
EFFICIENTLY-VARIABLE NON-OVERSAMPLED ALGORITHMS IN

VIRTUAL-ANALOG MUSIC SYNTHESIS

—

A ROOT-LOCUS PERSPECTIVE

A DISSERTATION

SUBMITTED TO THE DEPARTMENT OF ELECTRICAL ENGINEERING

AND THE COMMITTEE ON GRADUATE STUDIES

OF STANFORD UNIVERSITY

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS

FOR THE DEGREE OF

DOCTOR OF PHILOSOPHY

Timothy Scott Stilson

June 2006

c© Copyright by Timothy Scott Stilson 2006

All Rights Reserved

ii

I certify that I have read this dissertation and that, in my opinion, it is fully ade-

quate in scope and quality as a dissertation for the degree of Doctor of Philosophy.

(Julius O. Smith III) Principal Adviser

I certify that I have read this dissertation and that, in my opinion, it is fully ade-

quate in scope and quality as a dissertation for the degree of Doctor of Philosophy.

(Stephen P. Boyd)

I certify that I have read this dissertation and that, in my opinion, it is fully ade-

quate in scope and quality as a dissertation for the degree of Doctor of Philosophy.

(Chris Chafe, Music)

Approved for the University Committee on Graduate Studies.

iii

iv

Abstract

This thesis summarizes several contributions to the areas of musical signal processing and virtual-

analog musical sound synthesis. In virtual analog music synthesis, the waveform oscillators and

the audio filters are usually required to be smoothly modulated, often to audio rates. As such,

efficient synthesis requires the design of efficiently variable algorithms for these synthesis blocks.

The design of efficiently variable filters requires the understanding of how they vary with their

parameters. The most popular virtual-analog filters are of a class (pole-variable filters) which vary

primarily via the motion of their poles. The Root Locus Method is proposed as a framework for

understanding the variation of such filters, and several filters are analyzed as a demonstration,

including popular analog filter types (the State-Variable Filter and the four-pole lowpass filter de-

signed by Robert Moog). Root locus analysis also suggests directions for designing filters, or may

be used directly in designs. This informs a series of experiments in creating digital filters in the

style of Moog’s lowpass filter, culminating in a few new designs.

The design of efficiently variable waveform generators is approached with the goal of reducing

aliasing artifacts in the generated waves. Popular waveforms in virtual analog synthesis are rich

in harmonics, and their analog counterparts have extremely wide bandwidths, such that care must

be taken when generating digital versions. A methodology is proposed whereby a useful subset

of the desired waveforms can be derived from a Bandlimited Impulse Train (BLIT) via linear op-

erations, which will preserve any bandlimiting which may exist in the BLIT. Further, methods for

implementing BLITs are explored and contrasted, including a method introduced by the author.

Finally, methods for rendering visualizations of root loci are reviewed; as such visualizations

are necessary in the use of the method as an analysis tool. A recent advance in implicit-function

rendering was found to be of particular use, and its application to locus rendering allowed the

creation of programs for interactive exploration of root loci and their behaviors, which assist in the

goal of building user intuition into variable-filter behavior.

v

Preface

I am an intuitionist. I have a strong belief in the power of intuitive understanding of systems and

of the usefulness therefore of methods for building intuition. I am also a visual thinker. As such,

I have a belief in the visualization of systems to help explain their behavior and build intuition

about it. I am also, not surprisingly, an enthusiast of mathematical and computer-generated art,

to the point that it was a toss-up as to whether I would pursue computer graphics or audio signal

processing in graduate school (I pursued computer architecture). Upon having to decide for post-

masters work, I chose musical signal processing over graphics, mainly on the fact that it was a

smaller world, and hence would probably have more opportunities for doing something new. Still,

I continued (and continue) to pursue advanced hobby-level exploration of graphics, visualization

of mathematical systems and the aesthetics of complexity.1 As such, even my research in audio was

subtly guided by the ability to produce “neat pictures” as by-products of the research.

Therefore, with the realization that certain filters in the new field of virtual analog music syn-

thesis could be interpreted in terms of root-locus, whose visual aesthetics I had always admired

anyway, I had a direction I could follow which would satisfy both of my interests.2 Visualization

of filter behavior (and of root-locus behavior in general) can be directly used for building intuition

into the complex behaviors of these systems. At the same time, adding experimentation into the

loop can often result in fortuitous leaps of understanding. This couples with a nearly unspoken

basic philosophy of much work done at CCRMA: exact models of a system need not be the final

answer if a cheaper and effectively indistinguishable approximation can be found, which leads to

a constant contemplation of the design tradeoffs in search of elegant yet efficient models of audio

systems. As such, these shaped the basic philosophy of this thesis:

• Build intuition on the problem. Visualize the system, visualize its behaviors. Hence the root

locus approach.

1See http://ccrma.stanford.edu/˜stilti/images/chaotic_attractors/nav.html for some examples.
2Hence an almost equal interest to be found in this thesis on the graphical issues of the root locus as with the signal-

processing issues of the filters and oscillators.

vi

vii

• Understand first, then imitate, or even extend. This is applied in this thesis by treating cer-

tain analog systems as “platonic types”, rather then specific circuits to be modeled. By un-

derstanding the basic concept of the system, we may later tackle deeper implementations,

though such deeper work may end up being done outside the confines of this thesis.

• Inexpensive implementations are of primary importance. Hacks are good if they work. Don’t

model something if it isn’t going to be perceived.

• If there is time, make nice pictures while you’re at it.

This thesis is organized as follows:

Chapter 1 first reviews the history and concepts of electronic and digital music synthesis, in par-

ticular virtual analog, then reviews digital audio filtering and discusses definitions of certain filter

properties. Next, overviews of variable-digital filter design and musical filter design are given.

Chapter 2 explores the use of Root Locus as a method for analyzing the variation of pole-

variable filters with their control coefficients. Special attention is paid to the primary filters of

Virtual Analog: the state-variable filter and the four-pole lowpass in the style of Moog’s voltage-

controlled-filter.

Chapter 3 tackles design problems in virtual-analog filters, keeping a root-locus perspective in

the analysis of the design issues and in suggesting design directions. The state-variable filter is re-

visited, and one or two extensions and variations explored, along with theories as to alternate ways

that the form could be derived. Discrete-time implementations of the Moog-style filter are then ex-

plored, first via the standard discretizations, then via further exploration purely in the discrete-time

domain, culminating in two particularly useful design concepts.

Chapter 4 discusses the implementation of waveform generators for virtual analog, with em-

phasis on reducing or eliminating aliasing, while keeping efficient modulatability. Existing meth-

ods are explored, and the concept of deriving desired waveforms from a single easily-calculated

bandlimited source (a “bandlimited impulse train” or BLIT) is discussed. Then, methods for gener-

ating BLITs are reviewed, and a particularly modulatable method based on sample-rate-conversion

techniques is described, together with related variations.

Appendix A starts with a review of Root Locus, its literature and rules, then expands to explore

the concept of higher-order root locus, which is encountered extensively in variable-filter analysis,

and some of its more basic properties are discussed. Later, methods for drawing root loci are

classified and described, including a particularly elegant and efficient method based on an implicit-

function rendering technique by Gabriel Taubin [260], which has proved invaluable in this research.

Appendix B explores how root locus can be used to provide insight into linear mode coupling,

and particularly to the coupling which produces the two-stage decay of piano tones. Several of the

analysis results of Gabriel Weinreich are replicated from a root-locus perspective, and the analysis

is particularly applied to note how coupling varies from harmonic to harmonic of the vibrating

viii

strings.

Appendix C discusses some exploratory work into applying simple control systems in music

synthesis to achieve various effects.

Appendix D describes a research result involving local modulation of cosine-type tuning pa-

rameters via terms of the series approximation.

Appendix E presents some musings on the relation between the direct-form filter forms and

allpass-filter implementations, including discussion of allpass filters in the DF-I style and some of

their numerical advantages.

Appendix F presents a method for fitting graphical and parametric EQ’s to filter curves.

Acknowledgements

I would like to thank my advisor, Professor Julius Smith, for providing the initial suggestions which

lead to the core of this research, during an evening party at the 1995 ICMC in Banff, and for not

giving up on the chance that I might actually finish this thesis after going off to start a company

only two years into my thesis work (a black-hole-like situation from which few Ph.D. students can

escape once pulled in).

I would like to thank the National Science Foundation, which supported me during the first

three years of my Masters and initial Ph.D. work.

I would like to thank CCRMA, for providing the atmosphere of artistic and technical interest

without which this type of research would be much more difficult, and for supporting me for a

few years. Additionally, I would like to thank the people at CCRMA, especially Chris Chafe, John

Chowning and Max Matthews, and the other students (and former students) who were at CCRMA

during the early days of my research (when I spent most of my time there), such as Perry Cook,

Scott Levine, Dave Berners, Gary Scavone, Stephen Bilbao, and in particular, Bill Putnam, with

whom I had many fun discussions on many diverse topics, and who disappeared into his own

black hole (called Universal Audio), soon after I did. I would also like to acknowledge Jonathan

Abel, another former CCRMA student who, though he was at his own startups during my early

time at CCRMA, became an encouraging force while I was finishing the thesis. And finally I would

like to acknowledge Aaron Masters, who finishes his EE Ph.D. thesis at CCRMA the same quarter

as I do, and thus has been a useful sounding board and co-commisserator about the travails of

finishing up a thesis.

I would like to thank the other members of the group that started out as the Sondius project

within CCRMA, and spun out to form Staccato Systems, which has supported me the rest of the

years this thesis has been cooking: Julius, David Jaffe, Scott VanDuyne, Pat Scandalis, Nick Porcaro,

and Joe Koepnick.

I would like to thank Analog Devices, for acquiring Staccato Systems and providing a level of

stability through the rocky years after the “dot-com crash,” and allowing me to continue working

in audio DSP.

I would like to thank those who I have worked with at Staccato Systems and ADI, and who

ix

x

helped make it a more enjoyable experience, in particular Sean Costello, Wayne Jackson and Denis

Labrecque, whose interest and excitement about sound synthesis often exceeded my own.

Finally I would like to acknowledge my family for continually asking how the writing was

coming (for over ten years), and in particular my father Walter E. Stilson and grandfather Walter

L. Stilson, neither of whom, unfortunately, survived to see it actually completed.

Contents

Abstract v

Preface vi

Acknowledgements ix

1 Musical Sound Synthesis and Variable Filters 1

1.1 Virtual-Analog Music Synthesis . 1

1.1.1 History . 1

1.1.2 Review of Synthesis Techniques . 3

1.1.3 What is “Virtual Analog”? . 7

1.2 Basic Filter Concepts . 8

1.2.1 Some Basic Filter Definitions . 12

1.3 Review of Filter Discretization Methods . 22

1.3.1 Common methods derived from numerical integration 22

1.3.2 Common methods not derived from numerical integration 30

1.3.3 Other Methods . 33

1.4 Review of Existing Variable Filter Methods . 37

1.4.1 FIR . 37

1.4.2 IIR . 38

1.4.3 FIR or IIR . 39

1.5 Musical Filters in Subtractive Synthesis . 42

1.5.1 History: Continuous-time Analog Filters . 42

1.5.2 Digital Musical Filters . 43

1.6 Filter topics that will not be covered deeply in this thesis 47

1.7 End Notes . 48

2 Root-Locus Interpretation of Pole-Variable Filters 50

2.1 Introduction . 50

xi

xii CONTENTS

2.1.1 Introduction to Root Locus . 50

2.1.2 But why? Isn’t Root Locus ancient history? . 51

2.1.3 Pole-Variable Filters . 52

2.2 Looking at Some Basic Filters . 52

2.2.1 “Circle Filters” . 53

2.2.2 Direct-Form All-Pole Filter . 56

2.3 Some Philosophy . 61

2.4 State-Variable Filter . 67

2.4.1 Review . 67

2.4.2 Comparing with Agarwal-Burrus form . 72

2.4.3 Other Discussion . 76

2.4.4 Root-Locus Interpretation of State-Variable Filter 76

2.5 Continuous-Time Moog-Style Filter . 83

2.5.1 Review . 83

2.5.2 Root-Locus Interpretation . 84

2.5.3 “Polygon Filters” . 86

2.5.4 Other Analyses . 87

3 Designing Filters Approximating Constant Q 89

3.1 Philosophy . 89

3.1.1 Problem Definition . 89

3.1.2 Requirements, Assumptions, Restrictions . 90

3.2 Revisiting the Digital State-Variable Filter . 97

3.2.1 Extending the usable frequency range . 97

3.2.2 Deriving a SVF Variant From Locus Tracks . 106

3.2.3 Derivation of SVF-like filter from Circle RL filter 116

3.2.4 Deriving Chamberlin Form from 2nd-order Root-Locus Primitives 119

3.2.5 Conclusions on the SVF section . 122

3.3 Moog-Style Discrete-Time Filter Design . 122

3.3.1 Basic discretizations . 124

3.3.2 Analyzing the Basic Discretizations . 145

3.3.3 Beyond the Compromise Filter . 164

3.3.4 Conclusions on the Moog-style Filter Section 192

4 Bandlimited Waveform Synthesis 196

4.1 Introduction . 196

4.2 Review . 197

4.2.1 Analog Synthesizer Waveforms . 197

CONTENTS xiii

4.2.2 Review of Design Philosophy . 198

4.2.3 Why Trivially-Calculated Discrete-Time Pulse Trains Alias 198

4.2.4 Bandlimited Synthesis Review . 204

4.2.5 Bandlimited Synthesis Review: Steady-State Algorithms 204

4.2.6 Bandlimited Synthesis Review: Non-Steady-State Algorithms 210

4.3 Deriving Waveforms from Other Waveforms . 213

4.3.1 Linear Operations . 213

4.3.2 Successive Integration of BLIT . 213

4.3.3 Handling DC Offsets . 218

4.3.4 Can DSF directly generate sawtooth, square, triangle waves? 220

4.4 Bandlimited Impulse Train (BLIT) Generation . 221

4.4.1 Steady-State Synthesis . 221

4.4.2 Generating Bipolar BLITs with SincM and DSF 223

4.4.3 Non-Steady-State Synthesis . 226

4.4.4 Modulatability . 242

4.5 Beyond BLIT . 247

4.5.1 BLEP, MinBLEP and PolyBLEP . 248

4.6 Summary . 248

A Root Locus Review and Rendering Methods 250

A.1 Introduction . 250

A.1.1 Root Locus Overview . 251

A.1.2 Review First-Order Locus . 254

A.1.3 Higher-Order Loci . 264

A.2 A Derivation of the “X” Locus . 270

A.2.1 Deriving a Moog-style constant-Q Locus . 272

A.2.2 An interesting extension of the “X” locus . 273

A.3 Locus Drawing Methods . 276

A.3.1 A Short Root-Locus-Variant Categorization . 276

A.3.2 A Short Taxonomy of Computer Locus Drawing Methods 277

A.3.3 Vector-Based Methods: Pole Tracking . 278

A.3.4 Pixel-Based Methods . 288

A.3.5 Hybrids . 309

B Root Locus and Piano Strings 312

B.1 Introduction . 312

B.2 Piano Strings . 313

B.3 Root Locus Analysis . 314

xiv CONTENTS

B.4 Coupled Modes . 315

B.5 Comparing with Weinreich’s Diagrams . 321

B.6 Coupled Strings . 324

B.6.1 Diversion: Where are the zeros? . 324

B.6.2 Loci . 335

B.7 Conclusions . 341

C Amplitude Control Systems 342

C.1 Amplitude Control in Music Synthesis . 342

C.1.1 Introduction . 342

C.1.2 Waveguide Systems . 343

C.1.3 Pseudo-Nonlinear VCF . 345

C.1.4 Summary . 346

D Local Cosine-Coefficient Modulation 348

D.1 Efficient Cosine-Coef Modulation . 348

D.1.1 Introduction . 348

D.1.2 Derivation . 349

D.1.3 Evaluating the Approximation . 350

D.1.4 Other Methods . 351

D.1.5 Summary . 352

E On The Classic Allpass Filter Forms 353

E.1 Relating Standard AP Forms and IIR Direct Forms . 353

E.1.1 DF1 . 354

E.1.2 DF2 . 355

E.1.3 TDF1 . 356

E.1.4 TDF2 . 357

E.2 Allpass Internal Gains . 357

E.2.1 Allpass I/O Gain (first-order) . 358

E.2.2 DF2 internal gain (first-order) . 358

E.2.3 TDF2 internal gain (first-order) . 359

E.3 TDF2 Lattice Form . 360

F Fitting Parametric EQs 363

F.1 Problem Statement . 363

F.1.1 Assumptions . 365

F.2 Derivation . 366

F.2.1 The Gain-Shape Requirement . 366

CONTENTS xv

F.2.2 Looking for an EQ formulation . 369

F.3 Graphic EQ Algorithm . 374

F.3.1 How do stage Qs affect the fit? . 377

F.4 Parametric EQ Algorithm . 377

F.4.1 Selecting fc and Q, Algorithm 1 . 379

F.4.2 Selecting fc and Q, Algorithm 2 . 379

F.5 Conclusions . 382

G Gallery 384

H Directions for Further Research 409

H.1 Variable Filters . 409

H.2 Bandlimited Waveform Synthesis . 410

H.3 Root Locus Drawing . 411

Bibliography 412

List of Tables

xvi

List of Figures

1.1 z = esT transforms of various constant-parameter contours into the z plane from the

s plane. 16

1.2 Comparison of Q definitions. Biquad with various zero arrangements (LP: both at

z = −1, BP: one at z = 1, other at z = −1, HP: both at z = 1, Rez: no zeros), plotted

against pole radii along lines of different angle in z plane. Top: θ = π/100, Left:

θ = π/10, Right: θ = π/3. 19

1.3 Comparison of Q definitions. Chamberlin SVF using various outputs for transfer-

function-based measurements, plotted against SVF qq coefficient. Top Left: ff = 0.01,

Top Right: ff = 0.3, Bottom Left: ff = 0.5, Bottom Right: ff = 1.0. 21

1.4 Top: Backward-Difference integrator. Bottom: Dark: Backward-Difference trans-

forms of various constant-parameter contours into the z plane from the s plane.

Light: the “ideal” z = esT transforms of the contours. 24

1.5 Top: Forward-Difference integrator. Bottom: Dark: Forward-Difference transforms

of various constant-parameter contours into the z plane from the s plane. Light: the

“ideal” z = esT transforms of the contours. 26

1.6 Top: Bilinear-Transform integrator (DF1). Bottom: Dark: Bilinear transforms of vari-

ous constant-parameter contours into the z plane from the s plane. Light: the “ideal”

z = esT transforms of the contours. 28

1.7 Root Locus of a pole/zero-mapped system is not the same as the z = esT map of the

original system’s root locus. 31

1.8 “Higher-Order Bilinear” transformations. Left to Right, Top to Bottom: N=1, 2, 3, 4.

Note how the “first wrap” curves get closer and closer to the z = esT curves. 35

1.9 Convergence of two approximations of ex: Top row: (1−x/n)n (n=4, 10, 50). Bottom

Row: ((1 − x/2n)/(1 + x/2n))n (n=2, 4, 10). 36

2.1 “Circle Filters”. Filters set up directly to have a useful root locus (in this case a

constant-bandwidth variable filter). Left: Type 1, Right: Type 2, two possible imple-

mentations. 53

xvii

xviii LIST OF FIGURES

2.2 Circle Filter loci. Left: Type 1, Right: Type 2. 54

2.3 Circle Filter loci in r. Top: Type 1, Bottom: Type 2. Left to right: k = 0.01, k = 0.2,

k = 1, k = 4. 55

2.4 A discrete-time one-pole filter . 56

2.5 One-pole filter. Locus in d1 ≥ 0. The locus stays on the real axis. The locus in d1 < 0

heads towards z→ +∞. The locus in d1 > 0 heads towards z→ −∞. 56

2.6 A discrete-time two-pole filter. 57

2.7 Direct-Form two-pole filter. Locus in d2 ≥ 0. The locus in d2 < 0 stays on the real axis

and heads away from the poles towards z→ ±∞. 58

2.8 Possible stable pole locations of a direct-form twopole, d1 and d2 quantized to mul-

tiples of 0.02. 58

2.9 Direct-Form two-pole filter: Root Locus in d1. Top: d2 > 0, Bottom: d2 < 0. 59

2.10 Direct-Form three-pole filter: Variation Root Loci in d3 (left), d2 (center), and d1

(right). Black: coef>0, Gray: coef<0. Dots: poles for base configuration of d1 =

−0.5, d2 = −0.5, d3 = 0.5. 61

2.11 Basic root locus trajectories for two classes of discrete-time root-locus filters. Left: the

locus “goes out” and hence controls Q or bandwidth; Right: the locus “goes around”

and hence controls fc. 62

2.12 Offsetting a one-pole filter’s coefficient by one can give a filter which is based on an

integrator rather than a delay, much like in δ-operator, and in the state-variable filter.

This is most obvious with a forward-difference integrator (top row). 67

2.13 State-Variable Filter Forms: Top: Dutilleux Form (as typically presented), Bottom:

Chamberlin Form . 68

2.14 Minimal Dutilleux Form . 69

2.15 converting from Chamberlin to Dutilleux Form. Note that the final difference is just

a delay in the lowpass output. 70

2.16 Agarwal-Burrus Form . 72

2.17 Relating Agarwal-Burrus Form to Chamberlin From (nearly) 73

2.18 Diagram for Q coefficient construction in modified Agarwal-Burrus form. 75

2.19 Continuous-time state-variable filter . 76

2.20 Continuous-Time State-Variable Filter: Root Locus in k1. Top: a > 0, Bottom: a < 0. . 78

2.21 Continuous-Time State-Variable Filter: 2nd-order root locus in a. 78

2.22 Discrete-Time “X” Filter: another basic Root-Locus filter. 79

2.23 Possible stable pole locations of an ‘X’ filter, both coefficients quantized to multiples

of 0.02. 80

2.24 Discrete-Time State-Variable Filter: Root Loci in qq. Left: ff = 1/2, Right: ff = 1.

Gray: qq < 0 . 81

LIST OF FIGURES xix

2.25 Discrete-Time State-Variable Filter: Root Loci in ff. Top Left: qq = 0.1, Top Right:

qq = 0.5, Bottom Left: qq = 1, Bottom Right: qq = 1.8. Gray: ff < 0. 82

2.26 Family of State-variable filter root loci in ff, for various 0 < qq < 2. 83

2.27 Ideal Moog-Style Filter . 84

2.28 Continuous-Time Moog-Style Filter: Root Locus in k. 85

2.29 Continuous-Time Moog-Style Filter: Root Loci in a. Left: k = 0.1, Middle: k = 1,

Right: k = 3. Gray: a < 0. Dots: roots for a particular value of a. 85

2.30 “Polygon Filters”. Extensions of the Moog-Filter idea to other numbers of onepole

filters. Shown: 2, 3, 5, and 6 filters in the loop. Gray: k < 0. The dots show the

pole locations for a particular k, and demonstrate the polygons which give rise to

the name for this class of filters. 87

3.1 Using tuning tables for 2-parameter filters. Left: 2-D tables for each coefficient,

which can theoretically tune perfectly. Right: three 1-D tables, which are assumed to

be sufficient. 92

3.2 State-Variable Filter Contours . 98

3.3 State-Variable Filter Pole Radii vs. tuning coefficient ff, various Q settings between

1/2 and very high Q. Thick lines: complex poles. Thin lines: real poles. The standard

fs/6 limit is denoted by the dotted vertical line. 99

3.4 State-Variable Filter Pole Radii: ff clamped to 2 − qq (i.e., stop the poles when they

hit the real axis). Note that once clamped, the pole stops moving. This is designated

by the dot at the end of the trace. Unfortunately, this clamping doesn’t allow any

motion of ff at all when qq = 2 . 100

3.5 State-Variable Filter Pole Radii: ff clamped to
√

qq2 + 4 − qq (the stability boundary) 102

3.6 State-Variable Filter Pole Radii: ff clamped to 1/qq (when a pole hits z = 0). The

problem is we don’t know which pole has hit z = 0, and for high Q, it is the wrong

pole, so we still get instability. 102

3.7 State-Variable Filter Pole Radii: Hybrid Clamping: ff clamped to 1/qq when qq > 1,

and to 2 − qq when qq < 1. 103

3.8 State-Variable Filter Pole Radii: ff clamped to 0.2qq2 + 2 − qq. 104

3.9 State-Variable Filter Pole Radii: ff clamped to 0.15qq2 + 2 − qq. 105

3.10 State-Variable Filter Contours, showing proposed ff-limiting polynomials 105

3.11 Root Loci in the t parameter, state-variable-filter variant. Left to right, top to bottom:

α = 0.01, 0.1, 1.0, 4.0. (t > 0) . 108

3.12 Complex-pole and stability boundaries of state-variable filter variant. 109

3.13 A “Direct-Form” implementation of a system which has D + kN1 + k2N2 = 0 as its

root locus. 109

3.14 Initial steps in creating a block diagram for this state-variable-filter variant. 110

xx LIST OF FIGURES

3.15 A block-diagram realization of this state-variable-filter variant. 111

3.16 A block-diagram realization of this state-variable-filter variant, with possible out-

puts shown. 111

3.17 Measured pole Q vs. qq for random qq and ff values (only plotting complex poles).

Left: Chamberlin Filter, line: 1/qq. Right: Variation, line: 0.5/qq. 112

3.18 State-Variable Variation Pole Radii: Left: no clamping. Right: ff clamped to where

the poles hit the real axis. 113

3.19 Comparing highpass, bandpass, lowpass frequency responses of this variation against

those of the Chamberlin form. Thick lines: the variation. Thin lines: Chamberlin

Form. Left: Q=5, Right: Q=0.75 . 114

3.20 State-variable filter variant, 3rd-order in t. Left to right, top to bottom: α = 0.01, 0.1, 0.2, 0.4, 0.5, 0.6, 1.0, 4.0.

For α < 0.5, 0 < t < 2, for α > 0.5, 0 < t < 1/α. 115

3.21 State-variable filter variant, 4th-order in t. Left to right: α = 0.1, 0.5, 0.75, 2.0. (−10 <

t < 10) . 115

3.22 Modifying a Type 1 Circle Filter into a form similar to Chamberlin form 117

3.23 SVF-like 2nd-order root-locus exploration. Top Row: moving N1 root closer to the

doubled D roots. Bottom Row: N1 on top of one D root, moving other D root closer.

Black: k > 0, grey: k < 0. 119

3.24 SVF-like 2nd-order root-locus exploration. Top Row: moving a finite N2 root closer

to the D roots. Bottom Row: changing the scale on N1. 120

3.25 Deriving Chamberlin form from 2nd-order root-locus form. 121

3.26 Basic block diagram terminology for the Moog-style digital filters. 125

3.27 z = esT transforms of the 45-degree “X” traces of a continuous-time Moog-style filter. 126

3.28 Backward-difference transform of ideal Moog-style filter: First-order loci in k for

various p between p = −1 and p = 0. 127

3.29 Backward-difference transform of ideal Moog-style filter: Fourth-order loci in p (full

range of p) for k = 1. ’x’: roots of D(z), ’o’: roots of N4(z), squares: roots of N1(z)

through N3(z). 128

3.30 Backward-difference transform of ideal Moog-style filter: Fourth-order loci in p (−1 <

p < 1) for k = 1 (Left) and k = 4 (Right). ’x’: roots of D(z), ’o’: roots of N4(z),

squares: roots of N1(z) through N3(z). 129

3.31 Backward-difference with a delay: First-order loci in k for various p between p = −1

and p = −1/3. 130

3.32 Backward-difference with a delay: Fourth-order loci in p (−1 < p < 0) for various k:

Top Left: k = 0.25, Top Right: k = 1, Bottom Left: k = 4, Bottom Right: k = 10. ’x’:

roots of D(z), ’o’: roots of N4(z), squares: roots of N1(z) through N3(z). 131

LIST OF FIGURES xxi

3.33 Backward-difference with a delay: Top: Loop gain (k) required to hit unit circle, vs.

p. Bottom Left: Loop gain vs. pole angle at the unit circle. Bottom Right: Tuning

curve (p vs. θ at the unit circle). 132

3.34 Forward-difference: First-order loci in k for various p between p = −1 and p = 1. . . 133

3.35 Forward-difference: Top: Loop gain (k) required to hit unit circle, vs. p. Bottom Left:

Loop gain vs. pole angle at the unit circle. Bottom Right: Tuning curve (p vs. θ at

the unit circle). 134

3.36 Bilinear Transform: First-order loci in k for various p between p = −1 and p = 1. . . 135

3.37 Bilinear Transform: Fourth-order loci in p (−1 ≤ p ≤ 1) for various k: Top Left: k = 1

(in this plot, p sweeps full range, to show that the traces are indeed circles), Top

Right: k = 1/4, Bottom Left: k = 1, Bottom Right: k = 4. ’x’: roots of D(z), ’o’: roots

of N4(z), squares: roots of N1(z) through N3(z). 136

3.38 Bilinear Transform: Top: Loop gain (k) required to hit unit circle, vs. p. Bottom Left:

Loop gain vs. pole angle at the unit circle. Bottom Right: Tuning curve (p vs. θ at

the unit circle). Nice curves, but the filter has a delay-free loop. 137

3.39 Bilinear Transform with delay: First-order loci in k for various p between p = −1 and

p = 1. 138

3.40 Bilinear Transform with delay: Top: Loop gain (k) required to hit unit circle, vs. p.

Bottom Left: Loop gain vs. pole angle at the unit circle. Bottom Right: Tuning curve

(p vs. θ at the unit circle). 139

3.41 Bilinear Transform with delay: Tuning curve. Circles: 2 sin(θ/2)−1, Line: experimentally-

derived tuning curve. 140

3.42 Bilinear Transform: Fourth-order loci in p (−1 ≤ p ≤ 1) for various k: Top Left:

k = 1/4, Top Right: k = 1, Bottom Left: k = 2, Bottom Right: k = 4. ’x’: roots of D(z),

’o’: roots of N4(z), squares: roots of N1(z) through N3(z). 141

3.43 Pole/Zero Placement (3 zeros at z = 0, one at z→∞): First-order loci in k for various

p between p = −1 and p = 1. 142

3.44 Pole/Zero Placement (3 zeros at z = 0, one at z→∞): Top: Loop gain (k) required to

hit unit circle, vs. p. Bottom Left: Loop gain vs. pole angle at the unit circle. Bottom

Right: Tuning curve (p vs. θ at the unit circle). 143

3.45 Pole/Zero Placement: Fourth-order loci in p (−1 ≤ p ≤ 1) for various k: Top Left:

k = 1/4, Top Right: k = 1, Bottom Left: k = 2, Bottom Right: k = 4. ’x’: roots of D(z),

’o’: roots of N4(z), squares: roots of N1(z) through N3(z). 144

3.46 Q vs. freq plot for Chamberlin state-variable filter. Thick lines: ff sweeps for various

values of qq. Thin lines: qq sweeps for various values of ff. Only the complex-poles

region of operation (i.e. ff < 2 − qq) is shown, as the pole-angle definition of Q is

being used. 146

xxii LIST OF FIGURES

3.47 Q vs. freq plot for Chamberlin state-variable filter, lower Q range. 147

3.48 Backward Difference with Delay: Raw filter (no Lookup tables). Top Left: Q vs. p,

wide Q range. Top Right: Q vs. p, narrow Q range. Bottom Left: representative fre-

quency responses for a p sweep (k = 3.5). Bottom Right: Pole traces (Dark: constant

k, Light: constant p) (−1 < p < 0). 149

3.49 Backward Difference with Delay: Using separation table shown in Figure 3.33. Top

Left: Q vs. p, wide Q range. Top Right: Q vs. p, narrow Q range. Bottom Left:

representative frequency responses for a p sweep (k = 0.8f(p)). Bottom Right: Pole

traces (Dark: constant k, Light: constant p). 150

3.50 Bilinear Transform with Delay: Raw filter (no Lookup tables). Top Left: Q vs. p,

wide Q range. Top Right: Q vs. p, narrow Q range. Bottom Left: representative

frequency responses for a p sweep (k = 3) (light traces: unstable filters). Bottom

Right: Pole traces (Dark: constant k, Light: constant p). 151

3.51 Bilinear Transform with Delay: Using separation table shown in Figure 3.40. Top

Left: Q vs. p, wide Q range. Top Right: Q vs. p, narrow Q range. Bottom Left:

representative frequency responses for a p sweep (k = 0.8f(p)). Bottom Right: Pole

traces (Dark: constant k, Light: constant p). 152

3.52 Pole Placement (Three zeros on z = −1, one zero at z → ∞): Raw filter (no Lookup

tables). Top Left: Q vs. p, wideQ range. Top Right: Q vs. p, narrowQ range. Bottom

Left: representative frequency responses for a p sweep (k = 3) (light traces: unstable

filters). Bottom Right: Pole traces (Dark: constant k, Light: constant p). 153

3.53 Pole Placement: Using separation table shown in Figure 3.44. Top Left: Q vs. p, wide

Q range. Top Right: Q vs. p, narrow Q range. Bottom Left: representative frequency

responses for a p sweep (k = 0.8f(p)). Bottom Right: Pole traces (Dark: constant k,

Light: constant p). 154

3.54 Left: The family of gain curves for filters between the Delayed Backward-Difference

Filter (top curve) and the Delayed Bilinear-Transformed Filter (bottom curve). In-

termediate filters have all their zeros on an intermediate location between z = 0 and

z = −1. Right: p limit as a function of open-loop zero location. 156

3.55 Frames from an animation of the Q/f space (“High-Q” range: vertical axis goes up

to Q=10000) for various open-loop zeros (raw filters, no separation tables). Left to

right: zeros at -0.25, -0.3, -0.325, -0.333. Max gain: 4.0. 157

3.56 Copy of Figure 3.54, with the -0.3 curve highlighted. 158

3.57 Compromise Filter: First-order loci in k for various p between p = −1 and p = 0.3. . 159

3.58 Compromise Filter: Top: Loop gain (k) required to hit unit circle, vs. p. Bottom Left:

Loop gain vs. pole angle at the unit circle. Bottom Right: Tuning curve (p vs. θ at

the unit circle). 159

LIST OF FIGURES xxiii

3.59 Compromise Filter: Fourth-order loci in p (−1 ≤ p ≤ 0.3) for various k: Top Left:

k = 1/4, Top Right: k = 1, Bottom Left: k = 2, Bottom Right: k = 4. ’x’: roots of D(z),

’o’: roots of N4(z), squares: roots of N1(z) through N3(z). 160

3.60 Compromise Filter: Raw filter (no Lookup tables). Top Left: Q vs. p, wide Q range.

Top Right: Q vs. p, narrowQ range. Bottom Left: representative frequency responses

for a p sweep (k = 3.5). Bottom Right: Pole traces (Dark: constant k, Light: constant

p). 161

3.61 Compromise Filter, Using separation table shown in Figure 3.58. Top Left: Q vs. p,

wide Q range. Top Right: Q vs. p, narrow Q range. Bottom Left: representative fre-

quency responses for a p sweep (k = 3.5). Bottom Right: Pole traces (Dark: constant

k, Light: constant p). 162

3.62 C pseudocode for an implementation of the Compromise Filter. 163

3.63 Loci families for a system consisting of two first-order allpass filters in a loop (with

a delay to make the loop implementable). Left: Loci in feedback gain for various all-

pass poles between −0.95 and 0.95. Right: Loci in pole location for various feedback

gains between 0.0 and 1.0. 165

3.64 Manual attempt at fitting a constant-Q trajectory using real open-loop roots as opti-

mization variables. Left: locus, Right: Q . 168

3.65 Newton-Fractals and details for various first-order root-loci. 169

3.66 Newton’s method on a root locus (1st-order in k): . 170

3.67 Separation curves for modified pole-placement-transform filter. Open-loop zeros

ranging from 0.25 (top) to 0.5 (bottom). The separation curve for the Compromise

filter is superimposed on top (thick line) . 176

3.68 First-order loci in k for various p between p = −1 and p = 1. Left-to-right, top-to-

bottom: Four zeros on z = 0 (backward-difference with no delay), three zeros on

z = 0 (backward-difference with delay), two zeros on z = 0, one zero on z = 0, and

no finite zeros (i.e., fwddiff). 178

3.69 Same as Figure 3.68, but with bilinear onepoles rather than backward-difference (i.e.,

finite open-loop zeros at z = −1 rather than z = 0). 178

3.70 Separation-table families (various open-loop zero locations between z = 0 and z =

−1). Top: Two finite zeros and two at infinity. Bottom: One finite zero and three at

infinity. 179

3.71 Compromise variation with optimized open-loop zero locations [-0.2650, -0.2784, -

0.2951, -0.3091]. Top: Separation Curve (Compromise filter separation curve shown

in dashed line). Bottom: Q vs. p (compare against Figure 3.60). 181

xxiv LIST OF FIGURES

3.72 “X1” Filter. Open-loop zeros moving as a first-order polynomial with respect to p.

