 840

attenyting to divide 5/1 units between 3.840 and 8. 608

( look for a break near 7.654)

( candidate at 7.584 ratic = 1.094)

divide the 5/1 unit bridge between 3. 840 and 8.608 az 4/1 units
bridge from 3.840 to 7.584

attenpting to divide 4/1 units between 3. 840 and 7.534
bridge from 7.584 to 8.608

remove anchor at 8.608 to get a 4/1 unit bridge frcm 7.584 to 11,520
attempting to divide 4/1 units between 7.584 and 11.520

remove anchor at 17.120 to get a 4/1 unit bridge from 15.936 to 19.968
attempting to divide 4/1 units between 15.936 and 15.968

attempting to divide 5/1 units between 19.968 and 24.768

( look for a break near 23.808 ) .

( candidate at 23.680 ratio = 1.172)

divide the S5/1 unit bridge between 19.968 and 24.768 at 4/1 units
bridge from 19.968 to 23.680

attempting to divide 4/1 units between 19.968 and 23.680
bridge from 23.680 to 24.768

remove anchor at 24.768 to get & 4/1 unit bridge from 23.680 to 27.680
attempting to divide 4/1 units between 23.680 and 27. 680
remove anchor at 29.824 to get a 4/1 unit bridge from 27.680 to 31.984
attesmpting to divide 4/1 units between 27.680 and 31,984

Figure 13: Rearrangement of Tempo Line

Many of the situations covered by the rearrangement algorithm do not actually come
this example. Nevertheless, the result, shown in Figure 14, is worth considering.
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TEMPO LINE

REAL TIME UNITS UNIT LENGTH
(SEQ) (TOTAL) (ADDED) - (SEC) oD
. 000 0/1 4/1 . 960 63
3. 840 4/1 4/1 . 936 64
7.584 8/1 4/1 - . 984 61
11.520 12/1 2/1 .992 60
13.504 14/1 5/2 . 973 §2
15. 936 3372 4/1 1. 008 60
19. 968 41/2 4/1 . 928 65
23. 680 49/2 4/1 1. 000 60
27. 680 5772 4/1 1. 076 56

29. 824 65/2

Figure 14: Tempo Line (after modifications)

It is easy to see the error that was made earlier, in the evaluation of bridge lengths. The ¢
bridge length is clearly wrong, and changing it to 2/1 would allows everything to fall
place. In Figure 11, we might have noticed that the metric position of accents lost
simplicity after the 5/2 bridge, but the nature of the error was not as cbvious as it is now

How did the program make this mistake? We have to reexamine Figure 10a, at the po
where the 5/2 length was decided upon (look for AT 13.504 in the printout). We see t
the bridge length D is 2.432. With the local pulse Pu = 1.000, approximations for 2.432, cal
PH earlier, are 6/2 and 2/1. Since §/2 is much closer to 2.432 than 2/1, even though -
latter is simpier, the cost (combination of fit and simplicity) of 5/2 turns out to be lov
than that of 2/1.

With the estimate based on previous bridges, things are rather worse, since the estimate £
.979 is lower than Pu, making 2.432 look even larger. The only hypothesis returned by
generator is §/2 this time. Since this is a unique answer, and it agrees with the t
hypothesis according to the other estimate, the strong agreement rule fires, and the prog:
chooses the 5/2 unit length for this bridge.

This is how the error happened, and it is difficult to see how it could have been avoided.
the performance of the piece, the septuplet was played at a much slower tempo than the1
of the piece, so slow in fact. that local criteria cannot make this appear as mers tern
fluctuation. Changes to the generator or the production system that would make 2/1 cc
ahead here would resuit in numerous errors in other contexts.

It thus seems adequate behavior for the program to first choose §/2 on the basis of I
information, and to question that choice later using a more global perspective. This typ«
reasoning, where feedback from higher levels is used to revise decisions made in a bottom-
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manner, seems necessary to achieve the desired robustness. We see here another instance
control pattern used in many places: make some decisions in a bottom-up (or teed-forw:
manner, gather the results in a more global context, extract pattarns at the higher 1le

rearrange the lower level on the basis of the higher pattern, and reevaluate some of
earlier decisions. .