Top: Loop gain (k) required to hit unit circle, vs. p. Bottom Left: Loop gain vs. pole

angle at the unit circle. Bottom Right: Tuning curve (p vs. θ at the unit circle). 184

3.73 X1 Filter: First-order loci in k for various p between p = −1 and p = 0.29 (max of

tuning curve is at p = 0.21). 184

3.74 X1 Filter: Eighth-order loci in p (−1 ≤ p ≤ 0.33333) for various k: Top Left: k =

kmax/16, Top Right: k = kmax/4, Bottom Left: k = kmax/2, Bottom Right: k = kmax.

Using the DC end of the separation curve for kmax. ’x’: roots of D(z), ’o’: roots of

N8(z), squares: roots of N1(z) through N7(z). 185

3.75 X1 Filter (raw, no Lookup tables). Q vs. p, wide range. Top Left: kmax set to

max value of separation curve (0.9541). Top Right: using mean of separation curve

(0.9536). Lower Left: using p = −1 value (0.95346). Lower Right: using min of

separation curve (0.9532). 187

3.76 X1 Filter, k(Q) approximation. Dots: Measured Q vs. x (where k = kmax(1 − x)).
Straight Line: 2/x, Lower Line: 2/x − 1.5. This plot obtained using kmax = 0.95346,

the DC value of the separation curve. Q measured at frequencies near DC. 188

3.77 X1 Filter, k(Q) approximation with inaccurate kmax. This plot obtained using kmax =

0.9532, the minimum value of the separation curve. 188

3.78 X1 Filter: Raw filter (no Lookup tables). Left: Q vs. p, narrow Q range. Right:

representative frequency responses for a p sweep (k = 0.75 kmax, using mean value

of separation curve for kmax). 189

3.79 X1 Filter (raw, no Lookup tables). Pole traces. Dark: constant k, Light: constant p.

Left: −1 < p < 1, Right: −1 < p < 0.21. 190

3.80 C pseudocode for an implementation of the X1 Filter. 191

3.81 Three-stage moog-style filter, bilinear Transform with delay: First-order loci in k for

various p between p = −1 and p = 1. 192

3.82 Three-stage filter following the “X1” design method. Open-loop zeros moving as

a first-order polynomial with respect to p. Top: Loop gain (k) required to hit unit

circle, vs. p. Bottom Left: Loop gain vs. pole angle at the unit circle. Bottom Right:

Tuning curve (p vs. θ at the unit circle). 193

3.83 Three-stage filter following the “X1” design method: Raw filter (no Lookup tables).

Top Left: Q vs. p, wide Q range, nomalized to DC value of separation curve. Top

Right: normalized to maximum value of separation curve. Bottom Left: represen-

tative frequency responses for a p sweep (k = 0.8kmax). Bottom Right: Pole traces

(Dark: constant k, Light: constant p). 194

4.1 Rounded-Time Impulse Train as a Sampled Version of an Ideal Rectangular Pulse Train199

LIST OF FIGURES xxv

4.2 Top: Spectrum of a rounded-time impulse train with a frequency of 0.1828fs. Bot-

tom: Spectrum of a rounded-time square wave of the same frequency. 201

4.3 Spectra of Trivial Sawtooth and Square-Wave Signals, Low Frequency, note how the

aliased harmonics wrap back and forth in the spectrum between the “correct” har-

monics . 202

4.4 Spectra of Trivial Sawtooth and Square-Wave Signals, High Frequency. The aliased

harmonics are quite prominent, and would be very audible. 203

4.5 Direct Sawtooth Generation . 214

4.6 Generating a sawtooth. A BLIT (upper signal) is integrated (with the DC value

removed) to get a sawtooth (lower signal). 214

4.7 Generating a rectangle wave. A bipolar BLIT (upper signal) is integrated to get a

rectangle wave (lower signal). 216

4.8 Rectangle and Triangle Generation . 217

4.9 Generating a triangle wave. A rectangle wave (upper signal) is integrated to get a

triange wave (lower signal). 218

4.10 Top: SincM with M=9, P=9.6. Bottom: SincM with M=10, P=9.6. 223

4.11 Top: Two-sided spectra of the signals in Figure 4.10. Top: SincM with M=9, P=9.6.

Bottom: SincM with M=10, P=9.6. 224

4.12 Using cosine-DSF to generate BLIT . 225

4.13 DSF: half-cycle shift . 225

4.14 50% duty-cycle BP-BLIT using DSF . 226

4.15 Using a complex multiplier in DSF to generate BP-BLIT 227

4.16 Effect of number of samples per sinc zero crossing on BLIT-SWS noise floor (linearly

interpolated). 32-zero crossings, corner pulled back to (0.9Fs/2), Kaiser window

(β = 20 to get extremely low noise floor from the window). Top: 32 samples per zero

crossing, Middle: 128 samples, Bottom: 1024 samples. 229

4.17 Effect of window (i.e., filter design) on BLIT-SWS noise floor. 32-zero crossings, 1024

samples per zero crossing, corner pulled back to 0.9fs/2. Top: Blackmann-Harris

window, Middle: Kaiser Window, β = 3.5, Bottom: Kaiser Window, β = 20 (note

slower rolloff of the aliasing components due to the large β). 230

4.18 Comparing number of harmonics to number of overlapped pulse instances for a

pulse 8 samples long. 232

4.19 Top: Spectrum of rounded-time impulse train with a line drawn connecting the

peaks of both the desired harmonics and the first string of aliased harmonics (“NIIT”

stands for “Nearest-Integer Impulse Train”). Bottom: Spectrogram of a logarithmic

frequency sweep. 235

xxvi LIST OF FIGURES

4.20 Top: Spectrum of linear-interpolation impulse train with a line drawn connecting

the peaks of both the desired harmonics and the first string of aliased harmonics.

Bottom: Spectrogram of a logarithmic frequency sweep. 236

4.21 Top: Spectrum of windowed-sinc interpolated, window 8 sinc zero-crossings wide.

Bottom: Spectrogram of a logarithmic frequency sweep. 237

4.22 Top: Spectrum of windowed-sinc interpolated, window 16 sinc zero-crossings wide.

Bottom: Spectrogram of a logarithmic frequency sweep. 238

4.23 Top: Spectrum of windowed-sinc interpolated, window 32 sinc zero-crossings wide.

Bottom: Spectrogram of a logarithmic frequency sweep. 239

4.24 Top: Spectrum of windowed-sinc interpolated, window 32 sinc zero-crossings wide,

sinc function dilated to lower cutoff frequency to 0.9fs/2. Bottom: Spectrogram of a

logarithmic frequency sweep. 240

4.25 Spectrograms of logarithmic frequency sweeps. Top: SincM: Note clicks when har-

monics disappear. Bottom: Octave-spaced bank of wavetables, linear interpolation

between tables across top octave. 241

4.26 A particularly bad modulation for a steady-state waveform: a sudden transition

from a period of 9 to 21. Top: Theoretical sum of actual sincs (approximated by 1000

sincs on each side at the correct locations), Middle: SincM (thin line is the theoretical

curve of the top graph), Bottom: Sum of triangle-windowed sincs with a width of 20. 243

4.27 A sudden amplitude transition from 1 to 0. Top: Theoretical sum of actual sincs

(approximated by 1000 sincs on each side at the correct amplitudes), Middle: SincM,

post-modulated (thin line is the theoretical curve of the top graph), Bottom: Sum of

triangle-windowed sincs. 244

4.28 Spectrograms of amplitude modulation of a 6500 Hz impulse train with a sweeping

modulation frequency . 246

4.29 The effect of not interpolating the modulating signal to the subsample pulse loca-

tions. Note the increased noise floor. 247

A.1 Linear feedback system drawn in Root-Locus form. 254

A.2 Root Locus for a system consisting of feedback around an FIR filter whose taps are a

31-point Hann window. 260

A.3 Root Locus for a system consisting of feedback around an integer-length delay of 30

samples (as in a Karplus-Strong string model or a Flanger. 261

A.4 Root Locus for a system consisting of feedback around an delay of 29.5 samples,

implemented using linear interpolation. Dots: k = −1 (which together with the

negative feedback gives a positive loop gain) . 262

LIST OF FIGURES xxvii

A.5 Root Loci for a system consisting of feedback around delays between 5 and 6 sam-

ples, implemented using allpass interpolation. left-to-right, top-to-bottom: allpass

coefficient = 0, -0.25, -0.75, -0.95 . 263

A.6 A 2nd-order locus lives within the envelope of three 1st-order loci. 265

A.7 Top: A 2nd-order locus, dark: k > 0, light: k < 0. Bottom Right: one of the solutions

of quadratic equation. Bottom Left, the other solution. 267

A.8 Locus of Figure A.6 with various scales on N2 between 10−6 and 106. 268

A.9 Locus of Figure A.7 with various scales on N2: Top Left: 10−5, Top Right: 10−1, Bot-

tom Left: 102, Bottom Right: 105. 269

A.10 Loci of (s − 1)2 + αk(s − 1) + k2 = 0 for (left to right) α = 2, α = 1.98, α = 0.3, α = 0.

Range: −2 ≤ Re(s), Im(s) ≤ 2 . 274

A.11 Loci of (s − 1)2n + αk(s − 1)n + k2 = 0 for (left to right) α = 2, α = 1.98, α = 0.3, α = 0.

Top: n = 2, bottom: n = 3. Range of plots: −2 ≤ Re(s), Im(s) ≤ 2 275

A.12 Root locus sensitivity in k. Left: a first-order locus, Middle and Right: two deriva-

tions of the sensitivity functions, plotted for each of the tracks vs. k. 281

A.13 A 2nd-order locus rendered with a root-finder-based method using adaptive k sub-

division, with three different settings of the adaptation tolerance. Left: very loose,

Middle: medium, Right: very tight. Visited/rendered points are marked with dots. . 282

A.14 Detail on the Newton-fractal of a situation where two complex poles have just split

off the real axis. The previous locations (and hence their predicted locations) are still

on the real axis. This image color-codes the roots at which various starting-points in

the plane end up after a number of iterations of Newton’s method. Very little of the

area on or the real axis actually ends up either of the two complex poles (at the top

center and bottom center of the image). 287

A.15 First-order locus (s4 −s/10)+k(s3 +1) = 0 rendered using Taubin’s-method renderer

(−2 < Im(s),Re(s) < 2). Top Left: Full locus (both signs of k). Top Right: 180◦ locus.

Bottom Left: positive and negative k denoted by gray levels. Bottom Right: debug-

ging plot showing visited points in the recursion (note that this particular renderer is

conservative about discarding space, so it visits more points than might be necessary).292

A.16 Taubin’s Method: various resolutions. Top Left: 16x16. Top Right: 32x32. Bottom

Left: 128x128. Bottom Right: 512x512. Note how distance approximation start break-

ing down at lower resolutions (especially noticeable is the antialiasing spreading out

beyond one pixel’s width). 293

xxviii LIST OF FIGURES

A.17 Taubin’s Method: various line thicknesses (256x256). Top Left: 0.1 pixels, Top Right:

5 pixels. Bottom Left: 20 pixels. Bottom Right: 30 pixels. The previous two figures

used the default linewidth of 2. Note how distance approximation also breaks down

as the thickness gets larger (especially noticeable: antialiasing spreading out). Also

note that the algorithm does not render extremely thin lines as disappearing, due to

the particulars of the implementation of the antialiasing algorithm. 294

A.18 Attempting Taubin’s method in 3D on the 2nd-order locus (s3 − s2/2 + 1) + k(s3 −
s2/2 − 1) + k2(s4 + 2) = 0. Various tradeoffs on scaling the k range versus the s range

and resolution. 296

A.19 Attempting Taubin’s method in 3D on the 2nd-order locus, D,N1,N2 set to a partic-

ular random 15th-order locus. Note how the “blobs” can end up filling the plane. . . 297

A.20 Problems with certain loci in Taubin’s method. Left: D(s) = s2,N1(s) = s,N2(s) =

0.5. Right: N2(s) changed to .001s + 0.5. 299

A.21 Left: a random 2nd-order root locus. Right: the same locus rendered using warped

axes (freq, Q) (assuming fs = 48kHz). 300

A.22 Screenshot of second-order root-locus explorer with additional live (freq,Q) display,

rendered using Taubin’s method. 301

A.23 Fourth-order locus with numerical problems in rendering. Left: z plane, Right:

(freq,Q) plane. Note how issues near z = 1 are magnified, as z → 1 occupies the

whole left edge of the (freq,Q) plane. 301

A.24 Ray tracing implicit function δ2 = ε for 2nd-order locus (s4 + 2) + k(s3 − s2/2 + 1) +

k2(s3 − s2/2 − 1) = 0, using Taubin’s 2nd-order distance approximation and a k range

−10 < k < 10 . 303

A.25 The “hard edges” of the L∞-norm surface project down to certain complex-coefficient

root loci. 305

A.26 Ray Tracing zeroth-order distance approximation (|D + kN1 + k2N2|∞ = ε) using

rays parallel to k axis: Top: First-Order in k (Left: Surface normal estimate based

on L2 norm, Right: Surface normal based on L∞ norm). Middle: Second-order in k.

Bottom: larger value of ε. (same loci as previous examples). 306

A.27 Ray Tracing Taubin’s distance approximation using rays parallel to k axis: Top: First-

Order in k, different ε. Bottom: Second-order in k, different ε. (same loci as previous

examples). 308

A.28 Root Loci rendered using Matlab’s contour function. Left: full locus. Right: 180◦

locus. 310

B.1 Linear feedback system drawn in Root-Locus Form 314

B.2 Simple Coupling of Two Systems . 316

B.3 Sample 2-Coupled-Mode Loci . 317

LIST OF FIGURES xxix

B.4 Pole locations at various gains along a locus, for the system of Equation B.5. plus: k

= 2, dot: k=7, star: k=10, diamond: k=20 (p1 = 50j, p2 = 60j, φ = π/1000) 317

B.5 Impulse responses for the pole sets in Figure B.4. 318

B.6 Rectified impulse responses for various two-stage closed-loop pole configurations.

Top: poles on real axis, two stage exponential decay; Upper Middle: poles off real

axis (with a complementary pair assumed), two stage decay at the pole frequencies;

Lower Middle: one pole offset in frequency, some cancellation as the decay ampli-

tudes cross; Bottom: Three poles, one fast, two slow, note beating in 2ndstage. 319

B.7 The shape of the coupling locus is essentially independent of the mistuning, but the

coupling strength is not. All the above cases have the same coupling gain k = 7.

The coupled poles lie at the intersection of the root locus and the magnitude contour

|GH| = 1/k (or |D(s)/N(s)| = k). 320

B.8 k-Loci as mistuning changes, in the style of Weinreich’s mistuning experiments. The

roots for this particular value of k trace a 2nd-order root locus in the mistuning amount.322

B.9 A 2nd-order Root Locus in mistuning (Equation B.10). ’x’: roots of [C(s)(C(s)+2ks)],

squares: roots of [2b(C(s) + ks)], ’o’: roots of [C(s) + ks]. Black: δ > 0, Gray: δ < 0 . 323

B.10 Comparison with Weinreich’s Frequency vs. Mistuning Diagrams. Two poles, one

moving. 325

B.11 Comparison with Weinreich’s Frequency vs. Mistuning Diagrams. Three poles, one

moving, weak coupling. 326

B.12 Comparison with Weinreich’s Frequency vs. Mistuning Diagrams. Three poles, one

moving, strong coupling. 327

B.13 Comparison with Weinreich’s Frequency vs. Mistuning Diagrams. Three poles, two

moving, weak coupling. 328

B.14 Comparison with Weinreich’s Frequency vs. Mistuning Diagrams. Three poles, two

moving, strong coupling. 329

B.15 Waveguide representation of N coupled strings, and rearranged into Root-Locus form330

B.16 Zero locations resulting from the sum of 6 random complex poles. 330

B.17 Zero locations resulting from the sum of 6 complex poles, one of the poles varying

phase. 331

B.18 Zero locations resulting from the sum of 6 complex poles, two of the poles varying

phase. Left: random values. Right: gridded . 332

B.19 Coupling root locus for a sum of poles with no extra phase, and the coupled pole

locations for a particular coupling gain. 332

B.20 Zero locations for a sum of a series of discrete poles, on the locations of harmonics of

two detuned strings. (The axes are rotated so that the positive imaginary axis points

to the right) . 333

xxx LIST OF FIGURES

B.21 Zero locations for a sum of two products of poles, on the locations of harmonics of

two detuned strings. 334

B.22 String feedforward phase delays taken into account. 334

B.23 Numerical experiment showing poles and zeros of summed string-like transfer func-

tions. 334

B.24 String Loci, left: two strings, real coupling, middle: two strings, one-pole Gload, right:

three strings, one-pole Gload. 335

B.25 Coupling Loci of two coupled strings, real coupling, no damping. Note how the low

harmonics are strongly coupled, but high harmonics are not. 337

B.26 Two strings, frequency-dependent coupling phase and gain. 338

B.27 Three strings, frequency-dependent coupling phase and gain. 339

B.28 Three strings, frequency-dependent coupling phase and gain, and more complicated

damping. 340

C.1 Diagram of amplitude control of a typical model, along with a typical controller. . . 344

C.2 Example envelopes from an amplitude-controlled waveguide model. 345

C.3 Various amplitude controls applied to a linear VCF. 345

C.4 Sawtooth frequency sweeps through (top to bottom): VCF, gain-controlled VCF, Q-

controlled VCF. 346

C.5 Comparison of spectral effects of Q control vs. gain control. 347

D.1 Modulating c, l to r: no modulation, exact modulation, 1 + α2 d approximation. . . . 350

D.2 Evaluating the approximation across frequency ratios (α) from 0 to 2 (up one octave) 351

D.3 Frequency deviation characteristics for more trivial coefficient variations. 352

E.1 The Standard Direct Form Biquad Implementations 353

E.2 Four Standard ways of Implementing a “First-Order” Allpass Filter. 354

E.3 Worst-case gains vs. allpass coefficient, first-order DF2 and TDF2 forms. 360

E.4 These three forms are exactly equivalent. Top: The standard IIR lattice section, Mid-

dle: DF2 IIR allpass filter, Bottom: Drawn in a common allpass style. 361

E.5 Second-order Lattice, drawn in the same forms. Note where “inner” sections are

placed in the IIR and allpass forms. 361

E.6 These three forms are exactly equivalent. Top: TDF2 IIR lattice section, Middle: TDF2

IIR allpass filter, Bottom: Drawn in a common allpass style. 362

E.7 Second-order Lattice, drawn in the TDF2 forms. 362

F.1 Stage frequency-response overlap in typical Graphic EQ 364

F.2 Total response, showing the over-gain effect of overlap. 364

F.3 Tradeoff in stage Q between “wiggle” and how far the overlap extends the total gain. 365

LIST OF FIGURES xxxi

F.4 Scaling an EQ section up, resulting in what looks like another EQ section (maybe

different Q). 368

F.5 Same Q, different bandwidth definitions: (a) 3dB down from peak, (b,d) halfway

(in dB) to 0dB, (c) 3dB down from max gain (0 dB in this case), (e) 3dB towards 0dB

from peak ((a) also fits this definition) . 370

F.6 Upper: Peaking EQ sections using the 3dB bandwidth definition, all have Q of 1,

peak gains: 6dB, 9dB, 12dB, 18dB. Lower: All of the above responses scaled to have

their peaks on 9dB. 371

F.7 Upper: Peaking EQ sections using the halfway bandwidth definition, all have Q of 1,

peak gains: 6dB, 9dB, 12dB, 18dB. Lower: All of the above responses scaled to have

their peaks on 9dB. 372

F.8 Differences in Shape with the Halfway Definition, small scale difference compared

to large scale difference: Left: 12dB scaled onto 6dB, Right: 24dB scaled onto 3dB . . 373

F.9 A Graphic-EQ design . 376

F.10 A Graphic-EQ fit for a range of knobs all boosting together. 377

F.11 A Graphic-EQ fit with stage Qs that are too wide. Note how the stage gains become

much larger. 378

F.12 A Graphic-EQ fit with stage Qs that are too narrow. Note how the total response

droops between the stages. 378

F.13 The first three steps and final result for the Parametric EQ fitting algorithm 2 for a

particular Gdes. Dotted line: Gdes, thick line: Gtot, dashed line err(ω), thin lines: Gi,

dots: gi. Six EQ stages. 381

F.14 Example fits for Algorithm 2 . 382

G.1 Testing Taubin’s Implicit-Function Rendering Algorithm 385

G.2 “The Alien.” A result of incorrectly taking Taubin’s algorithm to 3D on a 2nd-order

root locus. 386

G.3 Numerical problems in an implicit-function ray-tracer. 387

G.4 Detail on a Newton’s-Method fractal on f(s) = Im(D(s)N(s∗)), which is the numer-

ator of the expansion of Im(D(s)/N(s)). 388

G.5 Locus of feedback around an FIR filter . 389

G.6 Locus of feedback around an FIR filter, one more denominator root than Figure G.5. 390

G.7 Numerical problems in a 4th-order locus rendered in Taubin’s method 391

G.8 Numerical problems in a 4th-order locus rendered in Taubin’s method, warped axes

to (freq,Q). Same system as Figure G.7. 392

G.9 Some random 4th-order loci . 393

G.10 A visualization of Taubin’s 2nd-order distance approximation to a root locus. 394

xxxii LIST OF FIGURES

G.11 A variant coloring scheme on the same technique as used in Figure G.2: incorrectly

trying to take Taubin’s method into 3D on a 2nd-order root locus. 395

G.12 A family of 2nd-order loci. 396

G.13 “The Scarab” . 397

G.14 2nd-order loci rendered using ray-tracing of |D + kN1 + k2N2|∞ = ε. Reminiscent of

spacecraft from the TV series “Babylon 5”. 398

G.15 Another implicit-surface ray-tracing bug. 399

G.16 A gridding of possible zero locations from summing 6 poles, with two poles allowed

to vary their phase. 400

G.17 A test image from attempting to take Taubin’s method to 3D in a slightly incorrect

manner. 401

G.18 Newton-Method fractals on root loci rather than discrete-root polynomials. 402

G.19 A family of loci. 403

G.20 More 3D attempts at Taubin’s method. 404

G.21 Ray-tracing δ1 = ε using Taubin’s 1st-order distance estimate to various root loci.

Left-hand images trace two different ε values at once, giving two different surfaces. 405

G.22 More 3D attempts at Taubin’s method. 406

G.23 Implicit-surface ray-tracing test. 407

G.24 A family of 2nd-order loci. 408

Chapter 1

Musical Sound Synthesis and

Variable Filters

1.1 Virtual-Analog Music Synthesis

1.1.1 History

Much of this thesis deals with design problems which arise in the computer implementation of

certain electronic musical sound synthesis techniques. The history of electronic music is a very

interesting story which is, unfortunately, not the topic of this thesis. Joel Chadabe gives a good

history1 in his book Electric Sound [36], and we will summarize a few points to explain the desire

to re-implement such techniques in the present day.2

Early electric musical instruments were not well known to the public in general, except for use

here and there for special effects, usually to create “futuristic” sounds for science fiction shows in

radio, television, and movies, or to provide a sense of futurism in ads and commercials. Notable

examples are the work of the BBC Radiophonic Workshop, most notably in their work on the long-

running “Dr Who” television program, and the work of Raymond Scott [43], who produced many

of the now-cliché “futuristic” sounds for ads and worlds-fair exhibits through the 1950s and 1960s.

There was also some use of modern technology in academic music, and some of the most well-

known early synthesizers, such as the RCA Mark II synthesizer [194] at the Columbia-Princeton

Electronic Music Center, were used in such endeavors.

However, electronic music synthesis did not have a large impact on music in general until the

album Switched-On Bach, realized using the then-revolutionary capabilities of voltage control in the

1though strongly weighted to the academic-music side of the history
2This section is influenced by many discussions between the author and various people, by numerous television docu-

mentaries on the history of recent popular music, and by similar books, such as [204], [36], [55], [232], [206].

1

2 CHAPTER 1. MUSICAL SOUND SYNTHESIS AND VARIABLE FILTERS

Moog synthesizers [172][173], which demonstrated that electronic techniques could be used for

more than sound effects or (to the public) unlistenable experimental academic music. Although

the ensuing flood of copycat albums did not contain many works up to the same level, the use of

electronic sound synthesizer did finally become mainstream. It was not in classical music that it

would really take hold, though: it was in the field of popular music where synthesis would become

most widely used.

Synthesizers were already being experimented with by the likes of The Beatles before Switched-

On Bach, and synthesis was already becoming a common sound-effect in psychedelia, but it was

in Progressive Rock and Funk that synthesizers became central instruments. The Funk genre in

particular first noted the usefulness of a synthesizer as a bass instrument and a rhythm instrument,

as opposed to a mostly treble/melody/special-effect instrument, as it was used in the likes of Yes,

ELP, Pink Floyd and other Prog-Rock bands. It was essentially through Funk that synthesizers

made their way into the dance-music scene which grew in the 1970s.

Even though synthesizer use came to almost completely dominate music in the 1980s, we still

mainly owe the current interest in analog synthesizer sounds to dance music, which continued to

evolve through the 1980s into the 1990s into genres known as “House”, “Techno”, and “Jungle”,

with an ever-growing list of subgenera and specializations [206]. While the mainstream synthe-

sizer market had moved to basically fully-digital systems by the late 80s, as FM and sample-based

synthesis took over the market, experimenters in dance music still made use of the basic modulata-

bility of analog synthesizers to produce highly rhythmic yet highly craftable and evolvable sounds.

They took a set of older analog synthesizers, including some intended more as drum machines than

melodic instruments, and made them the core of their own particular genres of music.

Thus, by the early/mid 1990s, as house/techno music was becoming more mainstream, the

market for “vintage” analog synthesizers was actually stronger than ever, due to a mixture of

their popularity in that thriving music scene, and a growing nostalgia for the sounds of the pre-

digital synthesizers. At about the same time, computing power was coming to the point where

real-time digital synthesizer algorithms could progress beyond the ultra-simple FM and wave-

sampling paradigms which had dominated up till then. Synthesizer designers had for a while

been realizing that more modulatability and interactivity were needed (especially in comparison

to sample-based synths of the time). It became obvious that a popular and useful direction for

digital synthesis was in the implementation of the capabilities of analog synthesis, particularly as

used in the still-evolving dance genres. Such capabilities included:

• Highly flexible modulation capabilities — in particular, flexibility in all aspects of modulation:

sourcing, sinking, and routing

• Configurable, modular algorithms (as opposed to static algorithms) — in essence, the ability

to have the equivalent of a full modular synthesizer, which the user can re-patch as desired

1.1. VIRTUAL-ANALOG MUSIC SYNTHESIS 3

• Implementations of highly-modulatable, yet still not grossly expensive algorithm primitives,

such as oscillators and filters, with a minimum of identifiable “digital” artifacts such as alias-

ing

The first two capabilities are rather straightforward to implement at a low level, though there are

significant user-interface issues that must be dealt with to make such systems both powerful and

usable. It was the third capability that provided the most unsolved problems at the time. Though

computing power was increasing continuously, there was still the desire to run as much processing

as possible at any particular time, so the more efficient an algorithm could be made, the better.

Hence research such as this thesis. The research presented in this thesis was begun around

1995, when the ability to implement such algorithms on general-purpose computers in real-time

was finally becoming possible, and when the current renaissance in analog-style synthesis was just

beginning. the author published two papers on the topic in 1996, but then took about ten years off

to work in industry, and other academic work has continued from that point. More importantly,

in the years since this work started, there has been an explosion of commercial synthesizers, both

software and hardware, implementing some sort of virtual analog, though the academic side stayed

relatively quiet (this is changing, as more academics interested analog-synthesis simulation are

starting to appear). As such, we must assume that much of the more obvious (and maybe less-

obvious) extensions and variations to this work have been done in the commercial sector by now,

though most of that work is trade secret, so one can only guess. the author’s own opinion is that,

due to the popularity of nonlinear aspects of virtual analog, the techniques of oversampling and

distortion modeling have been particularly strongly explored (issues that this thesis will not get

deeply into). However, since such work has been done as trade secrets, each manufacturer and

developer has had to re-invent their own techniques for such things (and technical capabilities

might vary widely across the industry), and so progress may not be as far as one might expect for a

ten-year period. Hence, recent papers on circuit-based modeling of the Moog-style filter [110] are

still probably not that far behind (or possibly still ahead of) the work being done commercially.

1.1.2 Review of Synthesis Techniques

The basic problem to be solved in sound synthesis can be considered to be one of how to create

interesting sounds which can be viably and effectively controlled for performance. The various

categories of synthesis algorithms have tended to approach that problem from various directions:3

Additive Based on the fact that all sound can be decomposed into a superposition of primitive

waves (usually sinusoids), additive synthesis works by determining the set of sinusoids

to generate at any moment, including their frequency, amplitude and phase, and generat-

ing them. Early methods did this by brute force (i.e., individual oscillators or specialized
3This is not intended to be an exhaustive list, but rather an attempt to touch on the major concepts. Interested readers

are pointed to overviews such as [223] and [221]

4 CHAPTER 1. MUSICAL SOUND SYNTHESIS AND VARIABLE FILTERS

oscillator-bank hardware) and were hence extremely limited in the number of sinusoids they

could generate. Such implementations existed in the analog domain (indeed, the Telharmo-

nium, whose concept was patented in 1897 [36], and considered by many to be the first elec-

tric music synthesizer, was effectively additive, as are the Hammond tone-wheel organs), but

most explicitly additive synthesizers have been digital. Later methods ([37][224]) moved to

using the inverse Fast Fourier Transform to generate many sinusoids efficiently. At this point,

the difficulty for this method became one of managing the vast amount of data required to

exactly specify the sound an its evolution through time.4 If one does not want to be too par-

ticular with terminology, one can also consider any synthesis technique which builds up a

complex sound spectrum by combining a number of simpler sounds which contain various

subsets of the final spectrum to be somewhat additive.

Subtractive In contrast to additive synthesis, which builds up a sound from component parts, sub-

tractive synthesis starts with very complex signals (spectrally) and uses filters to shape the

sound to the desired spectral envelope. Due the to controllability of the filters and the use-

ful effects of simple oscillator combinations, compelling animated sounds could be created

rather simply (again, as opposed to having to specifically construct such behaviors in ortho-

dox additive synthesis). Furthermore, this is the primary technique used in Switched-On Bach

and most early commercial synthesizers up through the early 1980s, so it effectively became

the “classic” synthesizer sound.

Wavetable/Sampling The most obvious digital music method is simply to record a sound and

play it back in various ways. That is the heart of sample-based synthesis. As such, it can in

some ways be considered a digital implementation of the “Musique Concréte” genre of mod-

ern music (a movement in early/mid 20th-century modern music which used tape recording

and editing techniques to produce various effects), but it has been so popular that the con-

nection is only noted by academics, on occasion, and usually followed by the discussion of

whether Granular synthesis is a more appropriate successor. Within commercial music syn-

thesizers, sample-based synthesis was originally hampered by the high cost of memory, such

that it was either limited to very expensive systems (such as the Fairlight CMI, New-England

Digital Synclavier, Kurzweil K520, or other studio-level instruments), or limited to very short

samples. Early on, this second use was usually named “wavetable” synthesis, and the con-

cept was that a single cycle of a waveform would be kept in memory and played back in a

loop at various rates to get various pitches. As memory became more affordable, the con-

cepts of wavetable synthesis and sample-based synthesis merged, the loop of the wavetable

extending to cover more cycles (up to hundreds or thousands), and the full sound extending

to the full recorded sample, including the recorded attack and decay of the sound. By the

4Furthermore, time/frequency information can be analyzed from recordings and used in a sampling-like manner, blur-
ring the distinction between sampling and additive synthesis.

1.1. VIRTUAL-ANALOG MUSIC SYNTHESIS 5

mid 1990s it was becoming a problem that sample-based synthesis only “sampled” discrete

points in performance/sound space, and thus the basic method was limited in its variability

(“expressiveness”). Most work since then in this field has been in adding expressiveness and

modulatability, often by merging the technique with other methods, like subtractive synthe-

sis. The ultimate in sample-based synthesis, however, may be the concept of “transition sam-

pling”, as used in the Synful synthesizer [156],5 whereby not only are the held (pseudo-static)

portions of instrument notes sampled, but all possible transitions between notes (within rea-

son)6, together with databasing and intelligence to select and splice together the correct static

sections and transitions in real-time.7 In general, since the late 1980s, sample-based synthesis

has been the dominant method in commercial music synthesis, despite its limitations.

FM/Waveshaping Due to the high cost of memory in early digital systems, the most obvious digital

technique, sample-based synthesis, was not the first viable real-time digital synthesis tech-

nique. Instead, frequency modulation, a very simple algorithm [42] which requires at most

the memory to hold a sine table, became the first commercially successful digital synthesis

method (via the Yamaha DX7 and later synthesizers). The high-level concept of FM is that

waves of controllable complexity can be generated by controlling the modulation index in an

FM algorithm. Unlike amplitude modulation, frequency modulation (and phase-modulation,

which is simply FM with a differentiated input8) could generate extremely complex waves us-

ing a very small number of interconnected oscillators (as few as one, using feedback FM), and

the spectral complexity could be easily controlled by simple scaling operations. As such, the

technique is conceptually somewhere between additive and subtractive synthesis (in terms of

spectral control): it need not be as brute-force as additive, but control of the spectral envelope

is handled in a more round-about manner. Most appealing early on was the ease of creating

inharmonic (bell-like) tones. Waveshaping, whereby a wave (often sinusoidal) of controllable

amplitude is passed through some sort of controllable nonlinearity, is related mainly due to

the fact that the shape of the nonlinearity can be considered to be one cycle of an oscillator

shape, and the input wave phase-modulates that oscillator. However, once memory became

inexpensive, wavetable and sampling synthesis became the norm, relegating FM to at most

a subset of sounds for which it worked particularly well. This relegation had been essen-

tially complete by the time of the resurgence in interest analog-synthesis techniques, so even

though FM is inherently highly modulatable, it wasn’t really considered in favor of directly

recreating subtractive synthesis.

Granular Whereas additive synthesis builds up a complex spectrum by adding together a set of

5www.synful.com, note that even though the techniques are that of sampling, this synthesizer actually uses an IFFT
additive core for the resynthesis of spectrally-analysed samples.

6A traditional failing point of sample-based synthesizers is unrealistic transitions
7Concatenative speech synthesizers have also evolved in this direction, for example: [264].
8or FM is PM with an integrated input

6 CHAPTER 1. MUSICAL SOUND SYNTHESIS AND VARIABLE FILTERS

waves with simple spectra, granular synthesis [222] builds up a complex signal in time,

adding up a set of waves that are simple in both frequency and time. Unlike most of the other

techniques, granular synthesis is normally performed stochastically (though certain pitch-

synchronous granular techniques exist, particularly in voice processing [225][133]). One

view of granular synthesis presents it as a wavelet version of additive synthesis: creating

a sound by superposition of “grains” which occupy certain small areas in time/frequency

space. Other methods of granular synthesis, rather than starting from theoretical wavelets,

use short-time snippets of some source wave(s) as their grains. As such, these methods are

as much sound processors as sound synthesizers. Often, by controlling the way the grains

are played and modified, various sound transformations such as pitch shifting, time-scale

modification, and/or formant-modification can be accomplished. On the other hand, the

grains can be played back in a way that completely obliterates the original signal, and some

composers like to experiment with the boundary between transformation and obfuscation in

their compositions. For the last decade or two, granular techniques have been among the

most popular techniques in the academic computer-music scene.

Modal This type of synthesis ([3], [34]) describes a class of sounds and musical instruments as one

or more resonators which are excited by some signal to produce the resulting sound. Origi-

nally, most modal synthesis modelled instruments with slowly-decaying resonators, such as

bells, bars (marimba, vibraphone), various percussion instruments, and plucked or struck

strings. Later, modal synthesis could be considered to cover the modeling of systems with

less-resonant resonators, where the properties of the excitation become more important. At an

extreme, one might classify source-filter vocal models as sort of modal synthesis (i.e. feeding

a resonant system with somesort of excitation signal), though as with the modal synthesis of

strings, the boundary between modal synthesis and physical modeling becomes blurred.9 At

some level, modal synthesis can be implemented both in analog and digital systems, though

most explicitly modal methods have been digital, as with most synthesis methods in recent

years.

Physical Modeling This (mostly digital) philosophy attempts to duplicate the behavior of a (usu-

ally) acoustic instrument by implementing a model of the physics of the sound production.

Also sometimes called “Waveguide Synthesis” [235][236], as some of the basic concepts and

efficiencies come in the modeling of the acoustic waveguides which exist in many acoustic

instruments. As physical reality tends to be an massively parallel processing system, phys-

ical modeling synthesis involves some amount of simplification, and most of the research

9Julius Smith has noted that any diagonalized state-space model could be considered a modal-synthesis model, as the
diagonalization makes the modes of the system explicit [239]. Using this as a definition, non-diagonalized source/filter
models would end up classified as Subtractive Synthesis.

1.1. VIRTUAL-ANALOG MUSIC SYNTHESIS 7

(and differences in approaches and philosophies) in this area centers around the simplifi-

cation techniques and how far to simplify, or not to. At one extreme of simplification is a

technique dubbed “PhISM” by its first author [47][48] (standing for “Physically-Informed

Sound Modeling”), whereby the physics inspires mainly the implementation of the high-

level behavior of the sound, and less the low-level implementation. Note that some large-

scale modal-synthesis systems have also been used to implement very fine-grained physical

models. Also note that particularly deep digital models of analog synthesizers end up using

similar philosophies and techniques, and can effectively be considered physical models.

Ad-Hoc This describes the vague technique of using whatever method is most appropriate for any

particular instrument or sub-algorithm within an instrument. It connotes the capability of the

user to specify, to some level of granularity, the algorithm to be used for an instrument. Users

of software synthesis systems such as CSound, Max/MSP, PD (“Pure Data”), CLM (“Com-

mon Lisp Music”), SuperCollider and STK (Synthesis ToolKit), to name just a few, are free

to implement whatever methods they prefer, and are not constrained to any single method

within any particular “orchestra” or “instrument” algorithm, and hence can be thought of

as working in this realm. This can be considered the logical evolution of the concept of the

modular synthesizer, with a virtual set of modules far beyond what was possible with early

analog synthesizers.

1.1.3 What is “Virtual Analog”?

Virtual Analog is the attempt to implement digitally the algorithms employed in analog synthe-

sizers (most typically subtractive synthesis) and hence emulate their sounds. The first commercial

synthesizer of this type is generally considered to be the Clavia Nord Lead, which was introduced

in 1995. Note that the term “Virtual Analog” was originally coined by Yamaha as the name of the

technique used in their AN1x synthesizer, introduced in 1997. Yamaha had been using the term

“Virtual Acoustics” for their implementations of physical modeling synthesis, so “Virtual Analog”

was a straightforward choice. Other manufactures used their own terms when they introduced

their analog-emulating synths, such as “Analog Modeling”, “Analog Emulation”, etc.

Interestingly, some enthusiasts are starting to use these multiple terms to differentiate between

different implementation strategies within the field: “Virtual Analog” being applied to higher-

level subtractive synthesis methods, and “Analog Modeling” being applied to low-level emulation

of actual analog circuits [282]. The need for differentiating terms is necessary, of course, but it

is sometimes strange to see terms which originally had effectively the same meaning attracting

distinct meanings.10

10Or vice-versa, as in the case of wavetable synthesis and sample-based synthesis, which originally described distinct
techniques but now are used interchangeably.

8 CHAPTER 1. MUSICAL SOUND SYNTHESIS AND VARIABLE FILTERS

Unfortunately, the boundary of Virtual Analog is very vague. A synth which simply imple-

ments digital subtractive synthesis, with no regard for aliasing, and maybe just using basic digital

filters (biquads, or maybe state-variable filters), but does implement good generic modulation ca-

pabilities, is in some ways emulating the modulation capabilities of analog synthesizers but not

attempting to model the oscillators and filters very closely. It is even less clear if such a synthesizer

uses a basic wavetable synthesizer as its core waveform generator (as in the Yamaha CS1x, which

was effectively a sample-based General-Midi/XG synth, with expanded modulation capabilities).

Since analog synthesizers had a variety of “features” which digital synthesizers may or may not

implement, does a Virtual Analog system have to emulate them all, or just one, or “most”?

For the purposes of this thesis, Virtual Analog means the implementation of:

• Oscillators generating Impulse-train, Sawtooth, Triangle, Square, and Rect(angular) waves,

with as little aliasing as is viable, and with modulation of amplitude, frequency, (and possibly

other parameters, such as duty-cycle/pulse-width) as inexpensively as possible. Modulation

is expected to reach up to audio rates. Phase sync is also a desirable feature.

• Resonant Lowpass (and possibly highpass and bandpass) filters, preferably in the same forms

as in “classic” analog synths (i.e.,as in the Moog four-pole loop, or state-variable, as in the

Yamaha CS-80) with full-rate modulatable corner/center frequency and Q, though it may be

acceptable to restrict Q modulation in some usage cases if it is too expensive (as Q was not

modulatable anyway in some synths, such as the Minimoog).

Other operations which occurred in basic subtractive-synthesis analog synthesizers, such as enve-

lope generation, arpeggiation/sequencing and amplitude scaling, are considered sufficiently trivial

as to not need special work to model “accurately”. Various other special effects, which existed in

some analog synthesizers, such as sample and hold, ring modulation, etc. are expected to be non-

trivial, but not expected to be universally required and can be the subject of later research.

1.2 Basic Filter Concepts

The filters that we will be dealing with can be considered dynamical systems in either continuous

time (“CT”) or discrete time (“DT”). The waveform generators and filters used in most analog syn-

thesizers operated in continuous time, whereas the algorithms we wish to implement will operate

in discrete time. Signals in systems in these domains are often analyzed in transformed domains,

“frequency domains” corresponding to each time domain.

Continuous-time filters are usually analyzed in the Laplace domain, whose main variable is a

generalization of frequency (s), related to the time domain by the Laplace Transform [26]:

X(s) = L[x(t)] =
∫∞
−∞

x(t)e−stdt (1.1)

1.2. BASIC FILTER CONCEPTS 9

The Fourier Transform of at CT signal is the Laplace Transform evaluated only on the imaginary

axis of the s plane (i.e.,on Re(s) = 0). The Laplace Transform can be interpreted as projecting the

time-domain signal onto a family of sinusoids, each described by a value of s: esT , as such, if x(t)

matches well with esT for a particular value of s, then |X(s)| will be large at that value of s. If we

look at the real and imaginary parts of s separately: s = σ + jω, then est corresponds to a sinusoid

of whose phase rotates at a frequency of ω radians/sec (if t is in seconds), and whose amplitude

decays or increases exponentially, depending on the sign of σ, as eσt. Therefore, if x(t) contains an

exponentially decaying sinusoid, then X(s) will probably have a peak at a location off the imagi-

nary axis, according to the decay rate. As noted, the Fourier Transform, being the projection onto

sinusoids of constant amplitude and infinite extent, is a slice of the Laplace Transform on the line

Re(s) = 0, which makes sense since there is no decay or expansion when σ = 0.

The filters we will be dealing with can also be considered (at least as an approximation) as linear,

and much of the time, we will think of them as being (at least locally) time-invariant. As such, their

output y(t) can be viewed as the convolution of their input x(t) by their impulse response h(t):

y(t) = (x ∗ h)(t) =
∫∞
−∞

x(τ)h(t − τ)dτ (1.2)

and by the properties of the Laplace Transform, the operation in the s domain is a multiplication of

their transforms [135]:

Y (s) = X(s)H(s) (1.3)

The filter’s convolution kernel h(t) is called its impulse response because if x(t) = δ(t), the Dirac

delta function, then the convolution becomes

y(t) =
∫∞
−∞

δ(τ)h(t − τ)dτ = h(t) (1.4)

The impulse response can thus be thought of a good description of how the filter “rings out” when

pinged with an input that is impulsive in nature.11

Integration and differentiation can be expressed in the s domain as equivalent to filtering by

special filters:

L
[
dx

dt

]
⇒ sX(s) (1.5)

L
[∫

x(t)dt
]
⇒ X(s)/s (1.6)

As such, linear ordinary differential equations, which are actually continuous-time filters, can

11Of course the true output will be the convolution of the impulse response and the shape of the ping input, but for
intuition purposes, one often things of such pings as being “impulse like”.

10 CHAPTER 1. MUSICAL SOUND SYNTHESIS AND VARIABLE FILTERS

easily be described in terms of s:

y + d1
dy

dt
+ d2

d2y

dt2
+ · · ·dN

dNy

dtN
= n0x + n1

dx

dt
+ n2

d2x

dt2
+ · · · + aM

dMx

dtM
(1.7)

transforms to

Y (s)[1 + d1s + d2s
2 + · · · + dNsN] = X(s)[n0 + n1s + n2s

2 + · · · + nMsM]
Y (s)
X(s)

=
n0 + n1s + n2s

2 + · · · + nMsM
1 + d1s + d2s2 + · · · + dNsN

Y (s)
X(s)

=
N(s)
D(s)

Many of the properties of such filters can be related to properties of the N(s) and D(s) polyno-

mials. For example, roots of N are called “zeros” of the filter, and correspond to frequencies which

are completely attenuated by the filter. Roots of D are called “poles” of the filter, and correspond to

frequencies which are boosted (infinitely) by the filter. They are also thought of as the “resonances”

of the filter.

Of interest in this thesis is the fact that the impulse response of a filter can often be understood

almost completely in terms of the locations of its poles: poles with larger imaginary part ring at

higher frequency. Poles with small negative real parts correspond to ringing modes which decay

slowly. Larger negative real parts correspond to modes with faster decay. Poles on the imaginary

axis correspond to modes with no decay. Poles with positive real parts correspond to modes which

increase exponentially with time. In causal situations (i.e.,ones where there is time running in a

forward direction, as opposed to situations where there may not be time at all (like spatial filters)),

such poles would cause the filter to be unstable (typically an undesirable situation, though there are

situations where temporary instability may be of use, and some nonlinear systems have saturations

which will override any small-signal instabilities and keep the filter from completely “blowing up”

by clipping the states of the filter12).

In discrete time, there is a similar relation between a discrete time signal x(n) and its trans-

form13, denoted by X(z). The transform is thus called the “Z Transform”:

X(z) = Z[x(n)] =
∞∑

k=−∞
x(k)z−k (1.8)

Convolution is similarly

y(n) = (x ∗ h)(n) =
∞∑

k=−∞
x(k)h(n − k) (1.9)

12For example, it is not uncommon to place a filter into a slightly unstable state and use it as a (nearly) sinusoidal oscillator,
with the saturation nonlinearity and the instability interacting to give a relatively constant-amplitude signal.

13or at least the most popular transform domain for discrete time systems, the z transform

1.2. BASIC FILTER CONCEPTS 11

and in the z domain

Y (z) = X(z)H(z). (1.10)

Again, a (linear and time-invariant) discrete-time filter can be described by its impulse response

h(n).

As in the continuous-time case, where s had a particular meaning (differentiation), in discrete

time, z is interpreted as a time shift of one sample, forward in time. Since that is typically a non-

causal action, we tend to see z more “in real life” as its inverse z−1, which corresponds to a delay

of one sample: X(z) + z−1X(z) corresponds to x(n) + x(n − 1). Higher powers of z−1 correspond to

more samples of delay: z−10X(z) corresponds to x(n − 10).

Therefore, discrete-time filters, which are usually interpreted as “difference equations,” can be

transformed into the z domain much like how we transformed a differential equation previously:

y(n) + d1y(n − 1) + d2y(n − 2) + · · ·dNy(n −N) = n0x(n) + n1x(n − 1) + · · · + aMx(n −M) (1.11)

transforms to:

Y (z)[1 + d1z
−1 + d2z

−2 + · · · + dNz−N] = X(z)[n0 + n1z
−1 + n2z

−2 + · · · + nMz−M]
Y (z)
X(z)

=
n0 + n1z

−1 + n2z
−2 + · · · + nMz−M

1 + d1z−1 + d2z−2 + · · · + dNz−N
Y (z)
X(z)

=
zN−M[n0z

M + n1z
M−1 + · · · + nM]

zN + d1zN−1 + · · · + dN
Y (z)
X(z)

=
N(z)
D(z)

As in the continuous-time case, much of the filter’s properties can be gleaned from the polyno-

mials N(z) and D(z), in much the same way as before. However, the interpretation of locations

in the z plane is a bit different than locations in the s plane. In continuous time, a point in the s

plane corresponded to a signal (or impulse response) of esT , but in discrete time, a point in the

z plane corresponds to a signal (or impulse response, or. . .) of zn. As such, the values of z that

correspond to decaying signals (or to stable poles in a causal situation) are those for which |z| < 1,

and the values that correspond to increasing signals (or to unstable poles in a causal situation) are

those for which |z| > 1. The values of z that correspond to signals with no change in amplitude

are those right on |z| = 1. That is a circle of radius 1, centered on the origin (z=0). This is typically

referred to as the “unit circle”. Further, signals with high frequency correspond to locations in the

z plane whose angles from the positive real axis are larger. Subsequently, z = 1 corresponds to zero

frequency (“DC”), as s = 0 did in continuous-time, and as z moves along the unit circle away from

z = 1 (either up or down), it corresponds to higher and higher frequencies, until it reaches z = −1, at

which point it represents the frequency fs/2 (i.e.,half the “sampling rate”). Due to a phenomenon

called “aliasing”, if you continue to rotate z past z = −1, it corresponds to smaller frequencies again

12 CHAPTER 1. MUSICAL SOUND SYNTHESIS AND VARIABLE FILTERS

(the “negative frequencies”, or the other path that could have been taken from z = 0). The signal is

actually exactly what it would be if you sampled a signal whose frequency was higher than fs/2,

but the resulting sampled signal would appear as though it were the lower frequency. In fact, as

is mentioned in most books on discrete-time signals, the unit circle represents all frequencies, they

just keep wrapping around the circle on top of each other, so that any particular point represent not

only some frequency less than fs/2, but also that frequency plus/minus all multiples of fs. Most

tend to consider only the lowest range of frequencies (−fs/2 < f < fs/2), except when sampling a

continuous-time signal, in which case some care must be taken about the frequencies higher than

fs/2 (usually one tries to filter than out with an antialiasing filter).

Now, on the topic of converting between a continuous-time signal/system and a discrete-time

one, the ideal relationship is based on the fact that z represents a delay of -1 samples. In the s

domain, that delay is the particular allpass filter e−sT , where T is the sampling period. As such, the

ideal relation between the two domains is z = esT . Using Euler’s formula (ejθ = cos(θ) + j sin(θ)),

one can easily see how the s plane and z plane relate to each other:

• The imaginary axis in the s plane maps to unit circle (wrapped around an infinite number of

times).

• The real axis in the s plane maps to the positive real axis in the z plane.

• The left half s plane (left of the imaginary axis) maps inside the unit circle.

• The right half s plane maps outside the unit circle.

• s = 0 maps to z = 1.

We will look later on into existing methods for performing conversions from continuous-time to

discrete time.

1.2.1 Some Basic Filter Definitions

FIR/IIR

Discrete-time filters with no feedback are denoted “FIR,” which stands for “Finite Impulse Re-

sponse,” because an implementable form of such a filter can only have a finite number of taps, and

hence its impulse response will last for a finite amount of time. Such filters only have a numerator

polynomial in their transfer functions:

HFIR(z) = n0 + n1z
−1 + · · · + nNz−N (1.12)

Such a filter is also generally considered to implement only zeros (frequencies where the transfer

function goes to zero).

1.2. BASIC FILTER CONCEPTS 13

A filter with feedback tends to have a response consisting of some combination of exponentially-

decaying parts. Since exponential decays theoretically never get all the way to zero, such a response

will cover an infinite amount of time, hence the term “Infinite Impulse Response” filter, or more

commonly “IIR.” Feedback tends to cause the transfer function to have a denominator polynomial

as well as a numerator polynomial:

HIIR(z) =
n0 + n1z

−1 + · · · + nMz−M
1 + d1z−1 + · · · + dNz−N

(1.13)

Such a filter is generally considered to implement both zeros and poles (frequencies where the

denominator of the transfer function goes to zero, and thus where the transfer function has a sin-

gularity).

Coefficient Naming Issues

Unfortunately, different schools tend to use different standards for the naming of numerator and

denominator polynomials. Some use the following form:

H(z) =
a0 + a1z

−1 + · · · + aMz−M
1 + b1z−1 + · · · + bNz−N

(1.14)

And hence there is the assumption that to refer to “b2” is to refer to a denominator coefficient. On

the other hand, others (including Matlab) use the exact opposite:

H(z) =
b0 + b1z

−1 + · · · + bMz−M
1 + a1z−1 + · · · + aNz−N

(1.15)

And hence “b2” would be assumed to be a numerator coefficient. The problem becomes most dif-

ficult in describing coefficient design equations, as it quickly becomes confusing which coefficients

are being described unless the equations are accompanied with either a transfer function or docu-

mentation denoting the usage of the coefficients.

the author, in his work at Analog Devices, Inc., which involves distributing a standard set of

DSP modules and design code to users from all backgrounds, has decided to use neither standard,

and instead name coefficients “n0, n3, d2,” etc., such that “N” means “numerator” and “D” means

denominator. It is hoped that the use of such a system will reduce some confusion. the author

has attempted to use that system where possible in this thesis. However, some text or figures from

before this decision may slip by from time to time.

Similarly, there can be confusion regarding the sign of feedback coefficients. The difference

equation

y[n] = x[n] + 0.3y[n − 1] + 0.6y[n − 2] (1.16)

14 CHAPTER 1. MUSICAL SOUND SYNTHESIS AND VARIABLE FILTERS

Which implements positive feedbacks, has the following transfer function:

Y/X =
1

1 − 0.6z−1 − 0.6z−2
(1.17)

which has negative denominator coefficients. Conversely, a transfer function such as

Y/X =
1

1 + .5z−1 + 0.5z−2
(1.18)

corresponds to the following difference equation:

y[n] = x[n] − 0.5y[n − 1] + 0.5y[n − 2] (1.19)

Some people consider the difference equation to be the “standard representation”, and hence

prefer the first pair of equations (i.e.,prefer to think of the “correct sign” of the coefficients being

that in the difference equation), whereas others (including Matlab) think of the transfer function as

the standard representation, and so consider the transfer function coefficients to be the ones with

the correct sign.

This issue is a bit more insidious than the first one. the author has no theories as to what can

be done about it. In this thesis, the author hopes to not introduce too much sign confusion, hoping

to explicitly show transfer functions and/or difference equations wherever coefficients or their

equations are shown.

Some Nice Basic Polynomial Properties

These are all well known polynomial properties, but they are good to remember in DSP and in

Root-Locus work.

• If a polynomial has real coefficients, all complex roots will come in complex-conjugate pairs.

One must remember, though, that if a pair comes together onto the real axis, they can move

to distinct real values and no longer be a conjugate pair.

• In a 2nd-order polynomial with real roots, if the roots r1,2 are complex, then:

– Their radius can be found by: r2 = r1r2.

– Their real parts can be found by: (r1 + r2)/2.

– One of their imaginary parts can be found by: (r1 − r2)/2.

These facts can be useful if the poles are still in symbolic form.

• If one flips the sign of all the odd-order coefficients, all the roots are negated. This can be

shown by taking a polynomial (in s) and substituting −s for s. Thus if the coefficient are

1.2. BASIC FILTER CONCEPTS 15

real, this has the effect of reflecting the roots about the imaginary axis. This can be used to

determine the required numerator coefficients for a continuous-time allpass filter from the

denominator coefficients.

• If one reverses the order of coefficients in a polynomial, the roots are inverted. This can be

shown by taking a polynomial (say in z) and substituting z−1 for z. If the polynomial has

real coefficients, this has the effect of inverting the radius of all the roots. This can be used to

create the numerator for a discrete-time allpass filter from the denominator coefficients.

Classic Twopole Filter Parameters

This thesis will use definitions for pole properties based on analog twopole filters, as defined in

[88, p. 140]. For a pole at some location s:

• ωn = |s| is the undamped natural frequency

• ωd = Im(s) is the damped natural frequency

• σ0 = Re(s) is the damping rate

• ζ = σ/ωn is the damping ratio

• Q = 1/2ζ = (2ζ)−1 is the quality factor

• The angle of the pole from the imaginary axis relates to damping ratio and Q as: φ = tan−1(σ/ωd) =

sin−1 σ/ωn = sin−1(ζ) = sin−1(1/2Q).

• Thus Q = 1/(2 sin(φ)).

NOTE that φ above is the angle from the imaginary axis, not the real axis. Hence the use of sine

rather than cosine.

In the s plane, contours of constant-value for various properties have various shapes:

Constant ωn : Circles centered on s = 0 of radius ωn.

Constant ω0 : Horizontal lines, distance from real axis = |ω0|.

Constant σ : Vertical lines, distance from imaginary axis = |σ|.

Constant Q (constant ζ) : Rays emanating from the origin and heading into the left half plane

at some angle φ = sin−1(1/2Q) from the imaginary axis. Poles in the right half plane have

negative Q and ζ.

For digital filters, we may transform these properties to the z plane by z = esT . See Figure 1.1:

16 CHAPTER 1. MUSICAL SOUND SYNTHESIS AND VARIABLE FILTERS

−1 −0.5 0 0.5 1
−1

−0.5

0

0.5

1
z=esT transforms of constant Q lines

−1 −0.5 0 0.5 1
−1

−0.5

0

0.5

1

z=esT transforms of constant radius (ω
n
) lines

−1 −0.5 0 0.5 1
−1

−0.5

0

0.5

1

z=esT transforms of constant ω
d
 lines

−1 −0.5 0 0.5 1
−1

−0.5

0

0.5

1
z=esT transforms of constant σ lines

Figure 1.1: z = esT transforms of various constant-parameter contours into the z plane from the s
plane.

1.2. BASIC FILTER CONCEPTS 17

Constant ωn : Small ωn: circles centered on z = 1, larger ωn, the circles distort and wrap around

z = 0 until ωn corresponds to an angle of π in the z plane.

Constant ω0 : Straight radial lines passing through z = 0, angle a function of ω0 and T .

Constant σ : Concentric circles centered on z = 0, radius a function of σ and T .

Constant Q (constant ζ) : Logarithmic spirals in the z plane, all exiting from z = 1 at angles that

are functions of Q and T .

Discussion of Q, fc, and bandwidth It is almost a tradition, in publications on parameterized

filter design where Q and/or bandwidth are parameters, to note the lack of agreement in the filter-

design community on a single definition of bandwidth and Q. Much of this disagreement stems

from differing opinions on the concept of “true” bandwidth and Q: is it a property of the frequency

response or is it a property of the dominant poles? Or in other words, is it a measurement of

the width of a feature in the frequency response or is it a measurement of the decay rate of a

resonance? At high Q (a narrow peak), things are typically quite straightforward to understand,

and all definitions tend to agree, but as Q gets low (particularly near and below 1.0 or 2.0), things

become confused.

This discussion will not attempt to solve this problem, but will give an overview of the issue,

and state the definition that will be used in the rest of the thesis.

First, we should note that, historically,Qwas originally defined to describe rather high-frequency,

high-Q resonators, and as such was originally only applied to strongly resonant 2nd-order systems

(as a measure of the “purity”, or “quality” of the resonator — hence the name “Q”). As such, the

definition had some basic assumptions:

• There was a peak in the response.

• There was only one peak in the response.

• The peak had a recognizable maximum at a recognizable frequency (i.e, it was not flat-

topped).

• There were no zeros to speak of.

• The impulse response decayed slowly enough for the concept of “cycles” to be obvious in the

reading of the response.

As such, Q could be defined a number of ways (which we will soon get to), and for these

resonators, the definitions were all equivalent (or to within some good approximations).

Since then, however, things become more difficult, as we try to apply the definition to systems

with other properties, such as the following:

18 CHAPTER 1. MUSICAL SOUND SYNTHESIS AND VARIABLE FILTERS

• Multiple resonances and peaks.

• Flat-top bands

• Significant spectral effects of zeros, or even filters with no poles at all, only zeros (i.e.,FIR

filters).

• Response shapes with no peak at all (non-resonant lowpass or highpass filters, for example).

• Features close enough to DC or fs/2 to have their spectral response shapes affected by leakage

from the negative-frequency copies of the dynamics.

For now, these will be noted as “difficulties.”

Review of Q definitions:

“Freq over BW” : (“Qbw”) The most often quoted definition: the center frequency of the peak

divided by the bandwidth of the peak. Usually using the 3dB-points for defining bandwidth.

At various times, researchers have used other bandwidth definitions where necessary, usually

when a peak does not have a shape that allows 3dB points to be picked out (like a lowpass

response with a weak peak) [57]. This definition breaks down when there is not a peak that

can be measured, or if there is no single peak or center frequency. It can be applied to flat-

top peaks, though the fall-off rates of the peak’s sides might cause ringing in the impulse

response which lasts longer than this Q definition would imply.

“Cycles to Decay” : (“Qdecay”) This shows up in many many early definitions of Q, for example

[180, p. 25]: “the number of cycles required for the amplitude [of oscillation] to reduce to

(1/eπ).”, and later in the same page it is written to be πν0/k, where the oscillation amplitude

is A0e
−kt, and ν0 is the undamped natural frequency (apparently in Hz). This translates to

ω0/(−2σ) or 1/2 tan(φ) (where φ is the acute angle of the pole to the imaginary axis). In the z

plane, using z = esT to translate the pole location back to the s plane, this definition becomes

−(1/2) 6 (z)/ ln |z|. This definition breaks down when the decay is sufficiently quick to not

show cycles anymore (though the math can extend into this range just fine).

“Successive Cycle Decay” : (“Qsucc”) π/ ln(r), where r is the ratio of the amplitudes of successive

cycles. This is effectively another way of measuring Qdecay, so we won’t consider it further.

Like the previous definition, this one breaks down conceptually when the decay is sufficiently

fast as to hide any visible cycles.

“Pole Angle” : (“Qpole”) This definition 1/2 sin(φ) = −ωn/2σ = −|s|/2Re(s) [88] is based on the

angle of the pole from the imaginary axis in the s plane, and hence is directly related to the

damping ratio ζ as well. This definition differs from the Qdecay definition mainly in what the

1.2. BASIC FILTER CONCEPTS 19

limiting value is as the pole approaches the real axis: Qdecay → 0, andQpole → 0.5. The z-plane

version of this definition is: −(1/2)| ln(z)|/ ln |z|, or equivalently −1/2 sin(tan−1(− ln |z|/ 6 z)).
This definition mainly breaks down when a dominant pole cannot be decided upon, or if

there are no poles.

“SVF” : (“QSVF”) This is an “expectation” definition: “What a state-variable filter sounds like

when its q coefficient is set to 1/QSVF .” Since the Chamberlin state-variable filters are so

popular, and since people often used them in ranges where the q coefficient gets as high as

2.0 (which due to their design equations is called “Q = 1/2”, but is well below the existence

of any sort of peak), a user could, through extensive experience listening to the filter, be of

the belief that that particular filtering is what a Q of 1/2 sounds like.

10
−3

10
−2

10
−1

10
0

10
−2

10
−1

10
0

10
1

10
2

1 − (pole radius), z−plane

Q

Q
decay

Q
sPoleAngle

Q
BWrez

Q
BWlp

Q
BWbp

Q
BWhp

10
−3

10
−2

10
−1

10
0

10
−2

10
−1

10
0

10
1

10
2

1 − (pole radius), z−plane

Q

Q
decay

Q
sPoleAngle

Q
BWrez

Q
BWlp

Q
BWbp

Q
BWhp

10
−3

10
−2

10
−1

10
0

10
−2

10
−1

10
0

10
1

10
2

1 − (pole radius), z−plane

Q

Q
decay

Q
sPoleAngle

Q
BWrez

Q
BWlp

Q
BWbp

Q
BWhp

Figure 1.2: Comparison of Q definitions. Biquad with various zero arrangements (LP: both at
z = −1, BP: one at z = 1, other at z = −1, HP: both at z = 1, Rez: no zeros), plotted against pole radii
along lines of different angle in z plane. Top: θ = π/100, Left: θ = π/10, Right: θ = π/3.

20 CHAPTER 1. MUSICAL SOUND SYNTHESIS AND VARIABLE FILTERS

Let us compare some definitions experimentally . In Figure 1.2, we set up our test system as

a two-pole two-zero filter with four different outputs: A lowpass one (two zeros on z = −1), a

Highpass one (two zeros on z = 1), a Bandpass one (one zero each on z = 1 and z = −1), and

a pure resonator (no finite zeros). We compare the measured Q definitions, which of course are

different for each output, against the decay and pole-angle definitions. The filters are measured

for various pole radii on a line of a particular angle. The most obvious effect we see is that all

the definitions pretty-much agree for Q larger than 1 or 2 or so, but then diverge wildly “below”

that. Much of the differences, particularly between the QBW cases, can be explained by difficulties

in defining band edges once the corner peak has gone away. In these measurements, we followed

the example of [57] and used “halfway power” definitions for the band edges (i.e.,the frequency

where the response power is halfway between the peak value and the value at DC or fs/2). If the

value at DC or fs/2 is zero, then this automatically becomes the −3dB definition. Now, among the

spectrum-based definitions, the output that is most like a “peak” is of course the bandpass output,

and we see that over much of the range, the pole-angle definition is not too far away from it.