In fact, the reevaluation part of the program has not been implemented yet. This is bec:
the base unit algorithm was introduced quite recently, and the improvements that depen
it have not been made yet. In the example, this means that the 5/2 bridge length is actu
not corrected to 2/1. The tempo line corrections have done a useful task, but have not 8
as far as they could have gone. The program may now use the revised tempo line to add
the assignment of metric values to individual notes.

2.8 Note Value Assignment ..

Once the tempo line has been determined, the problem of assigning rhythmic value:
individual notes becomes manageable, since it breaks down into independent problems,
for each bridge.

The first step is to generate rational approximations for each note duration. We use
estimates of the reference unit obtained from the revised tempo line.

Next, we consider bridges one at a time. If a particular bridge consists of, say, 5 notes,
has a metric length of 3 units, the problem is to distribute the 3 units over the 5 note
such a way that the cost of approximation of the notes is minimized. In general, -
involves a combinatorial search, since each note will usually have several poss
approximations.

Before carrying out the combinatorial search, however, the program tries to take advant
of the obvious cases. The least cost approximations for every note in a bridge are added

and if the sum turns out to be equal to the number of units in the bridge, we have obtain«
cheap solution.

The note list in Figure 15 summarizes the state of affairs that results aftsr this weak
economical hypothesis generator has been tried. Lot us examine the various fields display:

The Sdur column (Smoothed duration) is usually equal to the note duration (DUR).
differences between Sdur and DUR occur within pulse trains, whers Sdur is the average n
duration in the pulse train average. Here, there is one puise train in bar 4. The numbers
blank in the 3dur column are all equal to the previous number, .173, which is the aver
duration in the pulse train. This is part of the septuplet in the score.

In the 3u column (Bridge units) we find the metric length of each bridge, at the note wh
begins the bridge. The next column (Lu, for local unit) gives the duration of the refere
unit. Its value is printed at the beginning and end of the bridge, to indicate its scope. |
equivalent to a local tempo setting.

The next column (Raur for Relative duration) is the ratio S¢ur/unit, that is, the (smooth
note duration divided by the local reference unit. This is the target number for ratic
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approximations. The rational approximations themselves (there is a variable number
them) are found in the last field, aFprox. As with Sdur, numbers left blank indicate repetiti
_ of the previous number (within a pulse train).
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TITLE

BARS 4/1

0/1 ;3

XEY Df major ;
SIGNATURE Df: Bf Ef Af Df Gf ;

PARS

BEG DUR

d BAR 13
.000 .80¢
.800 .256
1. 056 1.824
2. 880 .960

3 BAR 2;
3. 840 2.7%52
6.592 .992

3 BAR 3;
7.584 .768
8,352 .25¢6
8.608 1.920
10.528 .992

3 BAR 4;
11.520 1,408
12.928 .876
13. 504 1.088
14. 5892
14. 816
15. ¢08
15. 168
15. 328
15. 520
15. 680
3 BAR S;
-15.936 . 864
16. 800 .320
17.120 1.824
18. 944 1,024

3 BAR 6;
19. 968 2.624
22.592 1.088

. 192

. 160
. 192
. 160
. 256

3 BAR 7;
23.680 . 800
24.480 .288
24.768 1.888
26. 656 1.024

3 BAR 8&;

7. 680 1.536
29.216 . 608
29.824 2.160

3 PARS

BEG DUR

. 224
160 -

PIT TRS Sdur

FS ~ .800
Bs ~ .256
A4 R 1.824
B4 ~ .960
C5 R 2.752
05 = .992
ES5 =~ .768
FS = .28§
G5 R 1.920
F§ ~ .992
FS R 1.408
E5 ~ .576
Eff5 R 1.088
ES ~ .224
F5 =~ .173
E5 ~
Ds -~
ES ~
F5 = .
GS ~ .256
F5 R .864
ps =~ .320
A4 R 1,824
B4 =~ 1.024
CS R 2.624
0s =~ 1.088
E5 = .800
F5 =~ .288
G5 R 1.888
F5 =~ 1.024
F5 R 1.536
E5 =~ .608
DS R 2.160

PIT TRS Sdur

Bu

E

NN
"

E

1

E -
=

N
"

wn

(]

E- 3
[

o~
re

E 3
NN NN NN NSNS SN N NNNNEN NN NN

—

3
-

Bu

Chopin Prelude (Opus 28, NoiS)

Lu .

. 960

. 960

. 936
. 936

. 984

. 984
. 992
2992
1973

.973
1.008

1. 008

.928
.928

1. 000

1. 060
1.076

Lu

Rdur

. 833
. 267
1. 900
1. 000

2. 940
1. 060

. 780
. 260
1. 951
1. 008

1. 419
. 581
1. 118
. 230
.178

. 263

. 857
. 317
1. 810
1. 016

2. 828
1.172

. 800
. 288
1. 883
1. 024

1. 428

. 565
2. 007

Rdur

VAL

oD 3 e )

3/1
/1

3/4

-
>-rs 5>

o3 ond +ad 0xd +~D 423 ¢=d +3 *) =3

LS R B KR )

w?
?

3/4
1/4
/1
/1

?

2/1

VAL

0K UVAL UMPOS
7 3/4 0/1
?7 174 /4
7?7 2/1 1/1
?7 w1 3/1
/I 4/1
/ /1 7/1
/ 374 8/1
/ /4 35/4
/21 9/1
/w1 11/14
? 72 1271
7 w2 27/2
7 /1 14/1
7 1/7 15/1
T 1/7 106/7
7 1/7 107/7
? 1/7 108/7
7 1/7 109/7
? 1/7 110/7
7T w7 17
7 3/4 16/1
7 1/4  67/4
7 21 17/1
7 w1 19/1
? 3IN 20/1
? /1 23/1
/ 3/4 24/1
/ 1/4 99/4
/2 25/1
/1 27/1
T 372 28/1
?7 172 59/2
/ /1 o/1

O0X UVAL UMPOS

approx;

(5/6, 3/4, 7/8, 1/1, 2,
(174, /3, 7/24, 1/2);
2/1);

(/1)

3/1)

(171

(3/4, 5/6, 273, 1/1%, 1,
(1/4, 1/3, 7/24);
(/1)

/1)

(372, 4/3, 2/1, 1/1);
(7712, /2, 2/3, 5/8);
(171, 7/6, S/4, 4/3);
(1/4, 5/24, 1/3)s.

(176, 5/24, /4, 1/3);
( same );

( same );

( same );

( sane );

(174, 1/3, 7/24, 1/2);
(7/8, §/6, 1/, 3/4, 2.
(173, 7724, 1/2);

271, 7/4, §5/3);

(1/71);

371, 8/

7/6, S/4, 1/1, 4/3, 3,
(374, S/6, 7/8, 2/3, 1,
(174, /3, 7/24, 1/2);
2/1);

(1/1);

(372, 4/3, 2/1);

(172, 7712, 2/3, 5/8);
(2/1);

4pprox;

Figure 15: Note List with Values Based on Straight Sums
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We recall that UVAL is an optional field taken directly from the input file, and that UMPOS
obtained by cumulating the UVAL values, starting at 0/1. This allows the program to print 1
bar lines. Again, these are only for debugging purposes.

At this point, the VAL column contains mostly question marks, indicating that an hypothe
" was not found using the cheap method outlined above. When an hypothesis is found, that
when the least cost approximations for the notes in a bridge add up to the bridgs length, 1
metric values used are shown in the VAL column. We see that bars 2, 3 and 7, and part of 1
8, fell in place that way. We can check these values against the user-provided values (1
score) and see that they are correct.

One reason to carry out a cheap analysis before a full-blown search of all possi
approximations is that we can use partial results in order to build contextual informati
for the peer pressure strategy. The idea is to obtain statistics from the "obvious" solutic
ohtained using weaker methods, in order to bias the rational approximation genera
towards finding more of the same values. Figure 16 shows the sort of statistics used he
In these statistics, all the values that are the first choice of the rational approximati
generator for some note receive a small weight, but the values retained in the VAL fi
receive a high weight.

METRIC CONTEXT

VALUE COUPQ\’T cost

171 . 100
2/1 8 111
1/4 7 . 125
1/6 S . 167
3/4 4 . 200
371 3 . 250
3/2 2 . 333
5/6 1 . 500
7/12 1 . 500
7/8 1 . $00
172 1 . 500
7/6 1 . 500
1/3 i . 500