Next, let us compare using a Chamberlin state-variable filter (Figure 1.3). In this case, we only

have the three outputs. The measurements are plotted against the state-variable filter’s qq coeffi-

cient, which according to the QSVF definition, is equal to 1/Q (so we implicitly compare against

that definition by whether a curve is a straight line or not). Note that since the filter is used up

to qq = 2, we measured out to that limit. Again, if we compare the bandpass-measured Q and

the pole-angle definition, we see that they are pretty close. In fact, when ff is less than about 0.3,

these two definitions become effectively equal (and a straight line), for all values of qq! (this has

been verified only experimentally, though). In essence, this tells that, at least at low frequencies in

a digital state-variable-filter, Qpole, Qbw, and QSVF become equivalent. We also see that for larger ff,

those two definitions are still the least deviated from the QSVF definition.

Therefore, as expected, all the definitions are equivalent for 2nd-order systems at high Q, but

they diverge when the various definitions break down.

For example, a “cycles to decay” definition breaks down past critical damping, because there

are no longer any features in the response that can be remotely described as “cycles”. And as

previously noted, beyond critical damping, there is no peak in 2nd-order highpass and lowpass

frequency responses, so peak-width based definitions break down.

Questions for Thought

Here we go back to the “difficulties” mentioned earlier (multiple peaks, flat tops, effects of zeros),

and ask: can a definition originally made only for single-peak 2nd-order resonators be successfully

applied to other systems? For example, if an FIR filter implements an exponentially-decaying sinu-

soid, for its impulse response, can it be considered to have a Q? Now what about if it implements

an exponentially-decaying triangular wave? or sawtooth? What if it implements a linear decay?

1.2. BASIC FILTER CONCEPTS 21

10
−1

10
0

10
−1

10
0

10
1

qq coef

Q

Q
decay

Q
sPoleAngle

Q
BWlp

Q
BWbp

Q
BWhp

10
−1

10
0

10
−1

10
0

10
1

qq coef

Q
Q

decay

Q
sPoleAngle

Q
BWlp

Q
BWbp

Q
BWhp

10
−1

10
0

10
−1

10
0

10
1

qq coef

Q

Q
decay

Q
sPoleAngle

Q
BWlp

Q
BWbp

Q
BWhp

10
−1

10
0

10
−1

10
0

10
1

qq coef

Q

Q
decay

Q
sPoleAngle

Q
BWlp

Q
BWbp

Q
BWhp

Figure 1.3: Comparison of Q definitions. Chamberlin SVF using various outputs for transfer-
function-based measurements, plotted against SVF qq coefficient. Top Left: ff = 0.01, Top Right:
ff = 0.3, Bottom Left: ff = 0.5, Bottom Right: ff = 1.0.

22 CHAPTER 1. MUSICAL SOUND SYNTHESIS AND VARIABLE FILTERS

The author will be so bold as to opine that extending any definition of Q beyond high-Q 2nd-

order resonators is rather arbitrary. It makes sense that QBW is the most common definition, as

it can be applied to the widest variety of situations with some sort of success (like FIR filters).

However, in situations where there truly is a dominant set of poles, there is no reason not to use

one of the other definitions.

For this thesis, we will use the pole-angle definition. This choice is partly due to the fact that

within the realm of symbolic low-order IIR filter design, the transfer-function-amplitude-based

definitions quickly become very ungainly, and most design methods which use them eventually

must resort to approximations due to the complexity of the formulas ([57] is one example). On

the other hand, pole locations can often be, by comparison, relatively simple to deal with. Finally,

since this thesis has at its heart the use of root-locus, and the assumption that the filters we will be

working with can be analyzed according to their pole locations, a pole-based definition is the best

fit. Still, there are some assumptions that are being made that should be noted:

• It is assumed that any other poles (as in the 4th and 5th-order Moog-style filters) stay suffi-

ciently damped that the assumption of outer-pole dominance is satisfied. Or if they do not

stay sufficiently damped, they are at least ringing at a sufficiently distant frequency so as to

not adversely affect the shape of the primary peak.

• It is assumed that zeros do not play a significant part in the medium-to-high Q response of the

system. If they exist, they are mainly used for gross shaping of the response (e.g. highpass,

lowpass, bandpass).

• It is assumed that the primary region of operation is Q > 1, or if Q < 1 is used, the filter’s

response isn’t expected to match any other definition of Q.

1.3 Review of Filter Discretization Methods

Although there is an ideal relationship between s and z (z = esT), it cannot be used to directly

translate a rational function of finite degree in the s plane into one of finite degree in the z plane14,

and thus cannot be used to directly discretize a typical continuous-time filter in an order-preserving

manner. Instead a number of techniques have been developed to translate rational functions in s

into rational functions in z of similar degree, or to otherwise translate a continuous-time design to

discrete time.

1.3.1 Common methods derived from numerical integration

Three well-known techniques derive from fixed-step numerical integration algorithms[87] [196]:

14i.e.,by variable substitution

1.3. REVIEW OF FILTER DISCRETIZATION METHODS 23

Backward Difference Transform

This transform derives from the numerical integration concept whereby the area under a curve x(t)

is approximated by set of rectangles of width T . The “backward” part comes from the idea that each

rectangle touches the curve at time nT and extends backward in time from that point. Hence, the

running accumulation y(nT) is:

y(nT) = y((n − 1)T) + x(nT)T
DT⇒

y(n) = y(n − 1) + x(n)T

Y (1 − z−1) = XT

Y

X
=

T

1 − z−1
=

zT

z − 1
Thus,

1
s
← Tz

z − 1

s ← z − 1
Tz

=
1 − z−1

T

If we look at how the s plane maps to the z plane (Figure 1.4), we see that the left-half plane maps

to a circle (which is expected since this is a conformal map), of radius 1/2, which touches the unit

circle at z = 1 and at z = 0 on the other side of the circle. As such, one would expect high-frequency

behavior to be significantly damped in relation to the continuous time. The backward-difference

integrator (top of Figure 1.4) is very straightforward, as one might expect. Something to note is

that this integrator has a delay-free path from its input to its output. We should also note that, in

many cases, the backward-difference is the first discretization tried, due to its simplicity. Since the

region near s = 0 does map to a region near z = 1 (as will happen in all these cases), low-frequency

dynamics do map rather well, so for sufficiently over-sampled sampling rates, this transform can

be just fine.

In audio, this translates to: “If the important behavior of the filter is at very low frequencies

relative to the sample rate, then the backward-difference may be fine.” However, for a filter that

may need to be swept up to significant percentages of the human hearing range, then backward-

difference may not be viable when used at sampling rates which just barely contain the audible

range, such as 44.1 kHz and 48 kHz, or do not at all, such as 22kHz and 24kHz.

24 CHAPTER 1. MUSICAL SOUND SYNTHESIS AND VARIABLE FILTERS

z-1

T yx

−1 −0.5 0 0.5 1
−1

−0.5

0

0.5

1
transforms of constant Q lines

−1 −0.5 0 0.5 1
−1

−0.5

0

0.5

1

transforms of constant radius (ω
n
) lines

−1 −0.5 0 0.5 1
−1

−0.5

0

0.5

1

transforms of constant ω
0
 lines

−1 −0.5 0 0.5 1
−1

−0.5

0

0.5

1
transforms of constant σ lines

Figure 1.4: Top: Backward-Difference integrator. Bottom: Dark: Backward-Difference transforms
of various constant-parameter contours into the z plane from the s plane. Light: the “ideal” z = esT

transforms of the contours.

1.3. REVIEW OF FILTER DISCRETIZATION METHODS 25

Forward Difference Transform

The forward-difference derives from the slightly different numerical-integration rule whereby the

approximation rectangles touch the curve at their lower extent in time, and extend forward in time.

As such, the running accumulation is slightly different:

y(nT) = y((n − 1)T) + x((n − 1)T)T
DT⇒

y(n) = y(n − 1) + x(n − 1)T

Y (1 − z−1) = XTz−1

Y

X
=

Tz−1

1 − z−1
=

T

z − 1
Thus,

1
s
← T

z − 1
= z−1 T

1 − z−1

s ← z − 1
T

= z
1 − z−1

T

Looking at how this transform maps the s plane into the z plane (Figure 1.5), we can see why it

use is generally discouraged: the left-half plane simply maps to a shifted version of itself. There-

fore, a stable system in continuous time is not guaranteed to transform into a stable system in

discrete time, as with the backward difference. Of course, with a sufficiently high sample rate and

a sufficiently-damped system, one might be able to make use of such a transform.

It is of interest that the transformed integrator has its delay in the feed-forward path, such

that there is no delay-free path through the integrator. This can explain stability issues: a loop

containing such an integrator would have more phase in the loop and hence less phase margin.

On the other hand, the direct transformation of a loop using this transform is less likely to have

problems with delay-free loops (which we will see in later chapters can be an issue).

26 CHAPTER 1. MUSICAL SOUND SYNTHESIS AND VARIABLE FILTERS

z-1
T yx

−1 −0.5 0 0.5 1
−1

−0.5

0

0.5

1
transforms of constant Q lines

−1 −0.5 0 0.5 1
−1

−0.5

0

0.5

1

transforms of constant radius (ω
n
) lines

−1 −0.5 0 0.5 1
−1

−0.5

0

0.5

1

transforms of constant ω
0
 lines

−1 −0.5 0 0.5 1
−1

−0.5

0

0.5

1
transforms of constant σ lines

Figure 1.5: Top: Forward-Difference integrator. Bottom: Dark: Forward-Difference transforms of
various constant-parameter contours into the z plane from the s plane. Light: the “ideal” z = esT

transforms of the contours.

1.3. REVIEW OF FILTER DISCRETIZATION METHODS 27

Bilinear Transform

The bilinear transform, also known for some time in the Control-Systems community as “Tustin’s

Method”, can be derived from the Trapezoidal Rule of numerical integration. The trapezoidal

rule represents either a compromise between the backward- and forward-difference methods, or

a slightly higher-order approximation than either method, depending on one’s point of view. It

approximates the curve with a set of trapezoids, which touch the curve at both ends of their extent

in time. As such, the running accumulation becomes:

y(nT) = y((n − 1)T) + T
[
x((n − 1)T) +

1
2
(x(nT) − x((n − 1)T))

]
= y((n − 1)T) +

T

2
[(x(nT) + x((n − 1)T))]

DT⇒

y(n) = y(n − 1) + (T/2)[x(n) + x(n − 1)]

Y (1 − z−1) = X(T/2)(1 + z−1)
Y

X
=

T(1 + z−1)
2(1 − z−1)

=
T

2
z + 1
z − 1

Thus,
1
s
← T

2
z + 1
z − 1

s ← 2
T

z − 1
z + 1

=
2
T

1 − z−1

1 + z−1

Looking at how the s plane maps into the z plane via the bilinear transform (Figure 1.6), we see

that of these first methods, the bilinear transform is the only one which maps the whole stable region

of the s plane into the whole stable region of the z plane. Like all three methods, it is a conformal

map, so all contours (which are all either circles or straight lines) map to circles (or straight lines)

in the z plane. It is of aesthetic interest to note the many different ways that sets of circles can

be constructed. The bilinearly-transformed integrator (Top of Figure 1.6) is a one-pole-one-zero

filter, with a zero on z = −1. Note that there is a delay-free path through this integrator, which will

become important in later chapters of this thesis.

There are many well-known (and well-discussed) properties of the bilinear transform, such as

how it warps frequencies and thus maps the whole frequency range into a single trip around the

unit circle, but we will not look into them deeply here (the interested reader is referred to books

such as [87], [196], [238], and [170]).

One interesting thing to note in Figure 1.6 is the similarities and differences between the bilinear

transforms of the various contours. Of course, the region near s = 0 maps rather well onto the

region near z = 1, much better than the other two transforms, but notice what happens to the high

frequencies in the s plane. In the z = esT transform, the high frequencies pull in towards z = 0,

28 CHAPTER 1. MUSICAL SOUND SYNTHESIS AND VARIABLE FILTERS

z-1

T/2
yx

z-1

−1 −0.5 0 0.5 1
−1

−0.5

0

0.5

1
transforms of constant Q lines

−1 −0.5 0 0.5 1
−1

−0.5

0

0.5

1

transforms of constant radius (ω
n
) lines

−1 −0.5 0 0.5 1
−1

−0.5

0

0.5

1

transforms of constant ω
0
 lines

−1 −0.5 0 0.5 1
−1

−0.5

0

0.5

1
transforms of constant σ lines

Figure 1.6: Top: Bilinear-Transform integrator (DF1). Bottom: Dark: Bilinear transforms of various
constant-parameter contours into the z plane from the s plane. Light: the “ideal” z = esT transforms
of the contours.

1.3. REVIEW OF FILTER DISCRETIZATION METHODS 29

whereas in the bilinear transform, they pull towards z = −1. In fact, with a bit of imagination, one

can think of the bilinear-transformed shapes as having been formed by taking the z = esT shapes

and “pulling z = 0 over to z = −1”, or vice versa. We will run across artifacts of this “pulling

towards z = −1” in later chapters, especially in noting how various filters’ Qs tend to drift too high

at the top end of the fc range for many filters. This is mostly due to the fact that the constant-Q

trajectories for the z = esT transform “pull inwards” near the negative real axis, and with almost all

the design techniques, the poles do not exhibit that pulling-in behavior.

Psenicka has written a series of papers ([210] [209] [144]) noting how certain variable trans-

formations (such as lowpass-to-highpass, lowpass-to-bandpass, and the bilinear transform) can

be represented as matrix operations on arrays consisting of the numerator and denominator co-

efficients, where the matrices are constructed using the pascal triangle (i.e.,binomial coefficients).

Konopacki ([144]) also worked on an extension of this idea.

30 CHAPTER 1. MUSICAL SOUND SYNTHESIS AND VARIABLE FILTERS

1.3.2 Common methods not derived from numerical integration

Two other standard methods are in common use, at least in the signal-processing and control-

systems communities: Pole-zero Mapping, and the Impulse-Invariant Transform.

Pole-Zero Mapping

This method attempts to use the z = esT transform by simply creating a rational discrete-time

system whose poles and zeros are at the transformed locations (as opposed to actually performing

a transform on s). The method is basically a couple rules of thumb [87]:

• Take all s-plane poles and make z-plane poles at locations defined by z = esT .

• Take all finite s-plane zeros and make z-plane zeros at locations defined by z = esT .

• If there are N zeros at infinity in the s plane, make N − 1 z-plane zeros at z = −1.

• If there were any zeros at infinity in the s plane, make one z-plane zero at infinity. This tends

to give the final result no delay-free paths.

• Match the gain at some desired frequency, typically DC.

There is no need for a figure showing the pole mappings, since they are by definition mapped

the same as the z = esT transform. However, whereas a theoretical z = esT mapping would map

the behavior of a whole system, pole-zero mapping only maps fixed poles, such that a system

such as a root-locus-based filter, while having correctly-mapped open-loop poles and zeros, is not

guaranteed to have intermediate (closed-loop) poles which follow the z = esT mapping. In other

words, if S0 is the the solution set of D(s) + kN(s) = 0 (i.e. the root locus in the s plane), then if

D′(z) and N ′(z) are the transformed polynomials, then

Z0 6= eS0T (1.20)

where Z0 is the solution set of D′(z) + kN ′(z) = 0, the root locus of the transformed system. This

can be seen most easily for systems which have asymptotes in the s plane: The z = esT transform

of an asymptote will be a curve that approaches a logarithmic spiral.15 On the other hand, the

transformed system will have only one asymptote (along the real axis), as all the rest of the infinite

open-loop zeros have been mapped to z = −1, hence the “equivalent tracks” to the asymptotes will

end up at z = −1, not on the logarithmic spirals. An example of this is shown in Figure 1.7.

Note that all the transforms which perform a rational s← f(z) mapping (backward difference,

forward difference, bilinear) have the property that their loci do map, such that, in the terminology

15Either heading down to z = 0, out to z→∞, or approaching a circle centered on z = 0

1.3. REVIEW OF FILTER DISCRETIZATION METHODS 31

−6 −4 −2 0 2 4 6
−6

−4

−2

0

2

4

6

−2 −1.5 −1 −0.5 0 0.5 1 1.5 2
−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

Figure 1.7: Root Locus of a pole/zero-mapped system is not the same as the z = esT map of the
original system’s root locus. Left: Locus of a continuous-time system (asymptotes on multiples
of π/3). Right: thick lines: z = esT map of the original locus; thin lines: actual root locus of the
mapped system. (T = 1 in this example.)

of the last example, Z0 = f(S0). In other words, for those transforms, the root locus of a transformed

system is the transform of the root locus of the original system.

An interesting thing to note about the pole/zero mapping transform is that if a multi-integrator

system is transformed (i.e.,with all infinite zeros), then the result will have a mixture of zeros at

z = −1 and at z → ∞. We will see such mixed-zero patterns quite a few times later in this thesis,

though not necessarily due to pole-zero mapped designs.

Impulse-Invariant Transform

This method[196] is not explicitly about mapping poles and zeros (though we will see it can be

expressed in those terms). Instead its goal is to match the impulse response of the system at the

sampling instants. In particular, the goal is to sample the continuous-time impulse response and

create a discrete-time system with that impulse response. Now, since most continuous-time sys-

tems have poles (and hence have responses which theoretically extend infinitely in time), we will

ignore the concept of simply windowing the response and assigning it to a large FIR filter; instead

we break the impulse response up into its basic parts (i.e.,perform a partial-fraction expansion) and

create equivalents in discrete time (here we use the terminology of the derivation in [196]):

32 CHAPTER 1. MUSICAL SOUND SYNTHESIS AND VARIABLE FILTERS

Say the partial-fraction expansion of the continuous-time system Hc(s) is:

Hc(s) =
N∑
k=1

Ak

s − sk
(1.21)

The causal impulse response is thus:

hc(t) = u(t)

(
N∑
k=1

Ake
skt

)
(1.22)

where u(t) is the unit step function. When sampled at times nT , this becomes:

h[n] = Thc(nT) = u[n]

(
N∑
k=1

TAke
skTn

)
(1.23)

Which corresponds to

H(z) =
N∑
k=1

TAk

1 − eskTz−1
(1.24)

The above assumes non-repeated poles, but can be extended to repeated poles straightfor-

wardly.

Note that poles map essentially the same way as in pole-zero mapping, but zeros and gains do

not. It is up to the specifics of the partial-fraction expansion to determine where the zeros will end

up.

Recently, Leland B. Jackson [126] and (separately) Wolfgang Mecklenbrauker [166] realized

that the traditional definition of the transform (above) has a problem if h+(0) 6= 0: the traditional

definition assumed that Step+(0) = 1, but instead it should be taken to be 1/2. As such, in cases

where there is a discontinuity in h(t) at zero, then the traditional formulation is offset by a term on

the order of TAkδ[n]). Being scaled by T , which is normally very small, is the assumed reason for

why this hasn’t been noticed before (and because a large percentage of design responses are not

discontinuous at t = 0). Thus, the equation for H(z) above should have another term:

H(z) =
N∑
k=1

TAk

1 − eskTz−1
− T

2

N∑
k=1

Ak (1.25)

Jackson notes that the new term isn’t as strange as it might seem, since due to the Laplace initial-

value theorem to Hc(s),

hc(0+) =
N∑
k=1

Ak (1.26)

So it will be zero if hc is continuous at zero.

1.3. REVIEW OF FILTER DISCRETIZATION METHODS 33

1.3.3 Other Methods

Delta Operator

This method, which involves translating to a domain other than the z domain (but which can be

related to it), has garnered quite a bit of interest recently. The primary references are the paper

by by Middleton and Goodwin in 1986 [167], two books they wrote which use this concept as the

central topic ([82],[168]), and a nice overview for the Proceedings of the IEEE [95].

The main concept is that in continuous time, the primary dynamical device is the integrator (or

its inverse, the differentiator), but in discrete-time it is the unit delay. This is considered inelegant,

and instead, a new discrete-time domain is proposed which also has as its primary dynamical

device the integrator (in discrete time). The delta operator is the discrete-time approximation of

the derivative:

δx[n] =
x[n + 1] − x[n]

T
(1.27)

and thus, as differential equations are solved with integrators, δ-operator equations are solved with

the δ−1 operator

δ−1x =
n∑

m=0
Tx[m] (1.28)

i.e.,a discrete-time integration. A drawback of the z-domain concept is that as the sampling rate gets

very high compared to the dynamics of the system, all of the important behavior gets concentrated

very close to z = 1 in the z plane. As such, as the sample rate gets large, system coefficients end up

approaching binomial coefficients, regardless of the actual dynamics being implemented. Further,

as polynomial coefficient sensitivity grows as the inverse of the distance between roots, the system

gets more and more sensitive to coefficient errors (quantization).

With the delta transform, the stability region in the discrete-time transform domain (the “γ”

plane) is a circle whose right edge touches γ = 0, is centered on γ = −1/T (where T is the sample

period), and has a radius of 1/T . As such, the stability region’s size and location is dependent

on the sample rate: it grows as the sample rate grows, such that in the limit of T → 0 (i.e. fs →
∞), it becomes the right-half plane, and hence matches up with the s plane. Thus, delta-operator

system coefficients, instead of approaching binomial coefficients at large sample rates, approach

the continuous-time coefficients. As a consequence, coefficient sensitivity and quantization issues

are significantly reduced for high sample rates. In fact, some of the papers demonstrate very nice

dynamical behaviors from systems with rather small word sizes. Thus, this technique has been

suggested for very-high-sample-rate work ([94] [286]), even being applied to DSP directly at full

sample rate in 1-bit sigma-delta systems, where the sample rate is several orders of magnitude

higher than the dynamics of typical audio processing.

We should note that as the commercial audio community continues to increase the sample rates

34 CHAPTER 1. MUSICAL SOUND SYNTHESIS AND VARIABLE FILTERS

in common use (192kHz is now common), the arguments for the shortcomings of z-domain pro-

cessing and the virtues of δ-operator design become more and more applicable.

As noted, the basic operation in delta-operator systems is the integrator. We will see later that

the Chamberlin and Dutilleux state-variable filters are built the same way: with integrators as their

basic operation. Even Moog-style filters appear similar, effectively using first-order (one-pole)

systems as their building blocks (which is not terribly far from using integrators). This thesis does

not, unfortunately, explore the relationship between delta-operator design and these filters, because

the author encountered it too late to shape the core research, but it does appear that much of the

nice numerical properties of the state-variable filters can be related to properties for delta-operator

systems.16

Wave-Digital Filters

This discretization technique, introduced by Fettweis in a series of papers ([78] [79] [80] [81]),

approaches the discretization of passive systems in a manner reminiscent of physical modeling

(though Fettweis’ papers predated the discussion of physical modeling in music synthesis). The

basic concept (liberally interpreted) is that a passive circuit can be modeled as voltage and/or

current waves travelling (and scattering) along infinitessimal waveguides between basic dynamic

elements (inductor, capacitor, etc) connected into the circuit via multi-port junctions. By applying

the bilinear transform for the discretization of the elements (and choosing a particular value for

the bilinea transform scaling constant), the method is able to avoid delay-free loops in circuit im-

plementations. Using appropriately normalized junction implementations, such networks can not

only implement models of passive networks, but can stay passive under time variation of network

parameters (as long as such changes were physically appropriate). Stefan Bilbao has recently re-

lated wave-digital filter design to other space/time discretization methodologies (basic physical

modeling, finite-element analysis, etc) ([16] [17]).

For the purposes of this thesis, wave-digital concepts do not necessarily have an obvious appli-

cation, as the filters and oscillators under examination are not passive. Thus research for this thesis

did not look too deeply into that subject. However, the technique appears particularly useful as

a physically-informed discretization of passive circuits (or lumped mass/spring physics models),

especially time-varying systems.

Other Notes

Tseng [270] designed a Simpson-rule integrator which is internally upsampled by a factor of two,

so includes a fractional-delay filter to preform the upsampling. As a general rule, oversampling

was avoided in this thesis, so this technique is mainly an interesting curiosity.

16It also bodes well for the numerical properties of Moog-style systems, though such properties are not explored in this
thesis.

1.3. REVIEW OF FILTER DISCRETIZATION METHODS 35

We should note, however, that while exploring the properties of the bilinear transform, it was

noted that higher-order relatives do exist, with interesting properties. For example, the following

transformation:

z←
(
s + 1
s − 1

)N
(1.29)

If we plot this for N=1,2,3,4, on top of the z = esT curves, using the constant-Q curves as reference

(Figure 1.8), We see that for the “first wrap around”, the curves approach the ideal z = esT curves

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

Figure 1.8: “Higher-Order Bilinear” transformations. Left to Right, Top to Bottom: N=1, 2, 3, 4.
Note how the “first wrap” curves get closer and closer to the z = esT curves.

36 CHAPTER 1. MUSICAL SOUND SYNTHESIS AND VARIABLE FILTERS

progressively closer.

This leads us to note that this is a good approximation of ex. In comparison to the well known

limit:

lim
n→∞

(
1 +

x

n

)n
→ ex (1.30)

The following is also a limit:

lim
n→∞

(
1 + x

2n

1 − x
2n

)n

→ ex (1.31)

Numerical experiments have shown (for example, Figure 1.9), that it converges much faster (with

the caveat that the rational approximation does have poles, which means the approximation will

only be particularly good for x smaller than 2n, but within that region, it is much better than the

other limit). On reflection, one can make comparisons between these two approximations and

between the forward-difference and bilinear transforms.

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

Figure 1.9: Convergence of two approximations of ex: Top row: (1 − x/n)n (n=4, 10, 50). Bottom
Row: ((1 − x/2n)/(1 + x/2n))n (n=2, 4, 10).

Of course, these limits are mainly of theoretical use (as there are much better ways to approx-

imate the exponential function), but it does give one food for thought when contemplating the

discretizations.

1.4. REVIEW OF EXISTING VARIABLE FILTER METHODS 37

Is this rational approximation directly useful in filter discretization? Not directly. The reason

for this is that we would typically implement such a transformation by replacing s with some

function of z. The above approximation would thus need to be inverted:

s←
N
√
z + 1

N
√
z − 1

(1.32)

Which leaves us with rational functions in roots of z (rather than in z directly), which are not

directly implementable.

There is an intuitive interpretation of a filter in the roots of z, however: oversampling. A filter

which consists of a rational function in N
√
z might be thought of as internally oversampled by a

factor of N. In essence: an oversampled filter can better approximate the behavior of z = esT in the

bottom fraction of its frequency range (which is where all the discretizations work well).

1.4 Review of Existing Variable Filter Methods

Filters in Virtual Analog can be seen as a subset of the larger set of Variable Filters. There is quite a

wide field of research in that area of filter design. As expected, most variable-filter design tries to

tackle the problem of designing a filter that can be usefully yet efficiently (and probably accurately)

varied while running (in real-time, usually). As such, the most obvious situation of simply re-

designing the filter on the fly is normally dismissed off-hand. On the other hand, some areas of

variable-filter design (including this thesis) approach that problem by attempting to create a filter

form for which “re-design” is trivially inexpensive.

We will look at the various general methods that have been described over the years, catego-

rizing them as either FIR-only, IIR-only, or applicable to both FIR and IIR filter design. Afterward,

we will look specifically as research into variable musical filters, in particular the two filter classes

which this thesis is about: the state-variable filter and the Moog-style four-pole filter.

1.4.1 FIR

As the number of coefficients is typically large in FIR filter design, it is not immediately obvious to

the general user that FIR variable-filter designs might exist.

Jarske et al. described in [130] a family of linear-phase FIR bandpass filters whose coefficients

are easily calculated as a window multiplied by a sinusoid of variable frequency. The concept of

this design being that complex filter-design algorithms need not be run for parameter changes,

rather a very straightforward function could be used to recalculate all the coefficients. Still, all the

coefficients do have to recalculated in this technique.

Yoshida and others [298] propose a method that I am calling “Multi-Dimensional Slice”, whereby

a multi-dimensional FIR filter is designed, whose higher-dimensional frequency response is a shape

38 CHAPTER 1. MUSICAL SOUND SYNTHESIS AND VARIABLE FILTERS

(like a diamond or a tilted shape) whose slices along certain dimensions are various desired states

of the filter variation of a 1-D filter. Variation (coef recalculation) occurs by moving the slice and

recomputing the 1-D FIR coefficients.

Weighted Least-Squares [257] is an FIR variable-filter design method whereby FIR filters for a

gridding of parameter space are designed, and then polynomials in the parameters are fitted to each

coefficient. Again, all coefficients must be recalculated for variation (but we will see methods in a

later section which can use FIR filters which do not involve any sort of coefficient recalculations).

This method has gathered interest recently for use as a variable fractional-delay filtering method

([159] and [61], for example).

Note that several techniques which are commomly used with FIR designs (such as SVD/Vector-

Array Decomposition) actually apply to IIR filters as well and are thus discussed later in Sec-

tion 1.4.3.

1.4.2 IIR

Some IIR filters have few enough coefficients that brute-force (or table-assisted) coefficient recal-

culation can be viable in realtime. Robert Bristow-Johnson [28] and Sophocles Orfanidis [198] give

good overviews of 2nd-order EQ-section design, in particular. They reference several well-known

papers on EQ filter design, such as Dana Massie’s exploration of normalized-ladder EQ design

[162]. Methods after Regalia and Mitra [217], [170], which use internal allpass filters with variable

phase response and variable combinations of the allpasses and the dry signals to perform inexpen-

sive variation ([104], [301]). An early wave-digital EQ-design technique was presented in 1976 by

M. Swamy and K. Thyagarajan [256]. Chris Hanna did further exploration of real-time EQ design

and variation in 1994 [103]

Since it is known that direct-form filters do not necessarily interpolate with “nice” intermediate

filters shapes, Ding and Rossum at EMU [64] described an intermediate filter representation which

could be transformed to/from implementation coefficients, which linearly interpolated with nice

intermediate shapes.

Similarly, lattice filters have useful interpolation properties, and Jean Laroche gave a good

overview of that in [151].

Digital state-variable filters and digital versions of the Moog voltage-controlled lowpass are in

this category, but will be discussed separately later in this chapter. As used in this thesis, they

belong in the category of variable filters that are constructed to have coefficient design equations

which are as cheaply-implementable as possible, and thus belong to the “brute-force re-design”

class of variable filters.

1.4. REVIEW OF EXISTING VARIABLE FILTER METHODS 39

1.4.3 FIR or IIR

Spectrum Warping

One of the earliest digital variable-filter techniques was Spectrum-Warping, first described by

Schussler and Winkelkemper in 1970 [229], based on work by Constantinides a few years earlier

[44],[45]. The basic method replaces the unit delay with a first-order allpass filter, which has the

effect of warping the effective spectrum for the filter in which the delays were replaced, and hence

allowing the frequency locations of the filter’s features to be smoothly varied via the allpass coeffi-

cient. The method has amassed quite a bit of literature, and it is to this day in extremely common

use.

The basic technique will not preserve linear phase in an FIR filter, so Oppenheim proposed a

variant [197] which would preserve linear phase. Crochiere and Rabiner analyzed this variant in

[52], and later, Dutta, Roy and Ahuja proposed a different linear-phase-preserving variant [70].

It was obvious early on that replacing a delay with an allpass in a loop would result in a delay-

free loop, and hence an unimplementable system. In non-variable design, that is not a major prob-

lem, as the filter coefficient can just be recomputed to absorb the loop. However, in variable-filter

design, such recomputation is to be avoided if at all possible. In 1979, Johnson proposed a simpli-

fied (yet still involved) coefficient recomputation [132], and later Steiglitz came up with a simpler

recomputation [245].

James Moorer gave a nice overview of the usage of spectrum warping in [176], and later Matti

Karjalainen gave an updated overview [137].

Murakoshi and others took spectrum warping and combined it with some of the math of [171]

to fill in some more usage cases [185], and later applied it to complex-coefficient variable-filter

design [186].

Spectrum warping also has application outside of variable filter design. For example, the math

is very similar to the classical methods of taking a prototype filter and performing s (or z) sub-

stitutions to create filters of desired width, or highpass and bandpass filters [46]. Julius Smith in

[234] uses warping to simply certain FIR and IIR filter design problems. Leland Jackson in [127]

similarly uses the technique to simply an FIR filter design, while at the same time using specific

warping coefficients that can be implemented very cheaply (i.e., with bit shifts and adds rather

than full multiplication).

Multi-dimensional (“MD”) Coefficient Fitting

This is a general class of design methods, of which the Weighted-Least Squares (WLS) design

method mentioned earlier ([257]) is a member. The basic concept is:

1. Do numerical filter designs for a (usually dense) grid of the parameter space.

40 CHAPTER 1. MUSICAL SOUND SYNTHESIS AND VARIABLE FILTERS

2. For each coefficient, fit a multivariable function (often polynomial) to the gridded coefficient

data. The fitting model is assumed to be inexpensive to compute at runtime, so that changes

in parameters require little computation to update the coefficients.

Typical applications of this concept are shown in [299] and [60]. The concept is more general than

the WLS method in that the design method is not restricted to weighted-least squares fitting, and

it can be applied to IIR filters as well. This technique can be applied to any type of base filter

implementation and any type of coefficient fitting functions, though the choice of filter type and

fitting model would obviously effect the ease of achieving good fits at efficient function orders, and

thus effect quality (aside from any quality issues the base filter type may have separately). Hence,

one should expect that some filter forms may work better with this technique than others.

Stephen Boyd has recently suggested [24] that rational-function models should be able to be fit

very tightly (using convex optimization techniques) for relatively low-order fitting functions, and

hence achieve very inexpensive parameter variation.

When inexpensive fits can actually be achieved for inexpensive filters (i.e. IIR filters), then

methods of this type should be able to create quite useful functions.

Vector-Array Decomposition

This method works by sampling the (N+1)-dimensional desired frequency response (the frequency

dimension + N control-parameter dimensions) and performing an array decomposition, such as

Singular-Value Decomposition (SVD), on that data. This results in a set of 1-dimensional vectors,

whose outer-products sum to the desired response. The 1-D vectors along the frequency dimension

are simply filters. The other vectors are then approximated by polynomials, and the resulting

variable filter implemented as a sum of the component filters, weighted by the various polynomials

on the control parameters.