Figure 16: Note Value Statistics

These statistics are used to alter the approximation generator's a priori idea of the simplic:
of fractions. The fractions that receive a high weight in the computed statistic tend
become simpler than those with a low weight, even though the a priori criteria are i
forgotten altogether. The rational approximation generator may then be invoked ane
with the a posteriori, or context-driven simplicity criterion which now takes peer pressi
into account. The cheap method is tried again. The results are shown in Figure 17, whict
to be compared with Figure 16. There are subtle differences in the approximatic
Zenerated, but the important fact is that bar 1 has now become obvious, as reflected in -
VAL fields. Tlis is because the lowest cost approximation for the first note is now 3/4 inst
of 5/6, due to peer pressure, allowing the sum of lowest cost approximations for this bric
to come out right. The peer pressure statistics are then updated to reflect the new isla:
of confidence. for the benefit of the next step. '
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TITLE

BARS 4/1

‘XEY Df major
SIGNATURE Df:

PARS

BEG DUR

3 BAR 1;
.000 ,800
.800 , 256
1. 056 1.824
2. 880 ,960

BAR 2;
3. 840 2.752
6.592 .992

d BAR 3;
7.584 768
8.352 .256
8. 608 1.920

10.528 .992

3 BAR 4

11.520 1.408
12.928 .576
13.504 1.088
14.592 .224
14,816 .132
15.008 .16Q
15.168 .160
15.328 .192
15.520 . 160
15. 680 .2556
3 BAR 5

15. 936 .864

16. 300 .320

17. 120 1.824

18. 844 1.024
3 BAR 63

19. 368 2.624

22.592 1.088
3 BAR 7;
23. 680 . 800
24. 480 . 288
24.768 1,888
26. 656 1.024
3 BAR 8§;
27. 680 1.536
29.216 .608
29. 824 2.160
3 PARS
BEG  DUR

871 3

"Bf Ef Af D2 Gf

PIT TRS Sdur

. 800

>
rS
.3

(2] o0
v Ut
toa &t ta

(1]

-

h

(%1
[ O R AN R R -]

. 256
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/1
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1/2
1/1
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1/7
1/7
177
1/7

3/4
174
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171
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0/1
3/4
/1
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35/4
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1271
27/2
14/1
15/1
106/7
107/7
108/7
109/7
110/7
11177

16/1
67/4
17/1
18/1

20/1
23/1

24/1
98/4
25/1
27721

28/1
$9/2
30/1

UVAL UMPOS approx;

(3/4,
(1/4,
(2/1)%
(/1)

5/6,

1/1, 7/
1/3,

7/724);

(374, /1);

(178, 1/3, 7/24);
2/1);

1/1);

372);
(7/12,
(1/1,
(1/4, 1/3,
(176, 1/4);
( sanpe );

( same );

( same );

( same );

(1/4, 173, 7/24);

(1/1, 7/8, 3/4, s/
(1/3, 1/4, 7/24);

1/2, 3/4, S
7/67;
5/24);

(37133
(276, 1/1);

{374, 576, 1/1);
(174, 173, 7/23);
(271)3
(1/1);

372);
(7712,
27133

1/2, 3/4);

0K UVAL UMPOS approx;

Figure 17: Note List with Revised Values Based on Straight Sums
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The next step attempts to finalize choices of metric values for the entire piece. Sinc
have hypotheses for the metric duration of each bridge, the choice of note values is lo
each bridge. For each note, we have a number of possible choices, which are the ra!
approximations formed earlier. The "cheap” method which paid attention only to the
cost approximations obtained only a few answers. Now we need to consider all the ava
approximations.

A branch and bound procedure is used to determine the optimal combination of hypothe
note values inside the bridge. Partial sums of the available note value hypotheses
rational approximations) are formed during a recursive search (from left to right i
bridge). An answer is found when recursion hits the end of the bridge, with a partia
equal to the metric length of the bridge. The answers obtained hypotheses whic
evaluated according to the same two criteria used in the approximation generator, simp
and degree of fit. Of course, the way these criteria are computed is quite different here.

Figure 18a gives a first example of the operation of the recursive search algorithm.
bridge consists of the notes in bar 6. There are 4 approximations for the first note, 3 fc
second, and 1 for the other two notes. Thus, the number of candidate partial su
4x3x1x1 = 12. Of these, only one gives the desired sum of 4 units, so this is the an
retained.

SEARCH IN BRIDGE FROM 15.936 TO 19.968 (GOAL SUM: 4/1)

PARS
BEG DUR PIT TRS Sdur Bu Lu Rdur VAL OK UVAL UMPCS approx;

d BAR §;
15.936 . 864 FS
16. 800 .320 DS
17,120 1.824 Ad
18. 544 1,024 B4

SEARCH STARTED

1/1 ves e ces Cutoff (large psum)

7/8 e vee vee Cutoff (large psum)

374 1/3 ves . Cutoff (large psum)
H] 1/4 2/1 1/1 cd= 4 err= ,.449

7724 ... e Cutoff (large psum)

6 vee ves von Cutoff (large psum)

3/4 16/t (1/1, 7/8, 1/4, 5/6);
174 6774 (1/3, 1/4, 7/24);

2/1 1771 (2/1);

1 19/1 (/1)

.864 4/1 1.008 .857
320 /. . 317
1.824 /7 . 1.810
1.024 / 1.Gu8 1.016

tm o
339D
R )

TN

S

SOLUTIONS RETAINED
>>> cd= 4 err= 449 cost= 1.048 3/4, 1/4, 2/1, 1/1

Figure 18a: A Simpie Example of Recursive Search

In most cases, search paths are not explored all the way to the last note of the bridge.
are cutoff rules which prune the search tree by interrupting the recursion. Wheneve:
found in the figure, there has been such a cutoff, and an explanation of what caused it.
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The cutoff rules are variants of the Q* algorithm. The first rule asks for a cutoff if tl
partial sum of approximations formed thus far, plus the minimum partial sum we may g
from the rest of the notes, exceed the target sum. This large partial sum rule is responsib
for cutoffs on all search paths in Figure 18a, except of course on the path leading to tl
solution. There is a small partial sum which is analogous to the previous rule, except th
the inequality is reversed, and it uses the maximum partial sum obtainable for the rest of t
notes. The minimum and maximum needed for this are computed once and for all before t!
search, in time linear with the number of notes in the bridge. Finally, there is a third cuto
rule which involves a pre-computed lower bound on the remaining cost. The rule prescrib
a cutof? if the costs so far, plus the minimum expected cost to completion (just mentione
exceed the cost of the best solution so far.

SEARCH IN BRIDGE FRCM 13.504 TO

PARS ,

BEZ  DUR PIT TRS Sdur Bu
13.504 1.088 DS R 1.088 S§/2
14,592 .224 55 =~ .224 /
14.816 .192 FS ~ .173 /
15.008 .160 ES =~ . /
15.168 .150 Eff5 =~ . /
15.328 .192 E5 ~ /
15.320 .160 F5 = /
15.680 .256 G5 ~ .256 /

SEARCH STARTED

1/1 174 1/6 /6 1/6  1/6
z z 174 174 174 ...
z 173 /6 1/6  1/6  1/6
: : 174 174 .. .

z 5/24 176 1/6 1/6 1/6
z 3 174 174 174 ...
76 1/ 1/6 0 1/6 1/6 176
: : 174 .. oL
z 173 vee eee e ..
" 5/24 1/6  1/6 1/6  1/6
: : 178 ... oL

SOLUTIONS RETAINED

>>> cd=s 12 err=

cd=

6 errs

.368 cost= 1,300
.674 cost= 1.339

Figure 18b:

15.936 (GOAL SUM: S/}

4pprox;

11,
(1/4,
(1/6,
( sane
( sanme
( same

( same )

(1/4,

1/4

Lu Rdur VAL 0K Uval UMPCS
L9723 1,118 ? ? 1/1 14/1
. . 230 ? 7 1/7 15/1
. .178 17 ? 177 10677
. . ? ? 1/7 107/7
. . ? ? 177 10877
. . ? ? 1/7 109/7
. ? ? 1/7 110/7
. 973 263 7 ? /7 11177

1/6 cae Cutoff (small psum)
e .o Cutoff (large psum)
1/6 1/4 wrong psum
H 1/3 cd= 6 err= .674
s 7/24 wrong psum
vee os Cutoff (large psum)
“ea oo Cutoff{ (small psum)
‘e eee Cutoff (large psum)
1/6 1/4 cd= 12 err= 368
3 1/3 wrong psuam
s 7/24 wrong psuam
‘e e Cutoff (large psum)
cee . Cutoff (large psum)
1/6 1/4 wrong psum
H 1/3 wrong psunm
H 7724 cda 24 err= 822
.o .e Cutoff (large psum)
7/6, 174, 1/6, 1/6, 1/6, 1/6, 1/6,
/1, 1/3, /6, /6, 1/6, 1/6, 1/6,