Note that this differs from the previous technique (MD coefficients) in that the polynomials are

fitted to the results of an array decomposition, and represent weights in the summation of a set of

filters, whereas in the previous trechnique, the polynomials represented filter coefficients directly.

Also, this method, as it currently stands, uses only 1-D polynomials, whereas the prevous technique

uses multivariable fitting functions.

This technique was originally implemented mainly using FIR filters, but quickly extended to

general IIR filters. Deng has a series of papers on the method, starting in 1994 [63], and most

recently in 2005 has presented a complex-valued version [62].

As a slight variation, Pun and others [211] describe an IIR system using a common denominator

for the decomposed FIR filters, and also discusses a piecewise-polynomial extension. These authors

also note the similarity between this structure and the Farrow structure (next section).

1.4. REVIEW OF EXISTING VARIABLE FILTER METHODS 41

Fractional-Delay and SRC

A large area of research in the last 10-20 years has been the problem of variable fractional-delay

filter implementation. Such filters have application in a rather wide range of fields. For example,

time-varying delay effects such as chorus, flange, pitch-shift and even reverb use variable frac-

tional delays to smoothly vary their delay lengths. Similarly, waveguide-based music synthesis

techniques use them for precisely tuning and varying waveguide lengths. Sample-rate-conversion

can be algebraically rearranged into a time-varying fractional-delay filter. Such a filter can thus also

be considered as table interpolation, and as such has application in sample-based music synthesiz-

ers. All of these use some form or variation on the concept of fractional-delay filtering, and most

of them require that the delay fraction be varied on a per-sample basis, such that cost is a definite

issue.

Overviews of the general problem and various design approaches have been given by Timo

Laakso et al. [149], and by Jon Dattorro [58].

The most obvious methods are various FIR interpolations, linear being the most common, but

higher-order polynomials are not uncommon (most particularly various Lagrange interpolations)

[149]. David Jaffe and Julius Smith compared linear interpolation and the use of a first-order allpass

filter to get a variable fractional delay in [128], and discuss how the allpass interpolation can be

used in systems where a delay must sweep smoothly over a multi-sample range.

Later, Vesa Välimäki discussed how to hide transients from more complicated discontinuous

IIR/allpass coefficient changes [278], based on an optimization of [300], and later followed up in

[274]. The basic concepts being the online initialization of a side filter with the new coefficients and

the same input signal, then swapping states and coefficients (or switching over to the side filter)

when its startup transient has decayed sufficiently.

Recently, Rauhala and Välimäki have applied variable-delay-filter concepts to the design and

implementation of dispersion filters for piano-string modeling [214].

In 2001 Makundi, Laakso, and Välimäki took a technique from JP Thiran [267] for designing

maximally-flat group-delay filters and created a variable version of it [161].

Much sample-rate-converter work doesn’t apply back to the general field of variable-fractional-

delays, as the interpolation/delay is often intertwined too deeply into the conversion algorithm

(such as with most polyphase methods).17 However, some techniques do apply to fractional-delay

filtering:

Smith and Gosset described in 1984 an FIR arbitrary-fractional-sample delay where the coeffi-

cients were read out of a windowed-sinc lookup-table using a particular algorithm to determine

which locations to lookup into the table [242]. Later, Paul Beckmann and the author created a vari-

ant [13] which, by constraining the rate conversion ratio to be within a narrow range of an ideal

ratio (i.e.,limiting the set of fractional delays to a certain subset), allowed an optimization to the

17Though Ikehara in 1990 presented a variable-filter method [124] based on the polyphase decimation filter form.

42 CHAPTER 1. MUSICAL SOUND SYNTHESIS AND VARIABLE FILTERS

table lookup, yet still allowed the converter to be used in an asynchronous fashion.

A sample-rate conversion structure that has gathered a bit of a following is the Farrow Structure

[77], whereby the concept of interpolating between a set of fixed fractional-delay filters is trans-

posed into a single interpolation polynomial on a signal, but where the polynomial coefficients are

filters. Early work in this area lacked a good interpretation in the frequency domain and hence was

limited in SNR (due to difficulty in understanding how to design the filters optimally for SNR), but

recently Vesma and Saramaki have worked out much of that issue [284], [283] and higher-quality

designs should be forthcoming. In 2003, Johansson and Lowenborg presented a variation [131] on

the Farrow structure which could allow different filter orders between subfilters. It was noted in

[211] that VAD-style variable filters can look very similar to Farrow structures, and that there is

probably a connection.

1.5 Musical Filters in Subtractive Synthesis

Musical filtering, and subtractive synthesis in particular, originally started by using filters as avail-

able from other areas (radio, etc.), however, the advent of voltage control gave the field its own

special set of filters. Whereas typical filter design had centered around fixed filters of the classi-

cal types (Butterworth, Chebychev, Elliptic) in lowpass, highpass and bandpass configurations, or

around the parametric-EQ designs (peak/notch/shelf with tweakable gain, center, and Q), subtrac-

tive synthesis had two particularly useful designs which were of particular fame: the state-variable

filter (which, it must be admitted, did not originate within the field of electronic music synthe-

sis, but it was well-used in it), and the four-pole resonant lowpass originally popularized by the

Moog implementation (which I will usually call the “Moog-style filter”). Both had modulatable

center/corner frequency, which was quite useful in generating interesting effects, and either mod-

ulatable or easily-controllable resonance on the corner (or center) frequency. For a time, Moog was

able to protect his patent [204] of the special ladder structure [173] which was the hallmark of the

filter, but later variants became common (such as diode-based ladders in synths such as the Roland

TB303).

In his AES paper on musical filters, Dattorro [57] has a discussion of the requirements of musical

filters, as opposed to requirements typically seen elsewhere in engineering.

1.5.1 History: Continuous-time Analog Filters

State-Variable Filters

The analog state-variable filter was introduced by Kerwin, Huelsman, and Newcomb in 1967 [140],

and a few later authors refer to the design as the “KHN” filter. Further discussion of the parametric-

EQ uses of the filter are given by Frey [89] and Bonello [21].

1.5. MUSICAL FILTERS IN SUBTRACTIVE SYNTHESIS 43

The term “state-variable filter” can be attributed to the fact that the filter is directly in the form

one would use to solve a differential equation using an analog computer: a series of integrators

with each integrator’s output fed back and mixed with the input through various calculations.

We owe much of the current interest in the State-Variable filter to its inclusion in Hal Chamber-

lin’s classic Musical Applications of Microprocessors[37], which also gives us one of the first (and the

most influential) discrete-time implementations of the filter.

On a side note, Chidlaw described a fourth-order extension of the state-variable filter concept

for musical use in [41]. It has a possible drawback of having two peaks at high Q, though it is

described as a central feature (the split distance is directly controllable). It is a simple and elegant

design, though, and might have its uses.

Moog-Style Filters

The classic four-pole transistor ladder circuit was first published (after getting the patent submit-

ted) as an AES talk by Robert Moog in 1965 [173]. The previous year, he had written an AES journal

article on the use of voltage control in synthesis [172], but had not described this filter in that article.

We next find published work on the filter in a series of articles in Bernie Hutchin’s Electronotes

publication. In a series of three (non-contiguous) articles ([118], [113], and [114]), Hutchins de-

scribes the filter and works out explanations for its behavior. These are the first articles to analyze

the Moog filter in a root-locus-like way, though root-locus itself is not discussed. Later, in four

more papers, Hutchins and Bjorkman explore an extension to the Moog-style filter to any number

of poles, which Hutchins called “Polygon Filters,” based on the pattern of the poles in the s plane

([117], [19], [115] and [116]).

1.5.2 Digital Musical Filters

State-Variable Filter (SVF)

As in the history of analog music, digital music (mainly academic music) first started with the

classical filters, when filters were used at all. However, due to the influence of Chamberlin’s book,

the state-variable filter, particularly in his form, became quite pervasive. Chamberlin presents the

analog state-variable filter, but quickly moves to the digital form, showing a block diagram, giving

computer code for implementing it, and describing how to calculate its control parameters. As

mentioned earlier, one of the key benefits of this filter is that the equations for calculating the

coefficients from the parameters are very simple: theQ coefficient is simply 1/Q, and the frequency

coefficient is 2 sin(πfc/fs). Since sine is effectively a straight line near zero, one could ignore the

sine if exact tuning wasn’t necessary, or use a simple polynomial to get pretty close at most musical

frequencies.

44 CHAPTER 1. MUSICAL SOUND SYNTHESIS AND VARIABLE FILTERS

Later, Bernie Hutchins discussed state-variable-filter digitization in Electronotes [121], using

both backward-difference and bilinear methods. However, his block diagrams contain delay-free

loops which are not discussed in the text, so it is unclear whether his actual implementations in-

cluded unexpected loop delays or if he might have used the derived transfer functions in other

implementable filter topologies.

Dutilleux, in his thesis on efficiently-variable synthesis ([69] and an AES preprint of the same

subject, in English: [68]), re-derived the state-variable filter, and explored more of its capabili-

ties and behaviors. His derivation gave a different-looking filter than Chamberlin’s, but we will

see later that it was actually very close, and it uses the same design equations. Interestingly, he

attempted a bilinear transform of the filter but decided it wasn’t worth figuring out the delay-free-

loop problem. He did venture a small modification to the standard filter to give a similar result to

doing the bilinear transform (placing a one-zero filter in line with the state-variable filter). He also

had some good discussion of amplitude scaling issues (which this thesis will not look into deeply,

so the reader is recommended to that paper for details).

The next major discussion of the state-variable filter was in Jon Dattorro’s 1997 AES paper on

musical effects and filters [57]. In that paper, he attempted to re-derive Chamberlin’s form purely

from frequency-domain specifications (successfully, though with a few series approximations here

and there, as happens with most digital filter designs). He noted that by that time, the state-variable

filter was in wide use in the industry and was well-known for good noise and quantization behav-

iors (which he then analyzed in great detail).

It is of interest that there are several 2nd-order filter structures which are quite similar to the

Chamberlin structure, for example, Yan and Mitra [294], the Gold and Rader Coupled Form [93],

and a structure described by Agarwal and Burrus [4]. Similarly, we will note a few more in a later

chapter of this thesis. We will be concentrating mainly on the SVF topology, but it would be very

interesting to compare these to the SVF in a musical light.

Moog-style filters

In 1984, Bernie Hutchins discussed digitization of this filter type in Electronotes [121][120], going

as far as to use the bilinear transform. However, he apparently forgot to note that such a trans-

formed filter contains a delay-free loop (as will be discussed in a later chapter).18

By the mid 1990s, simple digitizations of the Moog-style filter had become common as sound-

effect filters in various digital synths. Perry Cook has mentioned implementing a delayed backward-

difference version of the filter [49] for MediaVision in the early 1990s, and similar anecdotes were

heard from employees of other synthesizer manufacturers.

18Interestingly, Hutchins was more interested in the backward-difference discretizaion, considering the bilinear result too
similar to the analog filter. Apparently, at the time, he was searching for “new” filter behaviors rather than faithful models
of the analog filter.

1.5. MUSICAL FILTERS IN SUBTRACTIVE SYNTHESIS 45

In 1995 the author and Julius Smith analyzed the filter, and noted how directly the form resem-

bled that of the feedback systems of classical control-systems design, and that root-locus would

be a particularly applicable method for gaining intuition on the behaviors of the filter [249]. After

trying the obvious discretizations, a compromise between the bilinear-transformed and backward-

difference-transformed filter was found which could under some situations be used without the

need for a table (or large polynomial) to separate the frequency and Q controls. Soon thereafter,

Harvey Thornburg performed a series of experiments into the behaviors of various locations and

numbers of nonlinearities in the filter loop [268]. The author went on an effective hiatus soon there-

after until recently, and during that time, quite a few virtual analog synthesizers came to market,

demonstrating the market appeal of the concept and pushing the envelope in quality and efficiency:

Popular or influential Virtual Analog synthesizers (not a complete list, rather a sampling of

notable synths, with assistance from www.vintagesynth.com19)

• 1995: Clavia Nord Lead, the first well-known synth to specifically emulate a particular analog

synthesizer (the MiniMoog).

• 1995: Korg Prophecy

• 1997: Yamaha AN1x

• 1997: Roland JP-8000

• 1997: Access Virus (and later versions)

• 1998: Novation SuperNova

• 1998: ReBirth (Software)

• 1998: Clavia Nord Modular

• 1998: BitHeadz Retro AS-1 (Software)

• 1999: Native Instruments Reaktor (Software), and a slew of later emulations of specific synths.

• 1999: Waldorf Q

• 2000: Reason (Software)

• 2001: Korg MS-2000

• 2003: Arturia CS-80V and Moog Modular V (Software)

• 2004: Alesis Ion and Micron

• 2004: CreamWare MiniMax
19And Sean Costello and Denis Labrecque

46 CHAPTER 1. MUSICAL SOUND SYNTHESIS AND VARIABLE FILTERS

In 2004, Antti Huovilainen published a paper [110] on a fully nonlinear filter model derived

purely from the circuit equations, a concept which continually expanding computing power had

finally made viable for real-time implementation. That paper was followed by more papers ex-

panding on the concepts and working back towards more efficient architectures, also bringing in

recent work in bandlimited waveform synthesis ([111] [277]).

This thesis will expand on the ideas in [249], introducing one or two further tweaks on inex-

pensive Moog-style filter design, looking much more deeply into the concept of using root-locus to

understand pole-variable filters, and adding the state-variable filter into the filters discussed and

analyzed. Additionally, the work in another paper from the author [248], on bandlimited waveform

generation, will be discussed. Finally, as part of looking into root locus, the author experimented

with several algorithms for rendering root locus diagrams, and that work will be discussed in the

first appendix. Other, less-related research topics are discussed in later appendices.

Caveats

Scope of filter designs. The quest for inexpensive variable filters can be thought of as following

one of two different directions:

• Design a good filter and work on making the tuning transformations as inexpensive as pos-

sible. It is noted by Boyd [24] that extremely inexpensive yet tight rational-function fits can

be made to coefficient values across multidimensional control spaces (such as (Q, fc)) using

straightforward convex optimization techniques. As such, extremely inexpensive filters may

be built using these methods.

• Work on deriving a filter which implements the desired tuning inherently, such that there

need not be any extra tuning transforms (or that they be as trivial as possible).

This thesis takes the latter course in the exploration of the design of Moog-style filters. The former

course is expected to be equally valid and should be expected to produce useful designs as well.

Time variation and nonlinearity. The filter analysis methods employed in this thesis (root locus,

plotting Q, etc.) are only valid for time-invariant systems. Thus, filter designs based on these

analyses are only expected to satisfy their design goals during periods of relatively static usage (or

“slow” variation). It is expected that these will be the most common usage modes. Still, the design

goal of inexpensive parameter variation is still valid. First, it allows variation of moderate speed to

be done smoothly (without zipper artifacts or other artifacts associated with updating coefficients

sparsely in time). Second, it does not prohibit the use of the filter outside of the design region

(i.e. with fast time variation) — the filter is still usable (inexpensively). The user must be warned,

however, that in such situations, such filters are no longer expected to act “as designed”, since the

1.6. FILTER TOPICS THAT WILL NOT BE COVERED DEEPLY IN THIS THESIS 47

design used only time-invariant concepts.20

In other words, filter design requirements referring to fast time-variation are purely there for

efficiency reasons — the designs are otherwise based on purely time-invariant assumptions.

Further, the analysis methods are only valid for linear systems. As such, the linear behavior of

the filters is of primary interest in the design. However, since it is known that nonlinear implemen-

tations are highly desirable among users, there will be a default constraint on the filter designs: do

not preclude such implementations. This is practically interpretated as: do not stray too far from

the original filter topology. In the Moog-styule filters, this means we will stay with the topology

of four onepole filters in a loops with feedback. There is no attempt to back up this constraint by

theory, it is simply assumed that by keeping this topology, if one adds state saturation into the

loop (at one or more places within the loop), that the saturation will behave similarly to the analog

saturation. It is also assumed that other filter toplogies would deviate more dramatically in the

presense of saturation. Therefore, although the use of nonlinearity is not analyzed as part of the

filter designs, it is assumed that is will be part of most actual implementations and thus constrains

the space of filter topologies that are considered.21

1.6 Filter topics that will not be covered deeply in this thesis

Within the fields of musical-filter design, variable-filter design, and time-varying filter analysis,

there are several common topics which will not be covered very deeply in this thesis, as other

features of filter performance were the primary focus of the research.

Coefficient and state quantization issues, sensitivity and noise This was an area of great dis-

cussion in the late 1960s and early 1970s, and still generates useful research. Leland B. Jackson

and others analyzed direct-form filters [125], [183], [157], and later, papers such as [291], looked

into error-feedback as a method for reducing noise in such filters. Gold and Rader [93] presented

the often-referenced Coupled-Form 2nd-order filter, well-known for good noise and coefficient-

sensitivity properties. Later, Yan and Mitra presented two variations on the form [294]. Gray

and Markel discussed lattice and ladder filters [97] [98] and their properties, and others continued

the analysis [183]. Later, Dana Massie looked into the properties of the normalized ladder [162].

Dattorro researched the noise properties of the Chamberlin-form state-variable filter [57], noting

that it had long been known for its good behaviors in this area. Lesser-known structures have been

analyzed at various times. For example, Agarwal and Burrus described a 2nd-order form quite

similar to the state-variable filter which has good properties [4], which was further analyzed [184]

20Still, usage outside the region where the time-invariant assumption holds is likely to be aesthetically useful, even if
“incorrect”.

21It is left to later research to prove the vailidity or invalidity of these assumptions. The intuitive basis for these assump-
tions is the idea that the small-signal behavior of the system is the linear system we design and analyze.

48 CHAPTER 1. MUSICAL SOUND SYNTHESIS AND VARIABLE FILTERS

by David Munson and Bede Liu (who has written extensively on quantization issues in all areas

of signal processing). More recently, Jean Ritzerfeld has presented two slightly more complicated

2nd-order forms with low noise properties [219].

Stability of Time-varying filters This is also an area of significant research. Jean Laroche has a

nice introduction to the problem in [151] which looks at the behavior of 2nd-order filters in DFII,

Coupled Form, Lattice, and Normalized Ladder forms (also noting how all those forms but DFII

give rather good interpolated filter settings). The normalized ladder has in particular been known

for nice time-variation stability [98], and recently Stefan Bilbao has been doing very nice research

into filter structures which maintain passivity and stability through arbitrary modulation ([18]

for example). For the purposes of this thesis, possible instabilities due to modulation are simply

considered as normal behaviors of the filters.22 As mentioned previously, the design methods em-

ployed in this thesis do not attempt to match the filter’s behavior with that of an analog filter during

fast time variation, only during static or slowly varying situations.

Other artifacts from Time Variation Clicks and “zipper noise” due to slow and/or discontinuous

changes in filter parameters are another artifact of certain types of time variation, and there has

been research into methods for minimizing such effects. Jean Laroche looked into the problem in

his paper on time-varying stability [151], and Mourjopoulos [181] and Hanna [103] have separately

worked on reducing such artifacts. Since one of the design assumptions of filter variation for this

thesis is per-sample modulation, zipper noise is not expected, and any discontinuity would have to

be in the modulating signal itself, so that the filter does not have any responsibility to reduce this

type of artifact (except to be able to accept parameter changes at the sample rate inexpensively).

1.7 End Notes

Finally, it must be noted that, due to the popularity of electronic music synthesis, and particularly

due to the Techno/House revolution, there is an extremely large do-it-yourself and synth-software

community on the internet through which much more background information can be found than

could be put into this thesis, interspersed among a plethora of opinions, theories, and critiques of

any aspect that you can think of about music synthesis, virtual analog, and the world in general.

Particular resources of note are (and this is nowhere near a complete list, and in no particular

order):

Vintage Synth Explorer http://www.vintagesynth.com/

Harmony Central http://www.harmony-central.com/

22Since the use of saturation nonlinearity in the filter loop is such a popular feature of most Moog-style filter implemen-
tations, such nonlinearities would likely moderate the effects of time-variation-induced instability to some extent.

1.7. END NOTES 49

The Synth-DIY mailing list http://www.euronet.nl/~rja/Emusic/Synth-diy/

Don Tillman’s Page http://www.till.com/

MusicDSP.org http://www.musicdsp.org/

MusicDSP mailing list http://shoko.calarts.edu/~glmrboy/musicdsp/music-dsp.html

comp.dsp and its webpage http://www.dspguru.com/comp.dsp/tricks/tricks.htm

Music Machines http://machines.hyperreal.org/

Analog Heaven mailing list http://machines.hyperreal.org/Analogue-Heaven/

Synth Museum http://www.synthmuseum.com/

SynthZone http://www.synthzone.com

SynthZone Analog page http://www.synthzone.com/analogue.htm

Synthfool http://www.synthfool.com/

Chapter 2

Root-Locus Interpretation of

Pole-Variable Filters

2.1 Introduction

Upon realizing that the Moog filter was in the exact topology in which classical control-systems are

taught, and in which root-locus analysis is taught, it was a small jump to realize that root locus is

very well suited to describing the behavior of filter variation, particularly of the class of variable

filters whose primary behaviors are determined by their pole locations, such as the state-variable

filter and the Moog-style filter. As such, we set about to look at the variation of a number of filters

(including those) in terms of their pole motions, primarily to build intuition as to why they vary in

the ways that they do.

As noted in the introductory chapter, these analyses are only valid for time-invariant systems

(or are only close for slowly time-varying systems). As such, these analyses only apply to usage

modes where the variation is slow or locally constant. This is expected to cover a large range of

normal usage. These analyses do not apply when the filters are modulated at fast rates. This thesis

does not explore analyses for these situations.

2.1.1 Introduction to Root Locus

A more in-depth introduction to Root Locus will be given in Appendix A. In short, a root locus

is the the locus of all roots of a polynomial (usually) as one or more parameters change. More

specifically, it usually is used to analyze the motion of the poles of a feedback system as the feedback

gain varies. Take a linear system G(s) (or G(z)),1 which can be expressed as a rational function

1Root locus works exactly the same in s and z, as polynomials are polynomials regardless of the variable. The difference
between s and z is the interpretation we place on pole and zero locations in each plane.

50

2.1. INTRODUCTION 51

G(s) = N(s)/D(s), where D and N are simple polynomials in s. Then, we put negative feedback

around the loop with a gain of k in the feedback, and get get the total system

G(s)
1 + kG(s)

=
N(s)

D(s) + kN(s)
(2.1)

The poles of the system as k varies are therefore the roots of D(s) + kN(s) = 0 as k varies.

Put in other words, the root locus traces the locations in the s plane where the phase of G(s) is

π ± n(2π).
We will not list all the root locus properties here (again, see Appendix A), but one or two will

get us started:

When k = 0, the poles of the system are the roots of D(s) (i.e., the poles of the open-loop

system). As k moves away from zero, the poles move (in a direction depending on the sign of k)

away from their staring point and through various curves until, as k → ∞, the poles approach the

roots of N(s) (i.e., the zeros of the open-loop system). Therefore, as one might expect, the roots of

D and of N both affect the paths of the pole curves.

Now, if we solve for k, we get:

k = −D(s)
N(s)

(2.2)

And since k is real (we will assume that we are dealing with real-valued systems with real-valued

coefficients), this implies that:

Im
(
D(s)
N(s)

)
= 0 (2.3)

This implicit equation defines a set of curves in the s plane, which are the root locus (for all real

values of k). If one were to choose a point on these curves, one could solve for the k at that point

by plugging that value of s into Equation 2.2.

One of the uses of root locus is that, with practice, one can develop intuition into how the curves

are shaped relative to the open-loop pole and zero locations. Hence, by developing that intuition

and applying it to the analysis of variable filter pole movement, one may gain intuition into the

basic behaviors of the filter variation.

2.1.2 But why? Isn’t Root Locus ancient history?

Well, yes, in the field of Control Systems, many newer and better controller design techniques have

been developed over the years,2 and Root Locus is no longer particularly exciting there. However,

Root Locus analyzes systems in ways that weren’t necessarily usable to their fullest in controls

design: it shows the whole evolution of a part of the system behavior through the range of a par-

ticular parameter. Control systems design, on the other hand, was (at least historically) about the

2The interested reader is referred to any modern control-system textbook, such as [66][168][87].

52 CHAPTER 2. ROOT-LOCUS INTERPRETATION OF POLE-VARIABLE FILTERS

search for a single setting of the controller to get the best response of the complete system. Thus

most of the data in a root locus was not directly applicable in designing a controller. Furthermore,

pole locations were found to not necessarily be the optimal descriptions of the system from which

to analyze a controlled system. Therefore, other design methods (optimal design, etc.) eventually

outclassed the root locus as a way of designing controllers.

However, there are fields where the knowledge of how a system changes with its parameters (as

opposed to trying to find a single ‘best’ parameter set) is particularly useful. The field of variable

audio filter design is such a field. Variable filters are intended to be used across a range of their

parameters, and preferably to be “retuned” cheaply, so as to be varied in real-time (even modu-

lated up to audio rates), so the complete locus can be of use, rather than just a region near where

the locus crosses the stability boundary. Additionally, there is a subclass of variable filters whose

behavior can be almost completely described by pole locations (which was not necessarily true in

control systems). Root Locus directly shows the way such a filter varies with changes in one of its

coefficients. Such visualization of the filter behavior can be a powerful tool to assist a designer in

understanding their filters.

2.1.3 Pole-Variable Filters

The class of filters we will be concentrating on are those for which root-locus analysis is most appli-

cable, a class that I call Pole-Variable Filters. In essence, variable filters whose behavior and variation

are primarily describable in terms of the locations (and motions) of their poles. Obviously, variable

all-pole filters fit this exactly, but we can also look at filters whose zeros have only a gross effect

on the behavior of the filter (such as defining a lowpass versus a highpass or bandpass response),

and which may not vary at all with the filter variation. Many basic 2nd-order filters fit this descrip-

tion, including the Chamberlin State-variable filter and the Moog-style filter which are our primary

interest.

2.2 Looking at Some Basic Filters

We will first look at how a few basic filters can be interpreted in terms of root loci in their coeffi-

cients. Then we will digress into some discussions on the concept of a “Root Locus Filter”, before

jumping into looking at the Digital State-Variable Filter and the Moog-style VCF in terms of root

loci. As the next chapter deals with these two filters in much more depth, we will not delve too

deeply into their analysis in this chapter. Instead, we will just show how their basic behaviors can

be visualized and interpreted in terms of their root loci.

2.2. LOOKING AT SOME BASIC FILTERS 53

2.2.1 “Circle Filters”

When we think about variable filters from a root-locus standpoint, one of the first root-locus behav-

iors we might think of is the fact that the circle tends to show up frequently in loci. The circle is also

an important shape in discrete-time filtering — the region of stability is a circle, and circles around

the origin in the z plane represent contours of equal pole decay-rate (and, roughly, bandwidth,

depending on definitions). See Figure 1.1 on p. 16 for review of these contours.

As such, we can define a straightforward variable filter as one whose locus in one control is a

circle about the origin, and whose other control is the radius of the circle. We will call this filter, not

surprisingly, the “circle filter”, though it does resemble some existing designs (more on that later).

We can set up such a filter by placing an open-loop zero on z = 0, which will set up the center

of the root-locus zero. The other zero can be placed somewhere outside the unit circle. It turns out

a good location is the inverse of the first zero location (i.e.,∞).

To choose the open-loop poles, we note that if we have two poles on the real axis, on the same

side of the zero, then the locus will split off the axis between them, and circle around the zero. Thus,

to control radius, we can simply control the placement of the poles such that the split-off point is

the desired radius r. Two common methods for doing this are:

• Place both poles on z = r. We will call this filter a Type 1 circle filter.

• Place one pole on z = 1, and the other pole on z = r2. We will call this filter a Type 2 circle

filter.

z-1

z-1

k

yx

r r

z-1

z-1

k

yx

r2

z-1

z-1

k

yx

r2

Figure 2.1: “Circle Filters”. Filters set up directly to have a useful root locus (in this case a constant-
bandwidth variable filter). Left: Type 1, Right: Type 2, two possible implementations.

Therefore, we need to create a loop containing two poles on the desired locations, and one zero

on z = 0, with a loop gain. Such filters are shown in Figure 2.1. We make use of the fact that

a backward-difference onepole filter has its zero at z=0, and a forward-difference onepole has its

54 CHAPTER 2. ROOT-LOCUS INTERPRETATION OF POLE-VARIABLE FILTERS

zero at∞ (see Section 1.3). As we have designed, the root-locus equation for these filters are:

Type 1: (z − r)2 + kz = 0 → (z2 − 2rz + r2) + kz = 0 (2.4)

Type 2: (z − 1)(z − r2) + kz = 0 → (z2 − (r2 + 1)z + r2) + kz = 0 (2.5)

And the loci in k are as shown in Figure 2.2. For Type 1, at k = 0, the poles are on the real axis,

and as k increases, the poles move around a circle centered on z = 0 at the radius r, their angle

controlled by k, until they meet at z = −r when k = 4r, then split, one heading in towards z = 0 and

the other heading towards z→ −∞.

For Type 2, the poles are separated on the real axis at k = 0, and they move towards each other

and meet at z = r when k = (1−
√
r)2, then head around the circle, meeting again when k = (1+

√
r)2,

then splitting toward z = 0 and z→ −∞.

k<0k<0

k >0r

k >0

k<0

k<0

k >0r

k >0

r2

Figure 2.2: Circle Filter loci. Left: Type 1, Right: Type 2.

Loci in r for these filters are shown in Figure 2.3. Note that the loci are 2nd-order in r. Since the

parameters are not completely independent, the loci in r do no appear as radial lines. For the Type

1 filter, the open-loop poles are z = 0 and z = −k. The open-loop zeros (the roots of the k2 term) are

both at infinity, and the roots of the k term are at z = 0 and z → ∞. Interestingly, the off-real-axis

shape for this locus is a
√
x shape.3

However, these filters still have rather straightforward controls: the radius is directly con-

trolled by the coefficients of the onepole filters (either as-is or squared), and k controls the fre-

quency, though not linearly. By analogy to the well-known 2nd-order denominator expression

z2 − 2r cos(θ)z + r2, we get:

Type 1: k = 2r(1 − cos(θ)), θ ∈ [0, π]⇒ k ∈ [0, 4r] (2.6)

Type 2: k = r2 − 2r cos(θ) + 1, θ ∈ [0, π]⇒ k ∈ [(r − 1)2, (r + 1)2] (2.7)

3In fact, we can show that for r > k/4, the shape is y =
√
k
√
x + k/4.

2.2. LOOKING AT SOME BASIC FILTERS 55

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

Figure 2.3: Circle Filter loci in r. Top: Type 1, Bottom: Type 2. Left to right: k = 0.01, k = 0.2, k = 1,
k = 4.

k = (r − 1)2 + 2r(1 − cos(θ))

As such, we see that the Type 1 filter can control those parameters nearly independently, requiring

just a scaling by r in the calculation of k to separate the controls, which is not very expensive. The

Type 2 filter needs a little more calculation to separate k from r, but not that much more.

If one compares the filter block diagrams to those found in Dattorro 1988 [56], we see that the

Type 1 form is quite close to Rader-Gold form [93] (if we were to split k up into two factors of
√
k

and rotate one of them back through to between the two first-order filters). Also, the upper Type-2

implementation is quite similar to Agarwal-Burrus form [4] (particularly if we were to replace r2

with 1−p1). In both cases, however, the Circle-filter forms pick off the feedback from the 2ndonepole

before the delay, whereas the Rader-Gold and Agarwal-Burrus forms pick off after the delay.

We call this type of filter (one where the frequency control sweeps constant-radius contours)

a “Constant-Bandwidth" filter, as sweeping the frequency with a constant r gives a filter whose

bandwidth stays constant. By creating appropriate zeros (via combinations of outputs from various

locations within the structure), one can create filters of various shapes (highpass, lowpass, boost,

cut, shelf, etc.).

Now, many users prefer, instead of constant-bandwidth filters, constant-Q filters (i.e., filters

whose Q can be kept constant through frequency sweeps). As noted, we will look more at this

filter in a later chapter, and work on turning it into a Constant-Q filter.

56 CHAPTER 2. ROOT-LOCUS INTERPRETATION OF POLE-VARIABLE FILTERS

2.2.2 Direct-Form All-Pole Filter

First-Order Filter

z-1

d1

yx

Figure 2.4: A discrete-time one-pole filter

In Figure 2.4, we draw a first-order discrete-time one-pole filter with transfer function

1
1 + d1z−1

. (2.8)

We note that this filter is basically in root-locus form already, with d1 as the loop gain variable. The

Root-locus equation is:

z + d1 = 0 (2.9)

Comparing with the root-locus form template D + kN = 0, we can say that the “open-loop zeros”

are at z → ∞, and the “open-loop pole” is at z = 0. This is a simple root locus, starting at z = 0

when d1 = 0, and then moving along the real axis, either to the left for d1 > 0, or to the right for

d1< 0d1>0

Figure 2.5: One-pole filter. Locus in d1 ≥ 0. The locus stays on the real axis. The locus in d1 < 0
heads towards z→ +∞. The locus in d1 > 0 heads towards z→ −∞.

2.2. LOOKING AT SOME BASIC FILTERS 57

d1 < 0 (see Figure 2.5). Further, its location is −d1 (so it crosses the unit circle at |d1| = 1).

Second-Order Filter, Locus in d2

z-1 z-1

d1

yx

d2

Figure 2.6: A discrete-time two-pole filter.

We can think of any order of direct-form allpole filter as a hierarchy of loops. Each order picks

off on the output of the last delay and adds a new loop back to the input (see Figure 2.6). The

transfer function is
1

1 + d1z−1 + d2z−2
(2.10)

and the root-locus function using d2 as the gain variable is

z(z + d1) + d2 = 0. (2.11)

So the open-loop zeros are again at z → ∞, and the open-loop poles are z = 0 and z = −d1. For

d2 ≥ 0, this locus starts at these locations at d2 = 0, and the poles move towards each other until

meeting at z = d1/2, when d2 = |d1|2
4 . Beyond that value, the poles split off the real axis and head

vertically, parallel to the imaginary axis (one going up, one going down), with their real parts

equal to −d1/2 (Figure 2.7). These will hit the unit circle when d2 = 1, which can be verified by the

traditional denominator expression z2 − 2r cos(θ)z+ r2, hence d2 = r2, and thus when r = 1, d2 = 1.

For d2 ≤ 0, the poles stay on the real axis and head away from each other towards z → ∞ in both

directions (crossing the unit circle at d2 = −1 ± d1).

It is often noted that direct-form root locations have bad coefficient sensitivity [195]. This can

be corroborated from the root-locus standpoint by remembering that the k sensitivity gets large as

the poles get near each other, and even goes to infinity when the poles touch. Thus the poles are

expected to get very sensitive to d2 around d2 = |d1|2/4. As such, the poles “jump” up off the real

axis, and if d2 is quantized, the distance between adjacent pole locations will get very large, as seen

in a plot of quantized-coefficient pole locations (see Figure 2.8, as shown in Oppenheim and Shafer

[196], and others). Note that the sensitivity is only in d2; the poles are not exceptionally sensitive

to d1.

58 CHAPTER 2. ROOT-LOCUS INTERPRETATION OF POLE-VARIABLE FILTERS

-d1

-d1

2

Figure 2.7: Direct-Form two-pole filter. Locus in d2 ≥ 0. The locus in d2 < 0 stays on the real axis
and heads away from the poles towards z→ ±∞.

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

Figure 2.8: Possible stable pole locations of a direct-form twopole, d1 and d2 quantized to multiples
of 0.02.

2.2. LOOKING AT SOME BASIC FILTERS 59

Second-Order Filter, Locus in d1

If we instead look at the 2nd-order filter’s root-locus equation, reading d1 as the locus gain variable,

we get:

(z2 + d2) + d1z = 0 (2.12)

So, the open loop zeros are z = 0 and z → ∞, and the open-loop poles are z = ±
√
−d2. The root

locus for this is one of two cases:

• If d2 > 0, the open-loop poles are on the imaginary axis, at z = ±j
√
d2. The complete root

locus is first a circle, centered on the open-loop zero at z = 0, with a radius of
√
d2. The

locus starts at z = ±j
√
d2, for d1 = 0, and moves down the circle until hitting the real axis at

d1 = 2
√
d2. For larger d1, the locus splits with one pole heading in towards z = 0 and the

other heading out to z→∞.

d1< 0d1>0

d2

d1< 0 d1>0d1>0 d1< 0

d2d2

Figure 2.9: Direct-Form two-pole filter: Root Locus in d1. Top: d2 > 0, Bottom: d2 < 0.

The locus is split into two halves: the d1 > 0 half is in the left half plane, and the d1 < 0 half

is in the right half plane. The locus is actually symmetric about the imaginary axis (as well

60 CHAPTER 2. ROOT-LOCUS INTERPRETATION OF POLE-VARIABLE FILTERS

as the real axis), which can be shown by noting that (z2 + d2) + d1(−z) = (z2 + d2)(−d1)z (i.e.,

negating d1 is equivalent to negating z, and since the locus is symmetric about the real axis,

negating z has the effect of flipping the plane across the imaginary axis).

• If d2 < 0, the open-loop poles are on the real axis, at z = ±
√
−d2. The locus for d1 > 0 are

the regions z < −
√
d2 and 0 < z <

√
d2, and for d1 < 0 it is the regions −

√
d2 < z < 0 and

z >
√
d2. In other words, one of the poles heads towards the zero at z = 0, and the other

towards z→∞.

Higher-Order Direct-Form Filters

Past 2nd-order, things get more complicated. There are significantly more possibilities (more vari-

ables to interpret loci in, and more combinations of possible locus shapes, etc.). As such, the loci

are more difficult to describe in general terms, though it is still straightforward to use root locus to

analyze specific situations, such as looking at perturbations in coefficients from a particular design.

For example, we can look quickly at a 3rd-order allpole. The root-locus equations in the three

coefficients are:

z(z2 + d1z + d2) + d3 = 0 (2.13)

(z3 + d1z
2 + d3) + d2z = 0 (2.14)

(z3 + d2z + d3) + d1z
2 = 0 (2.15)

So, for the locus in d3, the open-loop poles are the poles of the 2nd-order part of the filter, plus a

new pole at z = 0, and there are three zeros at z → ∞. Thus the locus in d3 > 0 starts at the pole

locations of the internal 2nd-order filter and z = 0, and heads out to asymptotes at θ = ±π/3, π . The

locus in d3 < 0 starts at the same locations, in the opposite directions, and ends up on asymptotes

at θ = 0,±2π/3.

The locus in d2 brings one of the open-loop zeros in to z = 0, and the locus in d1 brings in

another onto z = 0. Thus the locus in d2 > will have asymptotes at θ = ±π/2, and the locus in

d2 < 0 will have asymptotes on θ = 0, π . The loci in d1 will have asymptotes at either θ = 0 or

θ = π . The open-loop poles are not simple to describe, however.4

Figure 2.10 shows some representative loci for a 3rd-order allpole. These loci are “variation

loci”, because they show the effect of varying one parameter in a particular filter design, and keep-

ing the others at their values for the design. The filter in this case is z3/(z3 − 0.5z2 − 0.5z + 0.5). As

such, the three root-locus equations for the figure are actually:

z(z2 − 0.5z − 0.5) + d3 = 0 (2.16)

4. . . without bringing in the equations for the roots of a third-order filter, which get a bit cumbersome for unspecified
coefficient values.

2.3. SOME PHILOSOPHY 61

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

Figure 2.10: Direct-Form three-pole filter: Variation Root Loci in d3 (left), d2 (center), and d1 (right).
Black: coef>0, Gray: coef<0. Dots: poles for base configuration of d1 = −0.5, d2 = −0.5, d3 = 0.5.

(z3 − 0.5z2 + 0.5) + d2z = 0 (2.17)

(z3 − 0.5z + 0.5) + d1z
2 = 0 (2.18)

In general, we can say the following about an nth-order direct-form allpole: The locus in the

highest-order coefficient has open-loop poles which are simply the poles of the filter of order n − 1,

plus one at z = 0, and all the zeros are at z→∞. Describing loci in other coefficients is more compli-

cated, as the open-loop poles don’t have as simple an explanation, just roots of some polynomials.

The zeros are interesting, though: if the filter is of order N, then the locus in the ith coefficient has

N − i zeros at z = 0, and there are always N open loop poles, so there are i asymptotes.

2.3 Some Philosophy

Musical filters as those upon which we will be concentrating tend to have two major realtime

controls:

• A control to affect the frequency of interest (the center of a bandpass, peak, cut or notch, or

the corner of a shelf or lowpass/highpass response, or generally the frequency of resonance

in high-Q situations).

• A control to affect the “strength” of the filtering effect, such as a rolloff rate, or a bandwidth,

or Q.

Other controls, such as ones to select a filter type or filter shape, are considered for the purposes of

this thesis to be “non-realtime”, and hence do not need to be dealt with as cheaply as the primary

controls, or at the same speed (i.e.,they are not expected to be modulated, especially not at rates

approaching audio frequencies).

62 CHAPTER 2. ROOT-LOCUS INTERPRETATION OF POLE-VARIABLE FILTERS

In particular, we will be considering the two controls to be resonance frequency (“fc”) and

resonance Q (“Q”) (or bandwidth, depending on the situation). By defining our frequency as the

“resonance” frequency, we are assuming that most of the time, there will be only a single resonance

peak, and that the Q of the system will usually be such that there is some sort of peak at the

resonance. As such, we will be primarily looking at bandpass shapes (not flattop), or lowpass and

highpass shapes with resonance at the cutoff frequency. Parametric Equalizer (EQ) sections, while

possibly fitting this framework, are not considered, mainly because this research came from the

desire to model classic analog-synthesizer VCFs, and parametric EQs were generally considered a

separate class of filters from VCFs. For bandpass filters, fc is assumed to be the center of the band

(or near the center).5 For low-pass and high-pass filters, fc is assumed to be associated with the

cutoff of the passband.

When analyzing applicable filters from a root-locus perspective, we naturally look to find rela-

tionships between the frequency/Q controls and the root-locus parameters.

Figure 2.11: Basic root locus trajectories for two classes of discrete-time root-locus filters. Left: the
locus “goes out” and hence controls Q or bandwidth; Right: the locus “goes around” and hence
controls fc.

In well-suited filters, the root-locus gain might map directly (or very closely) to one of the

desired control parameters. In terms of the shape of the root locus, this would give us two classifi-

cations for basic root-locus filter types:

Locus Goes “Out” In these filters, the locus points “out” of the unit circle, and hence the locus gain

is effectively a Q or bandwidth/damping control.

5This implies that “flat-top” bandpass filters, such as those formed by cascading high-pass and low-pass filters aren’t
being considered in this discussion. Such filters, if formed using resonant high- and low-pass filters, might have two
resonances, one at each end of the passband.

2.3. SOME PHILOSOPHY 63

Locus Goes “Around” In these filters, the locus goes approximately parallel to the unit circle or to

constant-Q lines, and hence the locus gain is effectively an fc control.

Ideally, there will be two controls, which correspond directly to each of the above types.

Earlier in this chapter, we have already seen filters for which frequency and bandwidth are

controlled by simple parameters (the Circle Filter and even the 2nd-order direct-form filter, though

the frequency mapping is a bit cumbersome in that one). This can be attributed to the fact that the

constant-bandwidth contours are circles, and the circle is a common root-locus shape.

Constant-Q contours (Section 1.2.1), on the other hand, are shapes that are not seen in first-

order root loci. Most importantly, the constant-Q contours leave the real axis from z = 1 at a variety

of angles (in fact, the angle is directly related to Q). However, it is a property of first-order loci

(see Section A.1.2 on p. 254) to always leave the axis perpendicularly (if a pair), or at angles evenly

spaced around the range [0, 2π], which has two implications:

• The set of departure angles (for a real-coefficient filter, which we are assuming) is limited to

integer divisions of 2π . Thus, if we desire to achieve breakaway angles far from π/2, the

required number of simultaneous poles gets large (i.e., one would need to implement a high-

order filter to get poles moving away from z = 1 at low angles, but at the same time, there

would therefore be other poles moving away from z = 1 at higher-Q angles).

• For more than two poles leaving the real axis at a single point, if any are moving into the left

half plane (assuming the plane is divided at that point), then there must also be one or more

poles moving into the right half plane. Therefore, if the point is z = 1, then in order to have

poles moving into the circle on constant-Q lines, there must also be poles simultaneously

moving out of the unit circle. In other words, it requires an unstable filter.

Therefore, we hypothesize that in order to achieve constant-Q trajectories (at least near z = 1, if not

through the whole frequency range), that higher-order root-loci will be required. Higher-order loci

are discussed in Appendix A, but in general, a higher-order locus, as we will be using the term,

is a locus where the root-locus equation has higher than first-order terms in the gain variable. For

example,

D(z) + kN1(z) + k2N2(z) + ... = 0

is a 2nd-order root locus equation. We will look into this in relation to the State-Variable filter in the

next chapter.

But first, some more general discussion.

We note that there are two ways that the (corner/center) frequency parameter can map onto

the frequency coefficient:

poles on DC⇔ k = 0 We will see this in the frequency-coefficient locus of the state-variable filter.

Therefore, the root-locus in the frequency coefficient has its open-loop poles on the real axis

64 CHAPTER 2. ROOT-LOCUS INTERPRETATION OF POLE-VARIABLE FILTERS

(or even at z = 1), so that k = 0 corresponds to DC. The Type-1 circle filter also shows this

behavior.

poles on DC⇔ k 6= 0 This often happens if k is directly a pole coefficient, as in the one-pole fil-

ter 1/(z + k), as we will see in discretizations of Moog-style filters later, which exhibit this

property (DC ⇔ k = −1).

The first case is most straightforward to understand in terms of root loci, since an “endpoint”

of the locus (i.e., k = 0) also corresponds to an endpoint of the controlled parameter (i.e., fc = 0).

Therefore, the open-loop poles and zeros correspond to the endpoint setup of the filter, and thus

can usually have a straightforward interpretation in terms of the operation of the filter.

The second case is more tricky because the frequency endpoint is now not a locus-parameter

endpoint, and so the open-loop roots tend to have a less obvious meaning (they can seem to be in

random locations), and as such, the intended goal of using root-locus to build up intuition on the

filter behavior is partially thwarted.

For example, if we look back earlier in this chapter we can see an example of this difference:

the Type 1 circle filter (Section 2.2.1 on p. 53) is set up so that its frequency endpoint is right on

k = 0 (Figure 2.2 on p. 54), and the doubled open-loop pole location is rather straightforward to

understand as a radius control, as well as understanding the frequency trajectory as “emanating”

from those poles and moving around the circle. However, the d1 locus in the direct-form twopole

filter (Figure 2.7 on p. 58) has its open-loop poles halfway through the frequency range, such that

DC corresponds to some non-obvious value of d1 (−2r in this case, or −2
√
d2).

However, it is sometimes possible to offset k (to put k = 0 on the parameter boundary). Con-

sider a 1st-order root locus equation:

D(z) + kN(z) = 0 (2.19)

This implies a set of curves in the z plane, containing the root locations for all real values of k.

Therefore, we can offset k, as k = k̂ + a, and have a locus in k̂ which is the same shape as the locus

in k, since as k varies between −∞ and +∞, k̂ will also vary over the same range, just offset. In

fact, for any smooth transformation f : R → R whose domain and range both cover all of R, then

transforming k = f(k̂) in the locus equation will still represent a locus of the same shape (though if

f is anything but an affine transformation, the resulting locus will no longer be a first-order locus).6

Back to the transform k = k̂ + a. Substituting it into Equation 2.19, we get:

(D(z) + aN(z)) + k̂N(z) = 0 (2.20)

6This does imply that one may be able to transform some seemingly higher-order loci into first-order loci by change of
variables if appropriate functions can be found.

2.3. SOME PHILOSOPHY 65

In other words, offsetting k simply moves the “open-loop” poles to some other location along the

locus, and the total locus shape stays unchanged. Interestingly, the open-loop zeros stay fixed.

As such, we can note that given a 1st-order locus, any other locus with the same open-loop zeros

and with poles somewhere along the given locus, will have the same shape, and will just have a

shifted k mapping compared to the given locus. If we try moving the open-loop zeros along the

locus, or try moving both the open-loop poles and zeros, we end up with the following properties:

(D(z) + aN(z)) + kN(z) = 0 ⇔ D(z) + (k + a)N(z) = 0 (2.21)

D(z) + k(D(z) + aN(z)) = 0 ⇔ D(z) +
ak

1 + k
N(z) = 0 (2.22)

(D(z) + aN(z)) + k(D(z) + bN(z)) = 0 ⇔ D(z) +
a + kb
1 + k

N(z) = 0 (2.23)

The outcome of this is that if we have a filter, such as a Moog-style filter, where a frequency

endpoint lands on a non-zero value of the frequency coefficient, we a can do a change of variables

to offset the coefficient and get a locus in the offset coefficient which puts the frequency endpoint

on k̂ = 0. The new open-loop roots may therefore have more intuitive interpretations. We will use

this fact when analyzing Moog-style filter digitizations later.

This concept applies to higher-order loci as well (in fact, in the next chapter, we use it with

4th-order loci). Let’s see what happens when we offset a 2nd-order locus:

D + kN1 + k2N2 = 0 k=k̂+a→

(D + aN1 + a2N2) + k̂(N1 + 2aN2) + k̂2N2 = 0 (2.24)

The “open-loop poles” move along the locus (as in the 1st-order case), and the higher-order open-

loop zeros stay put (again, as in the 1st-order case), and the low-order zeros move along a locus in

N1 and N2.

At the Nth order, we get the generic case:

D + kN1 + k2N2 + . . . + kNNN = 0 k=k̂+a→

(D + aN1 + . . . + aNNN) + . . . + k̂NNN = 0 (2.25)

The end terms acts as previous described: the “open-loop poles” move along the locus to their

k = a locations, and the highest-order “open-loop” zeros stay put. The intermediate orders move

according to standard polynomial properties:7

c0 + c1x + c2x
2 + . . . + cNxN

x=y+a→

(c0 + ac1 + ... + aNcN) +

7Note: this is not unlike the technique in [210].

66 CHAPTER 2. ROOT-LOCUS INTERPRETATION OF POLE-VARIABLE FILTERS

(c1 + 2ac2 + ... + aN−1NcN)y +

(c2 + 3ac3 + 6a2c4 + ...)y2 +

. . .

(cN−1 +NacN)yN−1 +

cNy
N (2.26)

The coefficient transform can be expressed in matrix form as:

ĉ0

ĉ1
...

ĉN

 = A

c0

c1
...

cN

 (2.27)

where A is a square N ×N matrix with elements:

Aij = aj−i
(
j

i

)
(2.28)

A =

1 a a2 a3 a4

0 a 2a2 3a3 4a4 · · ·
0 0 a2 3a3 6a4

0 0 0 a3 4a4

...
. . .

(2.29)

Interestingly, this transformation applied to the coefficient a first-order feedback system (i.e., a

one-pole filter), turns the onepole into an integrator-based filter rather than a delay-based one (see

Figure 2.12).

In a similar vein, Agarwal and Burrus use a simple offsetting change of variables to derive a

new filter type from the direct-form two-pole filter (in order to get much better performance in the

presence of quantized coefficients and states). In their case, they offset z, along the lines of:

ẑ = z + 1

z = ẑ − 1

z−1 =
1

ẑ − 1

such that a delay gets turned into an integrator. We ote that the form they derive is not unlike the

state-variable filter form and the circle-filter forms.

2.4. STATE-VARIABLE FILTER 67

z-1

yx

z-1

yx

z-1 yxz-1 yx

1 2

54

p
-p+1

-p+1 z-1

p

z-1

yx

z-1 yx

6

3

p

z-1

p

Figure 2.12: Offsetting a one-pole filter’s coefficient by one can give a filter which is based on an
integrator rather than a delay, much like in δ-operator, and in the state-variable filter. This is most
obvious with a forward-difference integrator (top row).

In the case of the forward-difference onepole, these two transforms are effectively equivalent:

1
z + p̂

p̂←p+1
=

1
z + (p + 1)

=
1

(z + 1) + p
1

ẑ + p
ẑ←z+1=

1
(z + 1) + p

The transform on z, as done by Agarwal and Burrus, is expected to have a more general applica-

bility as a filter manipulation tool, though.

2.4 State-Variable Filter

2.4.1 Review

Three of the more well-known discussions on the digital state-variable filter are Chamberlin’s book

Musical Applications of Microprocessors [37], Dutilleux’s Ph.D. thesis [69], and Dattorro’s AES paper

on effects and filters [57]. Chamberlin introduces the filter, and discusses uses and interesting

variants on the filter, though no derivation of the exact form is discussed.8 In Dutilleux’s thesis,

he derives the state-variable filter again, though he draws it slightly differently from Chamberlin’s

filter (he also explores one or two variants, including attempting a bilinear transformed version)

Dattorro creates a derivation of the filter based purely on a spectral specification of the lowpass

filter response and a few necessary approximations, though he does the derivation directly on

the transfer function, borrowing Chamberlin’s topology for the implementation once he is able to

derive a transfer function in the same form as that of the Chamberlin form.

8Dattorro states that Chamberlin’s derivation was via impulse-invariant transformation of the continuous-time filter.

68 CHAPTER 2. ROOT-LOCUS INTERPRETATION OF POLE-VARIABLE FILTERS

Comparing Chamberlin’s and Dutilleux’s forms

The filter form which Dutilleux derives looks on the surface a bit different from Chamberlin’s form

(Figure 2.13). However, they are actually very similar, as we will show. But first, we should point

z-1

z-1

z-1

ff ff

qq

ylybyh

x

z-1

z-1

z-1

ff ff

qq

ylybyh

x

Figure 2.13: State-Variable Filter Forms: Top: Dutilleux Form (as typically presented), Bottom:
Chamberlin Form

out that the filter drawn in [57], which is identified as the Chamberlin form, has the bandpass

output picked off after the delay of the first integrator, whereas Chamberlin’s (and Dutilleux’s)

picks it off before the delay. In this discussion, I will be using the form as drawn by Chamberlin

when referring to the “Chamberlin Form”.

Now, Dutilleux tends to draw his form non-minimally (i.e., with more unit delays than the

actual filter order). This is partly why it looks different from Chamberlin’s form. Looking at Fig-

ure 2.13, we can see that each pair of delays comes after a signal split, and as such each pair contains

exactly the same data. Therefore, we can make the form minimal by simply pulling the delays back

through the splits. This is shown in Figure 2.14. This form is now very similar to Chamberlin’s

form. Comparing the two, we note that the difference appears to be in the integrator forms. Cham-

berlin has forward-difference integrator as the first integrator, and backward-difference integrator

for the second. Dutilleux, on the other hand, has a backward-difference as the first integrator, and

the second integrator is a backward difference with respect to the lowpass output, but forward-

difference with respect to the feedback. As such, both forms end up with one of each integrator

type in the feedback loop, just in opposite order. However, the forms are even more closely related

2.4. STATE-VARIABLE FILTER 69

z-1 z-1

ff ff

qq

ylybyh

x

Figure 2.14: Minimal Dutilleux Form

than that. With a bit of block-diagram manipulation, we can actually transform Chamberlin’s form

into a form nearly identical to Dutilleux’s form. This is shown in Figure 2.15.9 We must admit,

however, that the first two steps in the transformation may not be transparent with respect to a

fixed-point number system implementation. In particular, splitting up the MAC for the second

integrator. As such, the two forms may have slightly different fixed-point behaviors, but note that

the after the second step, the MAC is back to its original form, so the difference is expected to be

quite small.10

Therefore, the Chamberlin form and Dutilleux form differ (mathematically) in just a unit delay

on the lowpass filter output. Thus, taken separately, their outputs all have the same filter shape

(magnitude).

The transfer functions are:

Yh = X
(z − 1)2

z2 + (ff2 + ff qq − 2)z + (1 − ff qq)
(2.30)

Yb = X
ffz(z − 1)

z2 + (ff2 + ff qq − 2)z + (1 − ff qq)
(2.31)

YlCham = X
ff2z

z2 + (ff2 + ff qq − 2)z + (1 − ff qq)
(2.32)

YlDut = X
ff2 z2

z2 + (ff2 + ff qq − 2)z + (1 − ff qq)
(2.33)

The places where the Dutilleux form differs from the Chamberlin form have been outlined.

9This does not imply that these two forms are completely equivalent, since a couple of the block-diagram manipulation
steps imply differences which might be significant in fixed-point or in the presence of saturation. Instead, this is merely
intended to show how similar they are, and that with an ideal number system, they would be effectively equivalent.

10One might argue that the first two steps simply demonstrate that one can interchange the order of backward-difference
integrator cascaded with a forward-difference integrator (as long as there aren’t outputs picking off from certain places
within the cascade).

70 CHAPTER 2. ROOT-LOCUS INTERPRETATION OF POLE-VARIABLE FILTERS

Dutilleux form

z-1

z-1

ff ff

qq

ylybyh

x

Chamberlin form

z-1

z-1

z-1

ff ff

qq

ylybyh

x

z-1

z-1
ff ff

qq

ylybyh

x

z-1 z-1

ff ff

qq

ylybyh

x

z-1 z-1

ff ff

qq

ylybyh

x

z-1

Figure 2.15: converting from Chamberlin to Dutilleux Form. Note that the final difference is just a
delay in the lowpass output.

2.4. STATE-VARIABLE FILTER 71

The difference equations are:

Chamberlin:

yl(n) = yl(n − 1) + ff yb(n − 1) (2.34)

yh(n) = x(n) − yl(n) − qq yb(n − 1) (2.35)

yb(n) = ff yh(n) + yb(n − 1) (2.36)

Dutilleaux:

yl(n) = yl(n − 1) + ff yb(n) (2.37)

yh(n) = x(n) − yl(n − 1) − qq yb(n − 1) (2.38)

yb(n) = ff yh(n) + yb(n − 1) (2.39)

Finally, for completeness, here are the state-space forms.

Chamberlin: [
s1(n + 1)

s2(n + 1)

]
=
[

1 − ffqq − ff2 −ff
ff 1

] [
s1(n)

s2(n)

]
+

[
ff

0

]
x(n) (2.40)

yl(n)

yb(n)

yh(n)

 =

 ff 1

1 − ff qq − ff2 −ff
−qq − ff −1

[s1(n)

s2(n)

]
+

0

ff

1

x(n) (2.41)

Dutilleux: [
s1(n + 1)

s2(n + 1)

]
=

[
1 − ffqq −ff
ff − ff2qq 1 − ff2

][
s1(n)

s2(n)

]
+

[
ff

ff2

]
x(n) (2.42)

yl(n)

yb(n)

yh(n)

 =

 ff − ff2qq 1 − ff2

1 − ff qq −ff
−qq −1

[s1(n)

s2(n)

]
+

ff2

ff

1

x(n) (2.43)

Both forms use the following design formulas:

ff = 2 sin(θ/2) = 2 sin(πfc/fs) (2.44)

qq = 1/Q (2.45)

Though, as noted in the discussion of Q (Section 1.2.1), the qq formula becomes approximate as fc
gets large (into the left-half plane) and/or when Q gets very small (less than 2 or so).

It is common to combine outputs of the filter to get other responses. For example, the highpass

and lowpass outputs of the Chamberlin form can be summed to get a notch response. However,

72 CHAPTER 2. ROOT-LOCUS INTERPRETATION OF POLE-VARIABLE FILTERS

since the Dutilleux form has a negative unit delay on the lowpass output compared to the Cham-

berlin filter, the combination to get a notch from it is yh + z−1yl.

Similarly, the formula to turn a Chamberlin filter into an allpass is

yap = yl + yh − qq yb or yap = 1 − qq yb(1 + z−1), (2.46)

whereas for the Dutilleux form, it is

yap = ylz−1 + yh − qq yb or yap = 1 − qq yb(1 + z−1). (2.47)

Note that it is the same in the alternative form since yl isn’t used in that form.

2.4.2 Comparing with Agarwal-Burrus form

In [56], a filter form is shown and called “Agarwal-Burrus Form”. It corresponds to the form

referred to as “Realization 2” in the paper by Agarwal and Burrus [4]. A block diagram of this

form is shown in Figure 2.16 (with outputs not shown, for simplicity). This is quite similar to

Chamberlin form, except mainly that the outer loop gain is put in the feedback rather than in the

feedforward path. In fact, with some block diagram algebra (Figure 2.17), we can translate to

a form almost identical to Chamberlin form11 (the only remaining difference being where in the

second integrator the feedback is picked off.

z-1 z-1

p1

x

p2

Figure 2.16: Agarwal-Burrus Form

Interestingly, this form is derived by taking a direct-form two-pole filter and “translating the

origin of the z plane to z = 1”. In other words, doing the change of variables

w = z − 1. (2.48)

11Again, by showing that one form can be translated to another, we are not claming them to be equivalent (since such
modifications do make a difference numerically), rather, we are noting their similarity by the small number of steps to
translate between them.

2.4. STATE-VARIABLE FILTER 73

z-1 z-1

p1

x

p2

z-1 z-1

p1

x
p2p2

z-1 z-1

p1

x
p2p2

p2

1

z-1 z-1x
p2p2

p2

p1

Figure 2.17: Relating Agarwal-Burrus Form to Chamberlin From (nearly)

74 CHAPTER 2. ROOT-LOCUS INTERPRETATION OF POLE-VARIABLE FILTERS

The resulting w plane has its origin on z = 1, the idea being that filter coefficients for poles ex-

tremely near the origin are easier to represent (or implement) than poles extremely near 1, as would

come about due to high sampling frequencies relative to the pole dynamics. (This is in a similar

vein to the arguments for delta-operator discretization [168], and we will see in a moment that the

result is quite similar).

A twopole thus transforms as

z−2

1 + a1z−1 + z2z−2
⇒ 1

w2 + (2 + a1)w + (1 + a1 + a2)

=
w−2

1 + (2 + a1)w−1 + (1 + a1 + a2)w−2
. (2.49)

Thus,

p1 = 2 + a1 = 2(1 − r cos(θ))

p2 = 1 + a1 + a2 = 1 − 2r cos(θ) + r2.

(2.50)

Similarly, for the version transformed to look like the Chamberlin form, we can note, through the

use of some approximations, that:

√
p2 =

√
1 − 2r cos(θ) + r2 r→1≈

√
2 − 2 cos(θ) = 2 sin(θ/2) (2.51)

Which is the same tuning equation as the Chamberlin filter. Furthermore, we can relate p1/
√
p2 to

1/Q, the Chamberlin-filter’s Q formula, as follows:

p1√
p2

=
2(1 − r cos(θ))√
1 − 2r cos(θ) + r2

(2.52)

Now, if we look at the limit of very low frequencies (i.e. θ → 0), then Q can be defined as it is in

the s plane: as Q = 1/(2 sin(φ)), where φ is the angle of the pole from vertical.

A quick geometrical construction (Figure 2.18) allows us to define sin(φ) as:

sinφ =
1 − r cos(θ)√

r2 sin2(θ) + (1 − r cos(θ))2

=
1 − r cos(θ)√

r2(sin2(θ) + cos2(θ)) + 1 − 2r cos(θ)

=
1 − r cos(θ)√

1 − 2r cos(θ) + r2

2.4. STATE-VARIABLE FILTER 75

r sinθ

1 - r cosθ

φ

Figure 2.18: Diagram for Q coefficient construction in modified Agarwal-Burrus form.

=
p1

2√p2

Thus:
p1√
p2

=
1
Q

(2.53)

i.e., the same as the Chamberlin qq coefficient. Note that this relation is only based on a low-

frequency approximation (so that the pole angle can be related to an s-plane pole angle), it does

not otherwise approximate anything in the above equations.

Thus, the design equations for Agarwal-Burrus form, in analogy to state-variable-filter’s design

equations,12 are:

p2 = (2 sin(θ/2))2 = 2(1 − cos(θ)) (2.54)

p1 =
√
p2

Q
(2.55)

(2.56)

An interesting part of this comparison is the fact that p2 was split into two factors of √p2. We

will look in a later section into why doing this kind of split can sometimes make a filter design

easier to tune.

12i.e., the tuning equation is derived assuming a pole radius of 1.0

76 CHAPTER 2. ROOT-LOCUS INTERPRETATION OF POLE-VARIABLE FILTERS

2.4.3 Other Discussion

Dutilleux [68] has a good discussion of output normalization in the state-variable filter. We will

not be going into that in this analysis, but we recommend it to the reader.

For the rest of this document, we will be using the Chamberlin form when we discuss the digital

state-variable filter.

It was mentioned in passing above that these state-variable filter implementations consist of a

forward-difference integrator for one of the integrators, and a backward difference for the other.

This definitely points to a discretization by some other means than an s = f(z) substitution, as

that tends to give all integrators/onepoles the same digital form. Interestingly, if we look back at

how we derived the Circle Filter at the start of this chapter, we ended up with this same situation,

because we were specifically placing one open-loop zero on z = 0 and the other at z → ∞ in order

to get our desired root-locus shape.

2.4.4 Root-Locus Interpretation of State-Variable Filter

Now we will look at the state-variable filter in terms of root-loci of its control parameters.

Continuous-Time SVF

The continuous-time state-variable filter, as described by Chamberlin in [37]), is shown in Fig-

ure 2.19.

k1

ylx
a

1
s

1
s

a
yl

yh
yb

Figure 2.19: Continuous-time state-variable filter

The lowpass transfer function for the filter is:

a2

s2 + ak1s + a2 (2.57)

2.4. STATE-VARIABLE FILTER 77

So that the root-locus equations, arranged in terms of k1 and a are:

(s + a2) + (as)k1 = 0 (2.58)

(s2) + (k1s)a + a2 = 0 (2.59)

Therefore, the locus in a will be 2nd-order.

For the locus in k, the open-loop poles are at ±ja, and there is one open-loop zero at s = 0

(putting the other at s → ∞). The Locus for this (Figure 2.20) is very much the same as the d1

locus for a 2nd-order direct-form filter (Figure 2.9), which should not be a surprise at all, since the

continuous-time state-variable filter is exactly in direct form, and ak1 is the same coefficient as d1.

As such, the full locus is a circle of radius a, plus the real axis. For k1 > 0, the poles move in the

left-half plane down a circle of radius a towards the real axis. Remember that a circle centered

on s = 0 is a contour of equal natural frequency in the s-plane, and that the angle of a pole from

the imaginary axis is directly related to the pole’s Q, so that this is a constant-frequency Q sweep.

Now, since the k1 coefficient is scaled by a, the value of k1 at which the poles hit the real axis is

also scaled. In the discrete-time twopole filter, the poles hit the real axis at d1 =
√

2d2, but for this

filter, the poles hit the real axis at k1 = 2 (i.e., independent of a). Hence the Q control is trivially

independent of the fc control in the continuous-time state-variable filter. For completeness, the rest

of the locus is such: if k1 < 0, the locus is the same shape, but reflected about the imaginary axis

into the right-half plane, and so the resulting poles are unstable. If a < 0, we get all of the poles

on the real axis, and there is always one pole in the right-half plane, so that filter is again unstable.

Hence the filter is only stable if both k1 > 0 and a > 0.13

The 2nd-order locus in a is shown in Figure 2.21. The roots start at s = 0 when a = 0, and head

away towards s→∞. The angle at which they depart is controlled by k1:

φ = sin−1
(
k1

2

)
(2.60)

Now, since the pole-location definition of Q is Q = 2 sin(φ) (Section 1.2.1), then k = 1/Q exactly,

and the locus in a verifies that this filter is a constant-Q filter. This Q → k mapping is interesting

to contemplate, given that the discrete-time qq control uses the same design equation, though it is

only accurate for fc well below fs/4 (and since most users don’t go past fs/6 anyway, this design

formula is fine, just not “exact”).

As discussed earlier, this kind of locus is not possible with first-order loci. We will discuss this

behavior of 2nd-order loci in the next chapter.