Another Example of Search

173

7/8);

1/3, §/24);
1/4);

b

)i

)3

173, 7/28);
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Examples of the second cutoff rule are found in Figure 18b, but the third rule does not ¢
into play i{n the current example. In Figure 18b, the bridge under consideration correspc
to the latter part of bar 4, where the score contains a septuplet. Since the current progra
not willing to consider denominators with prime factors other than 2 and 3, we expect s
difficuities. The trace of the search shows that 3 solutions are found:

cd= 6 err= .674 solutions 1/1, 1/3, 1/6, 1/6, 1/6, 1/6, 1/6, 1/3

cd= 12 err= .368 solution= 7/6, 1/4, 1/6, 1/6, 1/6, 1/6, 1/6, 1/4
cds 24 err= .822 solution= 7/6, 5/24, 1/6, 1/6, 1/6, 1/6, 1/6, 7/24

However, the summary after the trace of the search gives only two retained solutions. '
is due to selection by dominance relations: the third solution is dominated (by both o1
solutions). Here, we use the two criteria of fit to the data (err= ...) and complexity (cd=
The error criterion for an answer is the sum of the error criteria of the individual fractio

Simplicity . ratings are currently obtained from a rather naive notion of notati
complexity. Suppose a candidate answer for a target sum of 1/1 consists of the fractions
1/4, 1/6. 1/6 and 1/6. The largest unit that evenly divides all these fractions is 1/12. °
unit, often called the density referent in musical analyses, may be mathematically defi
using the common denominator of the given fractions, cd = 12, The simple comple:
measure based on the ¢d value is often adequate. but it does not capture the subtletie
notation. The main problem is that it is independent of the order of the fractions. A be
measure would consider 1/4, 1/86, i/4, 1/6, 1/6 to be more complex than the prev
example, which allows grouping as (1/4 + 1/4) + (1/6 + 1/6 + 1/6) and is thus easie
notate. For a detailed analysis, though, one must take into account the position of
current fragment in the global metric grid. An answer such as 1/4 + 1/2 + 1/4 is actu
more complex than 1/6 + 1/2 + 1/3 if we are already 1/3 after the bar. This partly expl
why we use the simpler measure: the more accurate one needs the precise knowiedge of
global metric position, which in turn depends on having obtained correct metric answezr
the left of the current position, a strong requirement that hinders the locality of
decisions.

In the example of Figure' 18b, we get common denominators of 1/12, 1/6 and 1
respectively. The use of dominance relations eliminates one of the answers, but we still h
two answers (neither of which is very good). In order to make a decision, we combine
two criteria into a single cost measure, obtaining:

cd= 12 err= .368 cost= 1.300 for 7/6, 1/4, 1/6, 1/6, 1/6, 1/6, 1/6, 1/4

cd = 6 err= . 674 cost= 1.389 for 1/1, 1/3, 1/6, 1/6, 1/6, 1/6, 1/6, 1/3

The weighting scheme placed a high enough weight on the fit to the data to make
musically absurd solution look better. Of course, the scheme had been trained using exam
where there was a correct answer to be found, which is not the case here, due to
septuplet.

A further cause of trouble at this spot, which was discussed in a previous section, is.that
length of the bridge should be 2/1. instead of the §/2 length we are currently using.
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Maybe the above discussion focused too heavily on a situation which appeared qu
desperate (if only because of the septuplet, and the fact it was played far from evenly, as
duration data show). However, this situation provided a way to bring many of the issues
the surfacs.

If we consider the entire excerpt, however, the results are quite good. In the final note .
(see Figure 19) the only trouble spot is the septuplet (with the note immediately preced:
it). It seems quite certain that a trained music student who does not know the piece wo'
also have difficulties at this spot, even though he/she would probably find a better w
around it that the program did.

All other notes in the piece recsived correct metric values. Furthermore, all pitches w
correctly evaluated. The key of D flat major is correct, and a single error was made in
naming of the notes. (The E double flat should have been called D natural, but the n
neighbor rule responsible for this has not yet been implemented).:: .
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TITLE Chopin Prelude (Opus 28, Nol$) ;

BARS 4/1 0/1 ;
XEY Df major ;
SIGNATURE Df: Bf Ef Af Df GZ ;

PARS
BEG DUR PIT TRS Sdur Bu Lu Rdur VAL

(o]
>

UVAL UMPOS approx;

000 .800 FS5 ~ .800 4/1 .960 .83 3/4 / 3I/4 Q/1 (3/4, S5/5, 1/1, 7/8);
800 .256 D5 ~ .25 / . 267 174 7/ 174  3/4 (1/4, 1/3, 7/24);
1.056 1.824 A4 R 1.824 / . 1.900 2/1 /7 /1 /71 (2Q71);
gk§8g .960 B4 ~ .960 / .960 1.000 /1 / /1 371 (/L)
3 P
3.840 2.752 L5 R 2.752 4/1 .936 2.940 3/1 / 3/1 471 (3/1);
gA§9§ .992 DS <~ .9892 / .936 1.060 /% / /1 /1 /1)
3 ;
7.584 .768 ES < .768 4/1 .984 .780 3/4 / I/4  8/1 (374, 1/1);
8.352 .256 FS5 ~ .25 / . «260 1/4 /7 174 35/4 (1/4, 1/3, 7/24);
8.608 1.920 G5 R 1.520 / . .95y /71 /v 271 /1 (2/1);
igA§2§ .992 FS T .%92 7/ .984 1.008 /1 / 1/1 1i/1 (i/13;
] H
11.520 1.408 F5 R 1.408 2/1 .992 1.419 3/2 / 3/2 1271 (3/2);
12.928 .576 ES ~ .576 / .992 .S581 /2 / /2 27/2 (7/12, 1/2, 3/4, S/8, 2/
13.504 1.088 D5 R 1.088 5/2 .973 1.118 76 7/6 1/1 14/1 (1/1, 7/6);
14,592 .224 ES ~ .224 / . <230 1/4 7/4 1/7 1S/1 (1/4, 1/3, 5/24);
14.816 .192 F5 =~ .173 / 178 1/6 7/6 1/7 106/7 (1/6, 1/4).
15.008 .16C ES ~ . / . 176 s 177 107/7 ( same );
15.168 .160 EfSS ~ . /. . 1/6 / 1/7 108/7 ( same );
15.328 .192 T / . 176 / 1/7 109/7 ( same ),
15.520 .160 F5 .~ . /. . 176 s 1/7 110/7 ( same );
1§A§82 .256 G5S T .256 / .973 .263 1/4 7/4 1/7 111/7 (i/4, 1/3 7/24);
2 3
15.936 .864 F5 R .864 4/1 1.008 .8S57 3/4 1/1 3/4 16/1 (1/1, -7/8, 3/4, 5/6);
16.800 .320 DS =~ .320 / . <317 174 /7 174 6774 (173, 1/4, 7/28);
17.120 1.824 A4 R 1.824 / . 1.810 2/1 / 2/1 1771 (2/1);
al§k§4g 1.024 B4 ~ 1,024 / 1.008 1.016 /1 / 1/1 18/1 (1/1);
1 4
19.968 2.624 C5 R 2.624 4/1 .928 2.828 3/%1 / 3/1 20/1 3/1);
2§AE9§ 1.088 DS ~ 1.088 /s .928 1.172 /1 / /1 2371 (776, 1/1);
3 H
23.680 .800 ES ~ .800 4/1 1.000 .8C0 3/4 / 3/4 2471 (3/4, 5/6, 1/1);
24,480 .288 F5 ~ .,288 / . .288 1/4 / 1/4 99/4 (1/4, 1/3, 7/24);
24,768 1.888 G5 R 1.888 / . 1.888 2/1 / 2/1 25/1 (2/1);
ZShgsg 1.024 F5 ~ 1.024 / 1,000 1.024 /1 / /1 27/1 (1/1);
3 ’
27.680 1.536 F5 R 1.536 4/1 1.076 1.428 3/2 / 372 28/1 (3/2);
29.216 .608 E5 ~ .608 / . .565 1/2 / 172 53/2 (7/12, 1/2, 3/%);
29.824 2.160 DS R 2.160 / . 2.007 271 / 2/% 30/1 (2/1);