13Theoretically, the right-half-plane pole might end up on s = 0 and hence be marginally stable if k1 → −∞, but that is not
a viable scenario.

78 CHAPTER 2. ROOT-LOCUS INTERPRETATION OF POLE-VARIABLE FILTERS

k1< 0k1>0

a

k1>0 k1<0k1<0 k1>0

a -a

Figure 2.20: Continuous-Time State-Variable Filter: Root Locus in k1. Top: a > 0, Bottom: a < 0.

sin-1(k1/2)

a<0 a>0

a<0 a>0

Figure 2.21: Continuous-Time State-Variable Filter: 2nd-order root locus in a.

2.4. STATE-VARIABLE FILTER 79

Digression: Discrete-Time “X” Filter

If we contemplate for a minute the 2nd-order locus in a in the continuous-time state-variable filter,

we realize that the ‘X’ shape is also a useful shape in the z-plane: If we were to place the center of

the X on z = 0, then we would have a filter with one control on the pole radius (a = r) and another

control for pole angle (k1 = 2 sin(θ + π/2) = −2 cos(θ)). Such a filter is shown in Figure 2.22. It has

z-1 z-1

-2 cos(θ)

yx
r r

Figure 2.22: Discrete-Time “X” Filter: another basic Root-Locus filter.

the same form and root-locus as the continuous-time State-Variable Filter, but placed in discrete-

time. This form is expected to have been derived already, though the author did not find a reference.

One can compare it to the discrete-time 2nd-order allpole filter (Figure 2.6), and consider that d2

has been split into two gains and rotated around back through the delays. Rotating back through

d1 also caused d1 to become separated (as d1 normally is −2r cos(θ), and this version has the r

removed the from that expression).

The transfer function of the filter is:

a2

z2 + ak1z + a2

Note that this filter as drawn is badly scaled. It needs added zeros and/or coefficient-dependent

output scaling in order to achieve useful gains across fc and bandwidth. This issue is not uncom-

mon, however: an output picked off between the sum and the first scale has the same transfer

function (and hence scaling problem) as the direct-form twopole filter, though combinations of

outputs picked off after the delays will not be the same as with the twopole due to the scalings

inline with the delays (i.e. to make a biquad out of this form, the numerator coefficients would

need to take the scalings by r into account).

Discrete-Time SVF

Now we look at the root-loci of the discrete-time state-variable filter (Chamberlin form, [37] [57]).

The root-locus equation, in the form normally written in the denominator of the transfer function

80 CHAPTER 2. ROOT-LOCUS INTERPRETATION OF POLE-VARIABLE FILTERS

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

Figure 2.23: Possible stable pole locations of an ‘X’ filter, both coefficients quantized to multiples of
0.02.

is:

z2 + (ff2 + ff qq − 2)z + (1 − ff qq) = 0 (2.61)

Factoring this into root-locus forms in qq and ff gives:

in qq: (z2 + (ff2 − 2)z + 1) + qq (ffz − ff) = 0 (2.62)

in ff: (z − 1)2 + ff qq (z − 1) + ff2(z − 0) = 0 (2.63)

We note that the locus is 1st-order in the qq coefficient and 2nd-order in the ff coefficient.

The root-locus in qq has its open-loop poles at the roots of z2 + (ff2 − 2)z + 1 = 0, which, it turns

out, are on the unit circle, at θ = (1/2) sin−1(2ff), and it open-loop zeros are at z = 1 and z→∞. The

complete locus is a circle centered on z = 1 of radius ff, plus the real axis. For qq > 0, the locus starts

at the roots on the unit circle and moves inward along the circle until they meet at z = 1 − ff when

qq = 2 − ff. Then one zero heads towards z = 1 and the other heads to the left towards z → −∞,

crossing the unit circle when qq = 4−ff2

2ff . The locus for qq < 0 follows the part of the circle that

lies outside the unit circle (hence unstable), meeting up on the real axis at z = 1 + ff, then splitting

to have one pole head back to z = 1 and the other head out towards z → +∞. Example loci are

shown in Figure 2.24. This shape is reminiscent of the continuous-time state-variable-filter’s locus

in k1 (see the previous section), mapped into the z-plane with a pole/zero-matching transform. If

one remembers back to the introduction (Section 1.2.1), constant-radius lines in the s plane (i.e.,

2.4. STATE-VARIABLE FILTER 81

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

Figure 2.24: Discrete-Time State-Variable Filter: Root Loci in qq. Left: ff = 1/2, Right: ff = 1. Gray:
qq < 0

constant natural-frequency) map via the z = esT transform onto such circles near z = 1, though the

circles get warped as we get further from there (at higher frequencies and higher damping), which

reinforces that this filter is only approximating the ability of the continuous-time filter to achieve

constant-frequency Q-sweeps.

The 2nd-order locus in ff has the following open-loop coefficient polynomials:

D(z) = (z − 1)2 roots at (1, 1)

N1(z) = qq(z − 1) roots at (1,∞)

N2(z) = z roots at (0,∞)

Thus, its open-loop poles are coincident on z = 1, as well as one root of N1. The open-loop zeros

(the roots of N2) are at z = 0 and z → ∞ (as is the other root of N1). The locus in |ff| << 1 is

an ‘X’ shape, much like that of the continuous-time filter, though centered on z = 1. As such, for

ff > 0, the poles start at z = 1 and move into the unit circle on angles controlled by the qq coefficient

(near ±π/2 for qq→ 0, and near π for qq→ 2). They trace a “teardrop” shape before coming back

together on the real axis at z = qq − 1 when ff = 2 − qq. Then they split, and one heads towards

z → −∞ and the other heads towards z = 0 (though, interestingly, sometimes overshooting z = 0

before reversing back towards it, which can be seen most clearly in the qq = 1 locus in Figure 2.25.)

Some example loci are shown in Figure 2.25. The loci for ff < 0 start out on the right-hand arms

of the ‘X’ shape, then they also start wrapping around to the left, though outside the unit circle,

meeting back on the real axis at −qq − 1 when ff = −2 − qq, then splitting towards z = 0 and z→∞.

82 CHAPTER 2. ROOT-LOCUS INTERPRETATION OF POLE-VARIABLE FILTERS

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

Figure 2.25: Discrete-Time State-Variable Filter: Root Loci in ff. Top Left: qq = 0.1, Top Right:
qq = 0.5, Bottom Left: qq = 1, Bottom Right: qq = 1.8. Gray: ff < 0.

2.5. CONTINUOUS-TIME MOOG-STYLE FILTER 83

As qq passes 1.0, the “teardrop” shape shrinks sufficiently that it no longer makes it past z = 0,

and as qq→ 2, it shrinks to the point where it disappears at qq = 2.

We can see that the locus in ff > 0 approximates the constant-Q contours quite well at high Q

(low qq) and low ff, deviating mostly in the left half plane, or when the teardrop shape didn’t make

it all the way around z = 0.

We will discuss the details and implications of this locus more in the next chapter.

Figure 2.26: Family of State-variable filter root loci in ff, for various 0 < qq < 2.

2.5 Continuous-Time Moog-Style Filter

At his point, we will only look at the continuous-time version of the ideal Moog-style filter. Discrete-

time versions are left for the next chapter.

2.5.1 Review

The earliest discussions of the behavior of the ideal continuous-time Moog-style filter that we are

familiar with are Moog’s AES talk [173] and Hutchins’ first article on this filter type in Electronotes

[118]. It is shown there that the transistor-ladder structure and the feedback loop implemented

four one-pole filters, with essentially the same pole location on the real axis, and that the feedback

84 CHAPTER 2. ROOT-LOCUS INTERPRETATION OF POLE-VARIABLE FILTERS

loop was a simple gain loop. The result being that the behavior was directly describable as a root

locus (though it wasn’t until [113] that Hutchins made a root-locus-like interpretation of the corner

peaking). Further, Hutchins showed that the same core filter behavior could be implemented with

a loop made of op-amp sections, showing that the core behavior could be replicated in a dataflow

paradigm (which further reinforces the validity of a root-locus interpretation, as analysis could

be purely done from block-diagram concepts rather than having to mix them with simultaneous-

equations methods of standard circuit analysis).

Hutchins also theorizes in [113] that the particular topology (four onepoles in a row with feed-

back, as opposed to using Butterworth, etc.) was in part used due to its ability to be easily volt-

age controlled. This roughly translates to the digital era as a realization that such a topology has

cheaper, simpler, and more independent controls than many other designs.

2.5.2 Root-Locus Interpretation

yx H1(s) H1(s) H1(s) H1(s)

k

Figure 2.27: Ideal Moog-Style Filter

The ideal Moog-style filter is a cascade of four identical one-pole filters (scaled to have a DC

gain of 1.0), with a gain loop around the cascade (with negative feedback), as in Figure 2.27. The

system transfer function is thus:

H1
4(s)

1 + kH1
4(s)

=

(
a
s+a

)4

1 + k
(

a
s+a

)4
=

a4

(s + a)4 + ka4
(2.64)

The root-locus equation in k is:

(s + a)4 + ka4 = 0 (2.65)

Thus, the open-loop poles are, as expected, co-located on s = −a, and all the open-loop zeros are at

s → ∞. The root locus in k > 0 is thus an ‘X’ shape, centered on s = −a, and heading out towards

s → ∞ along the angles ±π/4 and ±3π/4 (see Figure 2.28). These angles are such that when the

two right-hand tracks hit the imaginary axis, they will hit at s = ±ja. Thus the high-Q tuning of

the filter is directly controlled by the open-loop pole locations, with no extra mapping necessary

(except possibly an exponential frequency mapping to allow octaves to be spaced equally in the

2.5. CONTINUOUS-TIME MOOG-STYLE FILTER 85

-a

k<0

k>0

ja

-ja

Figure 2.28: Continuous-Time Moog-Style Filter: Root Locus in k.

control domain). Further, the left-hand pair automatically moves to high damping, making the

right-hand pair dominant (and hence being effectively the sole component in the determination of

Q and fc). Finally, the DC normalization of the open-loop filters causes the 180◦ point of the loop

to always land at |(a/(s + a))4|s→ja = (1/
√

2)4 = 1/4, so that the loop gain k when the tracks hit the

imaginary axis is always 4, independent of a.

−10 −8 −6 −4 −2 0 2 4 6 8 10
−10

−8

−6

−4

−2

0

2

4

6

8

10

−10 −8 −6 −4 −2 0 2 4 6 8 10
−10

−8

−6

−4

−2

0

2

4

6

8

10

−10 −8 −6 −4 −2 0 2 4 6 8 10
−10

−8

−6

−4

−2

0

2

4

6

8

10

Figure 2.29: Continuous-Time Moog-Style Filter: Root Loci in a. Left: k = 0.1, Middle: k = 1, Right:
k = 3. Gray: a < 0. Dots: roots for a particular value of a.

The scaling is also such that when 0 < k < 4, the angle of the poles from the imaginary axis is

independent of a, and only a function of k. This can be seen in the root-loci in a (Figure 2.29).

The locus in a is 4th-order in a:

(s + a)4 + ka4 = s4 + 4s3a + 6s2a2 + 4sa3 + a4(1 + k) = 0 (2.66)

86 CHAPTER 2. ROOT-LOCUS INTERPRETATION OF POLE-VARIABLE FILTERS

See Section A.1.3 on p. 264 for discussion of higher-order root-loci. A 4th-order locus has three

“middle numerators” (naming them in reference to the equationD(s)+kN1(s)+k2N2(s)+k3N3(s)+

... + knNn(s) = 0 as “N1” through “N3”, with D and N4 being the “normal” open-loop pole zero

polynomials). We get an interesting pattern in the roots of the polynomials:

D has roots at: 0, 0, 0, 0

N1 has roots at: 0, 0, 0,∞

N2 has roots at: 0, 0,∞,∞

N3 has roots at: 0,∞,∞,∞

N4 has roots at: ∞,∞,∞,∞

We saw a similar pattern in the State-Variable filters (both continuous-time and discrete-time),

where D had double roots on DC, and N1 also had a root on DC. The locus in a therefore starts at

s = 0. For a > 0, four root tracks head into the left-half plane at angles controlled by k. These tracks

continue as straight lines all the way out to s → ∞. For a < 0, the roots follow the reflection of

the a > 0 about the imaginary axis (or the negative... since we’re dealing with real coefficients, the

negative of a locus is the same as the reflection about the imaginary axis): the poles start at s = 0

and head towards s→∞ along the reflected angles.

As discussed in Section 1.2.1, the pole-location definition ofQ in continuous-time is based on the

angle of the pole from the imaginary axis. Since the pole tracks in the a-locus are rays originating

at s = 0, all points along them have the same angle with the imaginary axis, and hence all have the

same Q. Therefore, we have a visualization of the fact that this filter is a constant-Q filter.

2.5.3 “Polygon Filters”

Hutchins used the Moog-style filter as a template and described a family of filters he called “Poly-

gon Filters” [117] [19] [115] [116] . These filters are of the same form, but with different numbers

of onepole filters, ranging from two upwards. As such, their first-order locus in k is a “burst” of

trajectories from s = −a, their angles equally distributed about the plane. k-loci for various num-

bers of onepole filters are shown in Figure 2.30. He named these filters “polygon” filters due to

the fact that the roots for any particular value of k form the vertices of an N-sided regular polygon

centered on s = −a.

In [117] [115], and [116], Hutchins explores the properties of these filters. We mention them

here due to their direct relationship to the continuous-time Moog-style filter, which can be classified

as an N = 4 polygon filter. All the polygon filters have independent fc and Q controls. Further,

the right-most poles will always be a pair (if the feedback is of the right sign, regardless of the

number of poles) The difference between the filters being the overall filter order (and hence the

2.5. CONTINUOUS-TIME MOOG-STYLE FILTER 87

−2 −1.5 −1 −0.5 0 0.5 1 1.5 2

−2

−1.5

−1

−0.5

0

0.5

1

1.5

2
−2 −1.5 −1 −0.5 0 0.5 1 1.5 2

−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

−2 −1.5 −1 −0.5 0 0.5 1 1.5 2

−2

−1.5

−1

−0.5

0

0.5

1

1.5

2
−2 −1.5 −1 −0.5 0 0.5 1 1.5 2

−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

Figure 2.30: “Polygon Filters”. Extensions of the Moog-Filter idea to other numbers of onepole
filters. Shown: 2, 3, 5, and 6 filters in the loop. Gray: k < 0. The dots show the pole locations for a
particular k, and demonstrate the polygons which give rise to the name for this class of filters.

final amplitude rolloff rate), and the amount of dominance of the “primary” poles (as when N gets

large, the next pair of poles starts getting pretty close to the imaginary axis as well).

Finally, out of general interest, the gain at which the primary poles hit the imaginary axis is:

∣∣∣1 + j tan
(π
N

)∣∣∣N = secN
(π
N

)

2.5.4 Other Analyses

There are a few other behaviors in Moog-style filters that are of interest.

Output Combinations It is possible to pick off at the input (or output) of each one-pole filter and

combine these outputs to achieve various gross filter shapes (like highpass, bandpass, etc.).

Hutchins talks about this for the op-amp version of the analog filter [113], and the results

translate rather straightforwardly to the digital filter, as written about in [111] and [277]. It

88 CHAPTER 2. ROOT-LOCUS INTERPRETATION OF POLE-VARIABLE FILTERS

is a fun mental exercise to compare this output-combination method to that used in the state-

variable filter. It is an open problem, though, to see how the use of different open-loop zero

locations in some of the designs of the next chapter may effect the choice of combination

gains.

Non-coincident open-loop poles Hutchins also looked into this for an analog Moog-style filter

in [114]. He notes that significantly higher loop gains are required to reach the imaginary

axis when the poles are not coincident. However, there is quite a bit of exploration that

can still be done here to understand this situation, answering questions like how the gain

changes with the pole separations, etc. Hutchins also analyzed a particular pole arrangement

(s0 − 1, s1 = −(2x), s2 = −(22x), s3 = −(23x)),14 and it would be useful to see how the gain

characteristics might change with different patterns, or if it is mainly just an issue of gross

separation.

14For this configuration, he calculated the gain for infinite Q to be: 3.8(105)x.

Chapter 3

Designing Filters Approximating

Constant Q

3.1 Philosophy

The continuous-time versions of two filters we are concentrating on, the State-Variable Filter and

the Moog-style resonant lowpass filter, have a property which is generally called “Constant Q.”

This means that as the filter’s corner/center frequency is swept to various values, the Q of the fil-

ter’s resonance stays constant. This behavior is generally accepted to be perceptually preferable, as

the hearing system appears to judge resonance much as it does pitch, such that at a particular cen-

ter frequency, a certain bandwidth sounds equivalent to double the bandwidth at double the center

frequency. As such, we desire to design digital versions of these filters with the same property.

3.1.1 Problem Definition

Our Holy Grail: Find an inexpensive digital filter topology which is intrinsically constant Q, or

even better, constant Q with independent (linear or log) fc and Q controls. i.e., a filter which

implements constant Q variation purely due to its architecture, with no required fc → coef. or

Q → coef. mappings.

If that is not achievable, find a topology whereby the filter and the mappings are as simple as

possible.

A consequence of Constant Q is a property we will call “separability of Q and fc,” meaning that

the frequency control can be moved without affecting the Q of the filter, and vice versa.1 In designs

where we attempt to control these features as cheaply as possible, separability can be effected. As

1We will also refer to such a filter a having “independent” controls. The two terms are effectively interchangeable from
the standpoint of this thesis.

89

90 CHAPTER 3. DESIGNING FILTERS APPROXIMATING CONSTANT Q

such, we must be vigilant to keep separability in mind, either as an inherent capability of the filter,

or as an additional “separation” calculation which is as cheap as possible.

For the purposes of this thesis, we will not look at digital filters in general, rather we will concen-

trate mainly on filters similar in topology to the digital state-variable filter of Chamberlin [37] and

the Moog four-pole Voltage-controlled Filter [173] (in particular, four stages in the feed-forward

path). As such, there are certainly good designs in other directions which we will not consider. For

example, we should note that Massie showed [162] that the 2nd-order ladder implementing an EQ

section also has separate freq and Q controls, not unlike the Chamberlin filter.

3.1.2 Requirements, Assumptions, Restrictions

This is an overview of the design philosophy that was used for this research.

Wide View

As Cheap as Possible This comes from the realities of implementation and current industry philoso-

phies. A consumer electronics company views Moore’s Law in terms of being able to pack

more processing into a 50-cent chip than before (or better, a 5-cent chip), not in terms of a top-

of-the-line general-purpose processor being able to do more than the previous generation. As

such, algorithm implementations must always be as cheap as possible in such situations. The

power available on a desktop computer is almost an unreachable luxury. Now, of course,

much work is done on such over-powered systems, but even then, the more that can be done

at once in realtime, the more choices the user has. As such, there is always a push for absolute

optimization. Practical variations on this rule which are taken seriously are: "As cheap as we

can get away with" and "Only model some part of the system if it is necessary, and then only

if it is audible." Basically, these describe the concept that if a behavior of the system is not

noticeable don’t waste cycles modeling it. Of course, on a deeper level, these bring up issues

with how one can prove something is audible or not, and eventually lead to psychoacoustics.

Work along these lines would definitely be assisted by continued research into measuring

(and predicting the audibility of differences in) model fidelity for use in deciding just how

much not to model. However, this thesis does not attempt to solve that problem, and such

decisions are made according to the author’s opinions.

No Oversampling At its basis, this follows from the previous rule: oversampling immediately

multiplies the cost of an algorithm, if not the whole system (depending on where the bound-

aries of the oversampling are put). But also, oversampling can be used to ignore some inter-

esting problems. To put it bluntly, quite often “oversampling makes things too easy.” Many

of the issues that will be dealt with in this chapter are nearly non-issues with oversampling

on the order of 3x, 4x or more. In the field of modeling continuous-time behavior, if you can

3.1. PHILOSOPHY 91

restrict the region of interest to some region near z = 1, then even the simplest discretizations

work just fine. As such, we conjecture that some of the deeper questions about what it means

to discretize a system can simply be ignored when oversampling. Further, we note that a

design that works well non-oversampled would work all the better oversampled.2 Finally,

quite a few systems simply must be implemented without oversampling, for any number

of reasons, so there is definitely interesting and useful work that can be done in the non-

oversampled world. Therefore, for this thesis, the choice of fs is not to be made by the al-

gorithm design, but rather by standard system considerations (standards, cost, fidelity, etc.).

As such, we can assume that fs might get as low as 22050 Hz or 24000 Hz in an inexpensive

synthesis system, but we will assume as a default that fs is either 44100 Hz or 48000 Hz.

Linear This will be discussed in more detail later on in the chapter, but much like with oversam-

pling, there are situations where linear design is sufficient. First, implementing nonlinearity

in such filters almost always requires oversampling, though many systems are made with

nonlinearity and no oversampling and just live with whatever aliasing might occur. Second,

virtual analog filters are of a type that generally have a “small-signal” region that is effectively

linear. As such, there must be a good linear design within a good nonlinear design. As such,

this thesis only looks at the linear part of the design, on the assumption that the reader can

add their own nonlinear implementation as desired.3 Finally, as mentioned in the discussion

of oversampling, there are still interesting problems to be tackled in the purely linear domain.

Understanding over Modeling A major thrust of this research was not to come up with perfect

models of particular analog filters, but rather to understand the design of constant-Q digital

filters which exhibit inexpensive parameter mappings.4 It is believed that once one under-

stands the issues, modeling can be more effectively accomplished later.

More specifics

There are several more specific points about the design directions we will use:

• When there are more than two poles (i.e., in the Moog-style filters), we assume that one pair

will be dominant in normal operation, and hence the non-dominant poles can effectively be

ignored in analysis and discussion of tuning and Q. The inner poles are considered mainly to

contribute to the rolloff slope of the filter. Note that some of the less well-behaved discretiza-

tions of the analog Moog-style filter do not maintain the dominance relation of the poles from

2Of course, one can make a good argument, based on the “only model what is audible” argument, that if for some reason
oversampling is otherwise required, one should take advantage of it and ruthlessly ignore behaviors outside the audible
range.

3However, as mentioned in the introductory chapter, this thesis restricts the space of filter topologies to those largely
similar to the analog topologies. This is done on the assumption that those topologies will be most likely to work as desired
when saturation nonlinearities are added, as the such implementations are expected to be the most common.

4In particular, to understand how Constant-Q behavior can arise in a simple digital filter topology.

92 CHAPTER 3. DESIGNING FILTERS APPROXIMATING CONSTANT Q

the s plane (the forward difference being the most obvious, wherein at the top half of the

one-pole tuning range, the “left-hand” poles actually reach the unit circle first). As such,

these discretizations are usually rejected because of this assumption.

• As discussed in Chapter 1, we use the pole-angle definition of Q. Poles in the z plane are

translated to the s plane via z = esT and the pole-angle definition is calculated from that

location.

p k
yx Filter

fc
Q

p(f,Q) k(f,Q)

p k
yx Filter

fc
Q

p(f)
k(Q)

sep(p)

Figure 3.1: Using tuning tables for 2-parameter filters. Left: 2-D tables for each coefficient, which
can theoretically tune perfectly. Right: three 1-D tables, which are assumed to be sufficient.

• As a benchmark for defining “cheap” control mappings, we attempt to be less expensive

than three 1-D lookup tables (one each for the two major controls, plus a separation table to

reduce dependence between the controls). It is assumed that the use of 2-D lookup tables

(“LUT”s), as in Figure 3.1, can tune perfectly (assuming two major controls, usually fc and

Q), so the cost of one 2-D lookup table per coefficient will be defined as “too expensive”. We

theorize that the three 1-D LUTs just mentioned are sufficient for normal operation (we do

some experiments to verify this in Section 3.3.2). As such, we define that the use of three

LUTs, while acceptable, is still considered expensive, and we desire to design a system that

can be controlled with less mapping cost than that. The three LUTs are assumed usually to

be:

– fc → p at the unit circle (i.e., at infinite Q), where p is the tuning coefficient.

– Q → k, where k is the resonance coefficient. This LUT may not be necessary in all

designs, depending on how accurately Q needs to be specified.

3.1. PHILOSOPHY 93

– p → k at infinite Q. This table will be called the “separation table” (or “separation func-

tion” or “separation curve” if it is not a table), and is used to try to make the control of fc
and Q separate in situations where the filter is not inherently separable. It is primarily

the viability of using this table that is under scrutiny in the experiments of Section 3.3.2.

Note that the Chamberlin state-variable filter trivially meets this goal, as its controls are al-

ready effectively separate (except at very low Q, and most users don’t seem to mind), so it

does not need a separation table, and thus can use 2 LUTs at worst. Thus this issue is mostly

for the Moog-style designs. Still, in the discussion of extending the state-variable filter usage

range beyond fs/6, we use the same guidelines (i.e., attempt to not add more cost than about

that of a single LUT).

• For the purposes of this thesis, a 2nd- or 3rd-order polynomial is taken to be about the limit

for a polynomial to be “cheaper than a 1-D LUT”. Of course, the exact comparison is highly

dependent on the architecture (and/or processor) in which a filter is being implemented,

together with the specifics of the surrounding code, and the capability of the optimizing com-

piler/programmer. Since those are not the same for all cases, we use these definitions as

vague guidelines.

• On Modulatability One of the main reasons for desiring cheap design calculations is that

within the Virtual Analog paradigm, it is not unheard-of to modulate algorithm parameters

with audio signals (fc in particular, but Q modulation is sometimes implemented as well).

Thus, the algorithm should expect to have different values of its controls every sample. Of

course, in situations where one can prove that modulation and control changes will happen

much less often, one could get away with more expensive calculations when the parameters

change (as long as the system has sufficient buffering to absorb such bursts of calculation).

However, this thesis takes as an assumption that control mapping calculations have to be

done every sample.

– Precise vs. Imprecise Modulatability If modulation of a particular parameter is mainly

a “special effect”, it may be possible to split the parameter into a cheap combination of a

more expensive exact calculation (which would be done only when changing the gross

settings) and a very inexpensive offset calculation which would happen every sample.

For example, a parameter mapping such as y = f(x) could be implemented as

y = f(xgross) + xmodf ′(xgross)

This would not be useful if the modulation had to be precise, but may be fine for special-

effect modulation.

94 CHAPTER 3. DESIGNING FILTERS APPROXIMATING CONSTANT Q

– Local vs. Global Modulatability In the realm of Precise Modulatability, there is a further

classification: local vs. global. With global modulatability, the modulation is assumed to

be able to visit any value within the whole range of the parameter at any instant. Thus

the precision of the modulation must be exact. However, if the modulation is known to

only cover a range that is much smaller than the full range of the controller, then split

mappings such as the one mentioned previously may be able to stay within acceptable

precision limits. Appendix D discusses such a scheme.

This thesis assumes precise global modulatability as a design requirement. As noted in the

introductory chapter, this emphasis on modulation is motivated mainly as an optimization

issue, to allow smooth parameter variations and not preclude audio-rate modulation. There is

no design requirement for (nor expectation that) the modulated filler will match continuous-

time filter behaviors during fast modulation. During fast modulation, all of the analyses used

in the design no longer apply. It is known that time variation causes different topologies

which are equivalent in the absence of time variation to behave quite differently. As such,

this design philosophy stressed modulatability only to allow it to be implemented efficiently,

not to attempt to match any particular behavior in the presence of fast modulation.

A further design philosophy in this thesis is to make the digital topology approximate the ana-

log topology. In other words, we do not discretize the filter and implement the discretization in

some direct-form topology. Rather, we attempt to match the topology. Usually, this involves dis-

cretizing subsets of the filter as opposed to digitizing the filter as an indivisible whole. For example,

in the Moog-style filter, this means discretizing the component onepole filters. Similarly, Chamber-

lin and Dutilleux apparently used this philosophy with their discretizations of the state-variable

filter.

Dataflow Analog Filters The fact that we can actually discretize these two filters in this way, still

keeping the basic topology and having the filters still work reasonably, implies that their topologies

are somehow advantageous for digitization. Why might this be so? A likely explanation may be

that both of these filters are essentially what we might call “dataflow” filters.

In general analog circuits, there are loading effects at junctions between components or subcir-

cuits, such that the actual behavior of a circuit must be determined by deriving a set of equations

represented by all of the various component/subcircuite interconnections and solving for the ac-

tual behavior. As such, if we were to represent a general circuit as a block diagram of connected

subcircuits, we would not be able to simply assume that each block takes its input voltage and out-

puts a particular voltage based on some pre-defined behavior of the block, independent of other

blocks. Instead, the properties of the blocks on either side of a block would also affect its operation

(as, in turn, would all the blocks they were connected to). Again, the blocks would simply define

3.1. PHILOSOPHY 95

constraints on the final system behavior, which can only be finally determined by solving the si-

multaneous set of equations that all the constraints define. Thus, one could not look at the inputs

and outputs of blocks in such a block diagram and interpret them as representing the direction of

information flow within the circuit.

On the other hand, in digital simulation, the most straightforward behavior to implement is for

any particular block to have a specific causal relationship from its inputs to its outputs, completely

independent of what it is connected to. In such systems, the output of a block purely is caused by

its input values (and any internal states), and not othersise affected by what it is attched to. In such

a situation, one can interpret a block diagram as representing a flow of information (data), from

block intputs to block outputs. Such systems can de considered “dataflow” systems, since there is

a well-defined flow of data through the system.

Now, it is possible to make analog blocks which strongly approximate such behavior: give them

very low output impedances, and very high input impedances. Thus, in a connection of two such

blocks (A→ B), block B will have negligible effect on the behavior of block A. Using blocks of this

type, one can construct circuits which can be considered dataflow circuits, since each block will

effectively implement a causal input/output relation.5, denoting that each state is only effected by

those states “behind” it in the data flow order. In such circuits, information (signal values) would

flow forward through the blocks much as in a numerical simulation.

Circuit discretization can be thought of as consisting to two sub-problems:

• Deriving the system equations.

• Discretizing the system equations.

If a circuit is a dataflow type, then the first sub-problem can be simplified to that of deriving the

equations for each block separately and then arriving at the system equations by simple combina-

tion of the sub-block equations (usually as simple as routing through their inputs and outputs).

In essence, the dataflow circuit is already in a topology that can be used for numerical simulation.

Further, in a simulation implemented using the same block diagram, one can physically interpret

the numerical values between blocks as equivalent to the signal values (usually voltages) at the

same locations (modulo any time-discretization artifacts). Thus, situations such as saturation in

the analog system can be directly modeled in the digital system (at least at the boudaries between

blocks), with aliasing being the only thing to worry about. In non-dataflow circuits, the effects

of nonlinearities within the circuit (even memoryless ones) can be significantly more complicated

to model and may enter into the digitized version in much more complicated ways. Thus, even

though the filters described in this thesis do not attempt to model analog saturation, it is expected

that the topologies can have saturation added into them in a very straightforward (and probably

physically correct) manner.
5One can loosely say that in a state-space realization, that the main matrix would be banded upper-triangular (or block

upper triangular), as long as the states are assigned in the natural order of the data flow

96 CHAPTER 3. DESIGNING FILTERS APPROXIMATING CONSTANT Q

Now, things are a bit more complicated in block diagrams with loops. In a continuous-time

system, a dataflow loop can contain no delay, and as such, the loop will implement the solution to

an equation not contained in the blocks themselves. For example, let’s put a feedback loop around

a continuous-time block implementing Y (s) = F(s)X(s), summing with an input U(s):

X(s) = U(s) + Y (s)

X(s) = U(s) + F(s)X(s)

X(s)(1 − F(s)) = U(s)

X(s) = U(s)
1

1 − F(s)

Y (s) = U(s)
F(s)

1 − F(s)

As such, the transfer function F/(1 + F) has been implemented, even though it is not directly

implemented by any of the blocks. The loop has (nearly) instantaneously calculated the solution

to some constraint. 6 On the surface, this is a similar problem as before, where we are back to the

system behavior being defined via the solution to some equation rather than appearing as a direct

implementation of the block equations. However, the above equation manipulation can be done in

z as well as in s:

X(z) = U(z) + Y (z)

X(z) = U(z) + F(z)X(z)

X(z)(1 − F(z)) = U(z)

X(z) = U(z)
1

1 − F(z)

Y (z) = U(z)
F(z)

1 − F(z)

In other words, discrete-time loops can also implement such equation solutions, the only issue

being time-discretizaion artifacts. These appear partly as a consequence of the fact that a loop

cannot be implemented in discrete time without at least one sample of delay in the loop (unless

one solves the above equation ahead of time and implements the solution, but then one usually

does not implement it in a form like the original loop). Therefore, a discrete-time loop is limited in

its ability to exactly model a continuous-time loop by the fact that it requires some delay in the loop

(extra linear phase). One does note, however, that at low frequencies, the effect of a single-sample

delay becomes very small (and at DC the effect goes away). This essentially restates the fact that

6Now, at very high frequencies (many MHz) and correspondingly very short time scales, this concept breaks down, as
electromagnetic wave propagation times start becoming non-negligible within a circuit, and the circuit can be viewed as an
interconnected set of waveguides (wires and circuit components), such that one can actually think in terms of information
flowing between elements. However, at audio frequencies, such effects happen so quickly as to be effectively instantaneous.

3.2. REVISITING THE DIGITAL STATE-VARIABLE FILTER 97

most useful discretizations are most accurate near DC, and tend to become less acurate away from

DC.

In summary, an analog circuit that is a dataflow type is expected to be discretizable using the

same topology as the analog circuit (at the level ot the impedance-isolated sub-circuits), and as

such the discretization can be done on each sub-circuit (i.e. each block-diagram block) rather than

having to discretize the whole system as a single indivisible block. Further, the values of simulation

signals between blocks should be physically comparable to the equivalaent circuit signals (usually

voltages), and operations such as saturation should be applicable in a physically-correct manner.

The state-variable filter is usually implemented using op-amp-based integrators, and hence is a

dataflow filter (since the op-amp stages have the required input/output impedance relationship).

Similarly, It has been shown (by Hutchins among others [118][113]) that the Moog-style filter can

be implemented with op-amp-based one-pole filters, and hence the required impedance relation-

ships between blocks, such that it too can be considered a dataflow filter.