3 PARS
BEG DUR PIT TRS Sdur Bu Lu Rdur VAL OK UVAL UMPOS approx;

Figure 19: Final Note List

The program does not currently make a formal decision regarding meter. The previ
discussion shows that we have essentially obtained the metric hierarchy, but we n
additional rules for labeling particular levels in the hierarchy as being the preferred bar :
beat level. Methods to resolve classic ambiguities (such as 3/4 vs 6/8 meter) are availai
but in some cases the choice is ultimately a matter of taste.
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37 Conclusions and Future Research

This project has been concerned with combining signal processing and knowledge-bas
‘systems to analyze digitized acoustic sound. We have developed a set of signal processi
tools which inciudes implementations of standard techniques as well as new algorithu
specifically designed for the project. This tool kit is used by the acoustic analysis compone
of our system to process the input signals and produce an event list. Each event is describ
by an attack time and a set of other parameters, such as pitch, amplitude and sour
identification. Knowledge-based techniques are used in the musical analysis component
the system to produce an annotated score of the original sound. )

Tests carried out with a variety of instruments and a variety of musical pieces,

monophonic, have shown the system to perform quite well over a range of situations. .
intuitive description of the level of performance achieved is that the system mak
relatively few errors, and more importantly, the errors made can be explained by t
presencs of a real difficulty in the piece, as opposed to some obscure quirk of processing. T
indicates that the system has the potential to handle reasonably well a wide. variety
transcription tasks.

Although much of the research has been directed to the particular domain of musi
analysis, the task is basically a perception task. The overall structure of the system, as w
as many of the methods grouped under the name of control strategles, deal with gene:
properties of perception systems rather than being specifically musical. The main property
that context is critical in analyzing the signals at all levels of description. Speci
knowledge about the domain is necessary to establish context, and use it, but many of t
methods we have devised, or the conclusions we have reached, apply to a broader class
probiems. '

In fact, we have confirmed our initial intuition that music is a particularly good domain
experiment with the concept of intelligent signal processing. Signals have a high signai-1
noise ratio, permitting a great detail of analysis; inputs of graded difficulty are easy
generate, and we have a great degree of comntrol over the various parameters, from 1
characteristics of the instruments to those of the performance, and the musical styls; 1
domain knowledge has aiready received considerable attention, both at the acoustic level a
at the various structural levels, and in some cases this knowledge has already been cast i
form suitable for computer implementation.

One major limitation in the current system is that there is little interaction between 1
acoustic analysis and the musical analysis subsystems. Two examples of major improveme:
that can be expected from a more integrated system are a more precise analysis
monophonic signals and the capability to process polyphonic material. Even w
monophonic data and a high speed special-purpose signal processor, thers are many attract
algorithms which cannot be used indiscriminately due to the computational cost. Furth
this cost varies directly with such variables as the effective sampling rate, the number
partials being processed. the time and frequency rescluticn required, etc. The selection of -
proper front-end algorithms and parameters to be used at each point in the data is
important resource allocation problem. With polyphonic inputs this resource limijtat
becomes so critical that one needs elaborate methods for automatically allocating resourc
In the current system, control strategies already carry out such a task within a sin
subsystem. but it will be necessary to extend their influence across the entire system.
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The current system's ability to process polyphonic signals is quite limited, and we do
expect that the current pipeline front-end would successfully analyze polyphonic exam,
of moderate difficulty. Moorer's analysis program described in his thesis (1877) was cap:
of handling a duo of guitars, provided that the lower voice and the higher voice w
always kept very clearly separated, and consonant intervals such as fifths and octaves w
simultanecus attacks were avoided. Ultimately, the removal of such limitaticns se
possible only in a system in which signal processing and musical context have an effect:
flexible mode of interaction.

Our.current research indicates that the problems of source segregation and identificat
will not be solved without the imclusion of techniques for uncovering patterns in
various partial descriptions of the data manipulated by the system. Thus, future researc
aimed at providing an extended framework for processing and representation (relatec
those developed for speech and vision tasks) which will support an improved ability
adapt to the patterns of any given example. We have already found useful conte
generating patterns at different levels in music, giving us confidence in the power of
approach, but there is much more to be done to systematize the control strategies and ar
them effectively across the entire span of levels of description, including feedback fi
high-level pattern recognition processes into signal analysis.

The current work continues the research effort described in this report towards

integration of a flexible and powerful framework for machine perception studies. Bey
the pursuit of performance goals on the specific task of transcribing polyphonic music,
are looking into ways of achieving a better separation of domain-dependent knowledge
general resource allocation strategies.
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