3.2 Revisiting the Digital State-Variable Filter

Chamberlin, Dutilleux and Dattorro have already done the basic research on designing this filter

type, so we will not try to re-design it here.7 Instead, we will look into trying to make the filter a

bit more usable.

3.2.1 Extending the usable frequency range

Due to instability in certain parts of the coefficient range, the rule of thumb for using the filter is

to limit the cutoff frequency to fs/6.8 We will explore how and when the filter goes unstable, and

attempt to find ways to extend the frequencies which can be used.9

Let’s look at the properties of the filter. Remember, the denominator is

z2 + (ff2 + ff qq − 2)z + (1 − ff qq).

• When the pole are complex, the pole radius is
√

1 − ff qq. Since both coefficients are positive

in standard usage (we saw in the root loci that the filter is unstable in much of the negative

ranges of each coefficient, and the design formulas only give positive coefficients for normal

fc and Q), this means that the filter will not go unstable by poles leaving the unit circle while

complex. In other words, when the filter goes unstable, it is due to a pole crossing through

z = −1 or z = 1. Finally, the loci tell us that it will be the left real pole crossing z = −1.

7However, a few variant filters will be explored as a consequence of noting various things in the course of root-locus
analysis.

8Dattorro also argues that design approximations start breaking down past that frequency [57]
9the author would like to note the help of Sean Costello in testing some of these extensions.

98 CHAPTER 3. DESIGNING FILTERS APPROXIMATING CONSTANT Q

• The left real pole hits z = −1 at ff =
√

qq2 + 4 − qq (or equivalently when qq = ff2−4
−2ff). Thus the

filter is stable when ff <
√

qq2 + 4 − qq.

• The poles are co-located (i.e., just leaving the real axis or just meeting on the real axis), when

b2 − 4ac = 0⇒ ff2((ff + qq)2 − 4)) = 0⇒ ff = 0, 2 − qq, and − 2 − qq. Since we only use ff ≥ 0,

that leaves ff = 0 and ff = 2 − qq. The first case is when the poles are at DC, and the second

case is when the poles rejoin the real axis.

• One of the poles is at z = 0 when ff = 1/qq. This may be of use for the qq > 1 cases, where the

teardrop comes together to the right of z = 0, hence the pole that will eventually go unstable

has to pass through z = 0, and we might want to stop it there.

q coefficient (1/Q)

f
co

ef
(2

si
n(

π
f c

/
f s

))

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

f <
√

q2 + 4 − q: stable poles

Unstable

Complex Poles

Real
Poles

classic fc limit (≈ fs/6)

f < 2 − q: complex poles

f = 1/q: one pole on z = 0

Figure 3.2: State-Variable Filter Contours

This gives us the following contours in the (ff,qq) plane, which are shown in Figure 3.2:

• ff = 1: Classic fc < fs/6 limit.

• ff =
√

qq2 + 4 − qq: Stability limit

3.2. REVISITING THE DIGITAL STATE-VARIABLE FILTER 99

• ff = 2 − qq: Poles rejoin real axis.

• ff = 1/qq: One pole on z = 0.

We can see in Figure 3.2 that the fs/6 limit is not a perfect limit — if the user uses the filter

in the range 1.5 < qq < 2, then the filter will go unstable before reaching fs/6. Therefore, some

writers place a lower upper limit on qq (i.e., a high lower limit on Q) of
√

2, 1.5, or even 1.0 ([57]).

However, it is known from experience that some users prefer to use the filter all the way up to

qq = 2.

0 0.5 1 1.5 2

x 10
4

0

0.2

0.4

0.6

0.8

1

pole frequency (Hz), assuming Fs = 48k

po
le

 r
ad

iu
s

Figure 3.3: State-Variable Filter Pole Radii vs. tuning coefficient ff, various Q settings between 1/2
and very high Q. Thick lines: complex poles. Thin lines: real poles. The standard fs/6 limit is
denoted by the dotted vertical line.

We will be using a new plot to analyze these proposed frequency-extension methods. The plot

shows pole radius versus frequency coefficient for a number of Q tracks in the state-variable filter.

Figure 3.3 shows these tracks for an unmodified filter. Note that plots show when the tracks consist

of complex poles vs. real poles by line thickness (thick representing complex poles), and that when

a track goes to real poles, two thin tracks emerge from it, one for each pole (as the poles are no

longer at the same distance from the origin). In this diagram, we see that the instability occurs as

a pole track crosses upward through the radius=1.0 line. High Q’s correspond to nearly horizontal

thick lines, whereas lower Q’s have more steeply descending thick lines. One can note that very

low Q’s transition to real poles rather quickly (i.e., at low values of ff), as can be corroborated by

earlier analyses. A track “bounces off the bottom” when the pole crosses through z = 0, usually

from Re(z) > 0 to Re(z) < 0. The minimum in the thick lines occurs at ff = 1, where the complex

poles come together right on z = 0, and hence reach a radius of zero.

100 CHAPTER 3. DESIGNING FILTERS APPROXIMATING CONSTANT Q

Clamp ff to 2 − qq?

0 0.5 1 1.5 2

x 10
4

0

0.2

0.4

0.6

0.8

1

pole frequency (Hz), assuming Fs = 48k

po
le

 r
ad

iu
s

Figure 3.4: State-Variable Filter Pole Radii: ff clamped to 2 − qq (i.e., stop the poles when they hit
the real axis). Note that once clamped, the pole stops moving. This is designated by the dot at the
end of the trace. Unfortunately, this clamping doesn’t allow any motion of ff at all when qq = 2

A possible strategy is to simply limit the range of ff by clamping it to some boundary, to keep

the filter from moving into a region of “bad behavior”.

The most obvious boundary to clamp at is where the poles transition to the real axis, as one

might expect that complex poles are what define a resonant filter. This complex/real boundary

occurs at ff = 2 − qq, and the poles are thus complex in the range 0 ≤ ff ≤ 2 − qq. Therefore, we

define the following clamping:

ffactual = min(ff, 2 − qq) (3.1)

Unfortunately, this clamping has a major drawback in everyday use: when Q gets very low

(below 1.0), the effective range of ff becomes severely limited, to the point where, at Q = 1/2,

qq = 2, and ff is limited to the range 0 ≤ ff ≤ 0. In other words, the filter cannot be tuned at all. In

the lowpass mode in particular, the filter effectively blocks most frequencies, and the filter appears

to be silent for any value of ff that the user may attempt. The filter appears to not do anything, or

be somehow broken.

This behavior can be explained by the fact that the “teardrop” of complex pole locations con-

tracts down to nothing when qq = 2, so there are no non-real pole locations.

Now, if one restricts the range of Q to Q ≥ 1, then qq < 1 and 2− qq works just fine as a limit for

ff (see Figure 3.2), especially because qq = 1 is the largest qq for which the “teardrop” still encircles

3.2. REVISITING THE DIGITAL STATE-VARIABLE FILTER 101

z = 0. At Q = 1, ff can range up to ff = 1, the traditional fs/6 limit. Note that in [57], Dattorro

partially explains the ff ≤ 1 limit by defining the maximum useful value of qq as 1.

However, many users of the state-variable filter routinely use Q = 1/2 as their lower Q limit,

rather than Q = 1 or Q =
√

2/2. It is because of this range of operation that limiting the poles to be

complex becomes non-viable.

We must note, then, that it is common to use the filter in a range where both poles are real.

This can present a philosophical problem, as it is natural to consider a “resonant” filter, such as

the types being explored in this thesis, as being defined in terms of parameters that only have

meaning if the poles are complex. For example, in [57], Dattorro explicitly assumes that the poles

must be complex while deriving the ranges for ff and qq. Do the design formulas for ff and qq still

have meaning when the poles become real? Unfortunately, this will have to be answered by later

research. An open question is whether the filters that are implemented when the poles become real

have any unexpected drawbacks. Do the filter shapes extrapolate well the trend from before the

poles go real? Do they do so smoothly? We can know, simply from the fact that users appear to

be comfortable with the way the filter acts in this region, that the behavior cannot be “too bad.”

In fact, as noted in the discussion of Q definitions in Chapter 1, there are probably many users for

whom the real-pole “sound” of the state-variable filter defines how a filter should sound at very low

Q.

In summary, due to the ranges of coefficients in accepted usage, restricting the poles to only

move within the complex-pole region is not viable for the Chamberlin state-variable filter.

Clamp near unit circle?

Another obvious boundary is near the stability boundary:

ff <
√

qq2 + 4 − qq − ε (3.2)

However, one can reason that this is probably not a useful clipping boundary, as it will tend to

let the filter get too close to instability (unless one sets ε particularly high, in which case, it would

start interfering with other filter behaviors). In fact, if clipped right on the boundary, the filter

would end up merely quasi-stable during the whole time that the unclamped ff was beyond the

boundary, which would not be a “nice” mode of operation.

Hybrid clamping

One may be tempted to clamp ff at 1/qq, which is where one pole crosses through z = 0. This

would seem to be a good compromise between letting the poles go real, but not letting them get

too close to the unit circle. However, this interpretation only works at very low Q, where the poles

come together to the right of z = 0. In that situation, the pole that will go unstable does indeed have

102 CHAPTER 3. DESIGNING FILTERS APPROXIMATING CONSTANT Q

0 0.5 1 1.5 2

x 10
4

0

0.2

0.4

0.6

0.8

1

pole frequency (Hz), assuming Fs = 48k

po
le

 r
ad

iu
s

Figure 3.5: State-Variable Filter Pole Radii: ff clamped to
√

qq2 + 4 − qq (the stability boundary)

0 0.5 1 1.5 2

x 10
4

0

0.2

0.4

0.6

0.8

1

pole frequency (Hz), assuming Fs = 48k

po
le

 r
ad

iu
s

Figure 3.6: State-Variable Filter Pole Radii: ff clamped to 1/qq (when a pole hits z = 0). The
problem is we don’t know which pole has hit z = 0, and for high Q, it is the wrong pole, so we still
get instability.

3.2. REVISITING THE DIGITAL STATE-VARIABLE FILTER 103

to cross through z = 0 to reach the unit circle, and such a clamping rule would be of use. However,

for Q > 1, the poles come together to the left of z = 0, so that the one that would cross through

z = 0 is the right-hand pole, not the left-hand pole, which is the one which goes unstable. Thus, the

clamping rule would do nothing to keep the filter stable in this situation.

One might combine clamping rules into a hybrid rule, which clamps differently depending on

what range of Q the filter is in. A likely hybrid would be the following:

Q > 1 : ffactual = min(ff, 2 − qq)

Q ≤ 1 : ffactual = min(ff, 1/qq)

For high Q, the complex/real pole boundary is a fine boundary (it only has problems for Q < 1),

and for low Q, the poles come together to the right of z = 0 and hence it is a useful boundary

as well. Furthermore, these two boundaries touch at Q = 1, thus allowing a smooth transition

between the two ranges. A drawback of this clamping, however, is the divide, but if qq = 1/Q

is being performed anyways then 1/qq already exists (i.e., Q), so clipping ff to Q may be fine.

If, however, Q has been lost by runtime, then a divide becomes necessary again. Note that the

comparison can be done without a divide, since ff and qq are both positive, so that the comparison

ff > 1/qq is equivalent to the comparison (ff qq) > 1. However, if clamping must be done, then the

value 1/qq still must be computed.

0 0.5 1 1.5 2

x 10
4

0

0.2

0.4

0.6

0.8

1

pole frequency (Hz), assuming Fs = 48k

po
le

 r
ad

iu
s

Figure 3.7: State-Variable Filter Pole Radii: Hybrid Clamping: ff clamped to 1/qq when qq > 1, and
to 2 − qq when qq < 1.

104 CHAPTER 3. DESIGNING FILTERS APPROXIMATING CONSTANT Q

Polynomial clamping

If one studies the shapes of the boundaries in Figure 3.2, one may wonder if there exists a function

which lies in the real-poles region which may be inexpensive to compute, and hence act as a useful

compromise clamping function. In fact, a 2nd-order polynomial in qq turns out to work pretty well.

Figures 3.8 and 3.9 show the effects of the two clamping functions

ffactual = min(ff, 0.2qq2 − qq + 2)

ffactual = min(ff, 0.15qq2 − qq + 2)

(3.3)

respectively. They also represent two points on a tradeoff continuum which the user or designer

may explore: for the 0.2 version may be considered to get too close to unstable at low Q, or the 0.15

version may be considered to clamp “too early” and overly restrict the range of ff. . .

0 0.5 1 1.5 2

x 10
4

0

0.2

0.4

0.6

0.8

1

pole frequency (Hz), assuming Fs = 48k

po
le

 r
ad

iu
s

Figure 3.8: State-Variable Filter Pole Radii: ff clamped to 0.2qq2 + 2 − qq.

Frequency-extension wrapup

These various attempts at extending the useful range of the state-variable filter beyond fc < fs/6

primarily differ in where they clamp ff. Almost all of the methods clamp within the real-pole region

(as it was seen that clamping at the complex/real boundary is too restrictive). Now, since we prefer

to only define Q when the poles are complex (i.e., both poles have the same angle), any differences

between these clamping methods take place outside the range of defined Q, and so it would not

3.2. REVISITING THE DIGITAL STATE-VARIABLE FILTER 105

0 0.5 1 1.5 2

x 10
4

0

0.2

0.4

0.6

0.8

1

pole frequency (Hz), assuming Fs = 48k

po
le

 r
ad

iu
s

Figure 3.9: State-Variable Filter Pole Radii: ff clamped to 0.15qq2 + 2 − qq.

q coefficient (1/Q)

f
co

ef
(2

si
n(

π
f c

/
f s

))

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

f <
√

q2 + 4 − q: stable poles

Unstable

Complex Poles

Real
Poles

classic fc limit (≈ fs/6)

f < 2 − q: complex poles

f = 1/q: one pole on z = 0

f = 0.15q2 − q + 2

f = 0.2q2 − q + 2

Figure 3.10: State-Variable Filter Contours, showing proposed ff-limiting polynomials

106 CHAPTER 3. DESIGNING FILTERS APPROXIMATING CONSTANT Q

be of use to compare these methods using analyses such as a Q-vs-fc plot, since they would all

produce the same plot. All the “action” would take place outside the view of the plot.

Again, the fact that many users use the state-variable filter in regions where the poles are real,

and still think of there being a Q in these regions, presents some philosophical quandaries for the

filter designer. The designer cannot get away with just ignoring this region (as was attempted by

clamping to 2 − qq, and was implied by Dattorro in [57]).

3.2.2 Deriving a SVF Variant From Locus Tracks

In Appendix A, Section A.2, we look at how one might derive the continuous-time state-variable-

filter’s locus equations directly from desired locus track shapes. Here, we will attempt to do the

same thing in discrete time, and see if we come up with a filter similar to the discrete-time state-

variable filter.

The ideal constant-Q tracks are

r = e−αθ. (3.4)

However, this definition is difficult to use, since we desire polynomials for the root locus, so we

look at the series expansion:

r = 1 − αθ +
1
2
α2θ2 − · · · (3.5)

and noting that for much of the Q range (i.e. Q >> 1), α is rather small, use the approximation

r = 1 − αθ. (3.6)

Where α is some function of Q (and thus only approximate constant Q at low frequencies or

high Qs). This defines a spiral in the z plane which approximates the desired constant-Q track. The

desired pole locations are thus

z0,1 = re±jθ = (1 − αθ)e±jθ (3.7)

Plugging these into an idealized root-locus equation gives:

(z − z0)(z − z1) = 0

z2 − zr(ejθ + e−jθ) + r2 = 0

z2 − 2z(1 − αθ) cos(θ) + (1 − αθ)2 = 0 (3.8)

At this point, we should recognize the standard formula for a complex-poles biquad denominator

(i.e., z2 − 2r cos(θ)z + r2). We also realize that some sort of approximation will be necessary if

we want to turn this into a polynomial with respect to θ (i.e., to have the filter coefficients be

polynomials with respect to θ, as in the state-variable filter). Thus, we expand cosine into the first

3.2. REVISITING THE DIGITAL STATE-VARIABLE FILTER 107

few terms of its Taylor series approximation:

cos(θ) = 1 − θ
2

2
+
θ4

24
+ · · · (3.9)

Substituting into the above, we get

(z − 1)2 + 2α(z − 1)θ + (z + α2)θ2 − αzθ3 − zθ
4

12
+ · · · = 0. (3.10)

Truncating after the θ2 term, and renaming θ to t (since it is no longer the actual pole angle), we get

(z − 1)2 + 2α(z − 1)t + (z + α2)t2 = 0, (3.11)

which has the familiar double-roots on z = 1 for D(z), and the single root on z = 1 for N1(z).

Interestingly, the finite root of N2(z) isn’t right on zero, as it is in the Chamberlin form (see Sec-

tion 2.4.4). As such, we already see a slight divergence from the Chamberlin form. If we collect in

terms of powers of z, we get

z2 + (t2 + 2αt − 2)z + (1 − αt)2, (3.12)

which differs from the denominator of Chamberlin form in two places (if we replace qq with α and

ff with t): first, in the z term, we have 2αt rather than αt, and second, the final term is squared

relative to Chamberlin form. As such, we should expect a different tuning formula, but in fact, we

get the same, since we measure it at r = 1, hence α = 0, in which case the z term appears equivalent

to the z term of the Chamberlin form when qq = 0. Thus we get the same tuning formula:

t =
√

2
√

1 − cos(θ) = 2 sin(θ/2) (3.13)

If we look at the t-loci of this design (Figure 3.11), we see an interesting behavior at low Q: whereas

the “teardrop” in the Chamberlin form contracts in towards z = 1 as qq → 2, in this form the

teardrop does not contract, and continues to wrap around z = 0 even at extremely low Q. This is

a nice feature in comparison to how the Chamberlin filter’s teardrop contracts down to nothing at

low Q.

The stability and complex-poles contours for this design are:

|r1,2| ≤ 1 ⇒ t ≤ 2
1 + α

(3.14)

Complex poles ⇒ 0 < t < 2
(√

α2 + 1 − α
)

(3.15)

(Note that these situations are also satisfied at t = 0 and at certain negative values of t, but

those are considered outside the range of operation). These contours are shown in Figure 3.12.

Unfortunately, unlike the Chamberlin case, these contours are not cheaply computed, and the au-

108 CHAPTER 3. DESIGNING FILTERS APPROXIMATING CONSTANT Q

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

Figure 3.11: Root Loci in the t parameter, state-variable-filter variant. Left to right, top to bottom:
α = 0.01, 0.1, 1.0, 4.0. (t > 0)

thor has not yet found a cheap polynomial which fits well inside the real-poles region, as was done

in Section 3.2.1 for the Chamberlin case. The use of a LUT for computing the boundary would ap-

pear to be the most likely solution for this design. Note that since the teardrop does wrap around

z = 0, it should be valid to clamp t to the complex-poles boundary, unlike the Chamberlin case.

Also note that if, as is often done with the Chamberlin filter, one can still use ff = 1 (fc = fs/6)

as a convenient upper limit on fc if one does not want to compute the above boundaries, and as

long as one is willing to stay in the region 0 < α < 1.

A block diagram for the variant

Here we attempt to derive a block diagram for this variant in a form similar to the Chamberlin

form (Figure 2.13) diagram). As such, we will also change the coefficient names to match those of

the Chamberlin form: t→ ff, and α→ qq.

Using the Direct-Form two-pole filter’s topology as a guide, replacing z−1 with k, and replacing

the coefficients with D,N1, and N2, we can derive a “direct-form” implementation of a filter that

3.2. REVISITING THE DIGITAL STATE-VARIABLE FILTER 109

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

α

t

Complex Poles

Unstable

Real
Poles

t = 2
1−α

t = 2(
√

α2 + 1 − α)

Figure 3.12: Complex-pole and stability boundaries of state-variable filter variant.

k k
x 1

D

N2N1

y

Figure 3.13: A “Direct-Form” implementation of a system which has D + kN1 + k2N2 = 0 as its root
locus.

110 CHAPTER 3. DESIGNING FILTERS APPROXIMATING CONSTANT Q

will have a desired 2nd-order root locus in k: D + kN1 + k2N2 = 0. Such a filter is shown in

Figure 3.13.

ff ff
x 1

(z-1)2

2qq(z-1) z - qq2

ff ff
x 1

z-1
1

z-1

z-1 z - qq2

2qq

ff ff
x 1

z-1
1

z-1

z - qq22qq

ff ff
x 1

z-1
z - qq2

z-1

2qq

Figure 3.14: Initial steps in creating a block diagram for this state-variable-filter variant.

Now, replacing D with (z−1)2, N1 with 2qq(z−1), and N2 with (z+qq2), and performing some

block-diagram manipulations (Figure 3.14), we derive the form in Figure 3.15, which is quite close

to Chamberlin form. Comparing this to Chamberlin form, we see two major differences: first, the

inner feedback is 2qq rather than qq, and there is an additional FIR filtering in the feedback loop.

From here, one may wonder about where to pick off the outputs. Figure 3.16 shows most of the

probable output locations for this filter. Their transfer functions are:

Y7 = X
ff2(z + qq2)

(z − 1)2 + 2qq ff (z − 1) + ff2(z + qq2)

= ff2(z + qq2)(X/den) (3.16)

3.2. REVISITING THE DIGITAL STATE-VARIABLE FILTER 111

z-1

z-1

ff ff

2qq

x

qq2

Figure 3.15: A block-diagram realization of this state-variable-filter variant.

z-1

z-1

ff ff

2qq

y6y2y0

x

y1 y3 y4 y5

y7

qq2

Figure 3.16: A block-diagram realization of this state-variable-filter variant, with possible outputs
shown.

Y4 = Y7
z − 1
z + qq2 = ff2(z − 1)(X/den) (3.17)

Y6 = Y4z/(z − 1) = ff2z(X/den) (3.18)

Y5 = z−1Y6 = ff2(X/den) (3.19)

Y3 = Y4/ff = ff(z − 1)(X/den) (3.20)

Y2 = zY3 = ff z(z − 1)(X/den) (3.21)

Y1 = (z − 1)Y3 = ff(z − 1)2(X/den) (3.22)

Y0 = Y1/ff = (z − 1)2(X/den) (3.23)

Now, in comparison to the numerators of the Chamberlin filter outputs (Eqs 2.30-2.32), we can

name the three outputs as follow:

Yl = Y6 = X
ff2z

(z − 1)2 + 2qq ff (z − 1) + ff2(z + qq2)
(3.24)

Yb = Y2 = X
ffz(z − 1)

(z − 1)2 + 2qq ff (z − 1) + ff2(z + qq2)
(3.25)

112 CHAPTER 3. DESIGNING FILTERS APPROXIMATING CONSTANT Q

Yh = Y0 = X
(z − 1)2

(z − 1)2 + 2qq ff (z − 1) + ff2(z + qq2)
(3.26)

And the difference equations for the filter are as follows:

yl(n) = yl(n − 1) + ffyb(n − 1) (3.27)

yh(n) = x(n) − yl(n) − qq2yl(n − 1) − 2qqyb(n − 1) (3.28)

yb(n) = ffyh(n) + yb(n − 1) (3.29)

Note that they differ from the Chamberlin form only in the later terms of yh(n).

Further analysis

Interestingly, qq in this filter is related to Q slightly differently than in the Chamberlin filter:

qq ≈ 1
2Q

(3.30)

This factor of two was first noticed experimentally. As with the Chamberlin filter, there is a break-

down in this approximation at very low Q (see Figure 1.3)

10
−3

10
−2

10
−1

10
0

10
−1

10
0

10
1

10
2

10
3

qq

po
le

 Q

10
−3

10
−2

10
−1

10
0

10
−1

10
0

10
1

10
2

10
3

qq

po
le

 Q

Figure 3.17: Measured pole Q vs. qq for random qq and ff values (only plotting complex poles).
Left: Chamberlin Filter, line: 1/qq. Right: Variation, line: 0.5/qq.

But is it any better?

Because the Chamberlin filter is so inexpensive and does work extremely well over a range of fc
andQ that many find acceptable, the fact that this filter is actually slightly more expensive probably

3.2. REVISITING THE DIGITAL STATE-VARIABLE FILTER 113

0 0.5 1 1.5 2

x 10
4

0

0.2

0.4

0.6

0.8

1

pole frequency (Hz), assuming Fs = 48k

po
le

 r
ad

iu
s

0 0.5 1 1.5 2

x 10
4

0

0.2

0.4

0.6

0.8

1

pole frequency (Hz), assuming Fs = 48k

po
le

 r
ad

iu
s

Figure 3.18: State-Variable Variation Pole Radii: Left: no clamping. Right: ff clamped to where the
poles hit the real axis.

outweighs any advantages it might have. This filter is therefore primarily an example of how one

might design a state-variable-like filter directly from approximations of its desired root tracks. The

primary advantage of this form is that the “teardrop” of the ff locus always wraps around z = 0,

rather than contracting in to z = 1 as in the Chamberlin form. From some viewpoints, this is a more

reasonable pole track. It also allows the filter to be more usefully constrained to the range where

the poles are complex, which was not possible in the Chamberlin form.

Finally, this design is not yet fully complete. There are still scaling issues to be figured out in the

outputs, for example. Figure 3.19 shows representative lowpass, bandpass, and highpass responses

for various frequencies and Qs of this filter vs. the Chamberlin form, and at low Q values, the filter

gains get a little off. Of course, comparing against the Chamberlin form, which itself has issues at

very low Q, may not be the best comparison. Still, this shows that there is still work to be done if

this form is to become a fully usable filter type.

Higher Order?

What happens if we truncate the series in Equation 3.10 at a higher order in θ? This would the-

oretically give a closer approximation to cos(θ) at the cost of a more expensive computation (and

a higher-order locus). The 3rd- and 4th-order root locus equations can be extracted trivially from

Equation 3.10: N3(z) = −αz, and N4(z) = −z/12. Rearranged into a single z polynomial, these

forms are:

z2 + (−αt3 + t2 + 2αt − 2)z + (1 − αt)2 = 0

z2 +
(
− 1

12
t4 − αt3 + t2 + 2αt − 2

)
z + (1 − αt)2 = 0

114 CHAPTER 3. DESIGNING FILTERS APPROXIMATING CONSTANT Q

10
−1

10
0

−20

−10

0

10

20

ga
in

 (
dB

)

10
−1

10
0

−20

−10

0

10

20

ga
in

 (
dB

)

10
−1

10
0

−20

−10

0

10

20

freq (radians)

ga
in

 (
dB

)

10
−1

10
0

−20

−10

0

10

20

ga
in

 (
dB

)

10
−1

10
0

−20

−10

0

10

20

ga
in

 (
dB

)

10
−1

10
0

−20

−10

0

10

20

freq (radians)

ga
in

 (
dB

)

Figure 3.19: Comparing highpass, bandpass, lowpass frequency responses of this variation against
those of the Chamberlin form. Thick lines: the variation. Thin lines: Chamberlin Form. Left: Q=5,
Right: Q=0.75

As expected, the differences are just in the z coefficient (where the cosine term was), simply adding

more terms of the series approximation of −2(1 − αθ) cos(θ). For 3rd-order, we add N3(z) = −αz,

which has a root on z = 0. The loci are particularly nice looking (Figure 3.20). Note, in comparison

to the 2nd-order loci in t (Figure 3.11), which tend to drift to higherQ at high frequencies (not unlike

the Chamberlin form), these 3rd-order loci start drifting to lower Q at high frequency when α gets

past 0.3 or so. Also, unlike the 2nd-order loci, these loci actually exhibit the behavior of the tracks

“curling inward” near the real axis. The complex-pole boundary is also rather straightforward:

α < 0.5 : 0 < t < 2

α > 0.5 : 0 < t < 1/α

(although the divide isn’t necessarily cheap).

3.2. REVISITING THE DIGITAL STATE-VARIABLE FILTER 115

−1 −0.5 0 0.5 1

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

−1 −0.5 0 0.5 1

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

−1 −0.5 0 0.5 1

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

−1 −0.5 0 0.5 1

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

−1 −0.5 0 0.5 1

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

−1 −0.5 0 0.5 1

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

−1 −0.5 0 0.5 1

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

−1 −0.5 0 0.5 1

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

Figure 3.20: State-variable filter variant, 3rd-order in t. Left to right, top to bottom: α =
0.01, 0.1, 0.2, 0.4, 0.5, 0.6, 1.0, 4.0. For α < 0.5, 0 < t < 2, for α > 0.5, 0 < t < 1/α.

The 4th-order approximation of the cosine is not quite as “nice”. We can see in Figure 3.21 that

the locus, while following the constant-Q contours even more closely, does not actually reach the

real axis near fs/2, instead curving back around somewhere through the frequency range, making

this variation on the design less interesting, except at low frequencies, where simpler designs are

sufficient.

−1.5 −1 −0.5 0 0.5 1 1.5
−1.5

−1

−0.5

0

0.5

1

1.5

−1.5 −1 −0.5 0 0.5 1 1.5
−1.5

−1

−0.5

0

0.5

1

1.5

−1.5 −1 −0.5 0 0.5 1 1.5
−1.5

−1

−0.5

0

0.5

1

1.5

−1.5 −1 −0.5 0 0.5 1 1.5
−1.5

−1

−0.5

0

0.5

1

1.5

Figure 3.21: State-variable filter variant, 4th-order in t. Left to right: α = 0.1, 0.5, 0.75, 2.0. (−10 < t <
10)

These higher-order variants were presented simply as explorations of further variations. How-

ever, the nice loci of the third-order cosine approximation suggest that there may be some useful

further research in working out how to turn that design into a workable filter topology.

116 CHAPTER 3. DESIGNING FILTERS APPROXIMATING CONSTANT Q

3.2.3 Derivation of SVF-like filter from Circle RL filter

The Type-1 Circle filter (Figure 2.1) looks quite similar to the Chamberlin State-variable filter. It is

not a constant-Q filter, however. Interestingly, if we try to turn it into a constant-Q filter, we end up

with a form not that unlike the Chamberlin form. First, however, we must note a useful method for

designing tuning coefficients, which shows up in filters such as the state-variable filter.

The cos→ sin method

As may have become obvious, it is extremely common for 2nd-order pole angles to be related to

their coefficient by a cosine or one-minus-cosine relationship. This can be understood intuitively

by the fact that root locations are very sensitive to their coefficients at “breakaways” (root locus

situations where a pair of poles on the real axis leave the real axis and become complex), such that

the poles’ distances from the real axis (and hence their angle) move very quickly with changes in

the coefficient. Hence the coefficient must change very slowly to achieve desired changes in the

pole angle (i.e., the tuning curve must have slope near zero, which is the case in 1 − cos(x) tuning

relationships). Unfortunately, this means that a table lookup is probably necessary to get even

gross tuning. However, we can make a very important observation from standard trigonometric

identities: √
2(1 − cos(θ)) = 2 sin(θ/2) (3.31)

Next we note that if we split a scale coefficient in a block diagram into two separate scale coeffi-

cients in series, then to get the same original scaling each should implement the square-root of that

scaling. Therefore, if the original implemented 2(1 − cos(θ)), then the split coefficients implement

2 sin(θ/2). The important feature of this change is that sin(θ) ≈ θ for small θ.10 Since at common

sample rates, much musical filtering uses pole frequencies that are quite small compared to the

sampling rate. This means that one may often be able to get away with using coef = θ as a very

good approximation. Therefore, a pretty ugly tuning mapping is turned into a pretty nice tuning

mapping simply by splitting a coefficient into two parts. Now, if we look at the Chamberlin state-

variable filter, and several other similar second-order filters, we can see that the tuning coefficient

is actually in the system twice, and does actually implement the 2 sin(θ/2) mapping.

This method is a very good one for a filter experimenter to keep in mind. We will use it here to

help in turning the Type 1 Circle Filter into a form similar to the Chamberlin Form.

Modifying a Circle Filter

Note that since these really are just different forms of 2nd-order filter, we should theoretically be

able to transform any form into any other form with sufficient block-diagram rearrangement and

coefficient transformations. Hence, we could start with about any of the forms. An interested
10One can also note this by looking at the Taylor-series expansion: 2 − 2 cos(θ) ≈ 2 − 2(1 − θ2/2) = θ2.

3.2. REVISITING THE DIGITAL STATE-VARIABLE FILTER 117

reader might try the same starting from one of the other forms discussed in this thesis, like the

digital “X” filter (Figure 2.22). The real intent here is to note how similar these forms are by showing

how few steps are necessary to get a similar filter (not identical), and further to present a couple

interesting design methods and observations about the block diagrams which might help build

intuition on how these filters operate (and in particular about how the Chamberlin form works).

As we have noted earlier, the Circle Filter forms (Figure 2.1) have much in common with the

Chamberlin form (Figure 2.13). In particular, a loop around two first-order filters, one in backward-

difference form and the other in forward-difference form. As such, one might ask: “If we modify

the Circle filter to have some of the features of the state-variable filter (i.e., to be closer to constant-

Q, etc), would we end up with a design that is like the Chamberlin form?

z-1

z-1

2r (1- cosθ)

yx

r r

z-1

z-1

2(1- cosθ)

yx

r r r

z-1

z-1

a2

yx

r r r

z-1

z-1

a
yx

r

ra

z-1

z-1

yx

αθ

1-αθa a
z-1

z-1

yx

α

1-αθ2sin(θ/2)

2(1- cosθ)

2sin(θ/2)

θ/(2sin(θ/2))≈1

Figure 3.22: Modifying a Type 1 Circle Filter into a form similar to Chamberlin form

Let’s try. Figure 3.22 shows a series of algebraic modifications to the Type-1 Circle Filter form,

heading towards a Chamberlin-like form (right-to-left, top-to-bottom). First, we recall the coeffi-

cient design equations, noting that the outer feedback coefficient is k = 2r(1 − cos(θ)). If we split

that coefficient into two coefficients, r, and 2(1 − cos(θ), we can combine the r with the feedback

in the second onepole and rotate the scale around into the feedforward of that onepole (ignoring

for now any issues with the output tap). This leaves us with the 2(1 − cos(θ)) form that was just

discussed, so we note that we will want to split it into two parts. Thus, let us rename the coefficient

(for notational simplicity) to a2. Now, split the coefficient into two scales by a, and then rotate them

118 CHAPTER 3. DESIGNING FILTERS APPROXIMATING CONSTANT Q

back through the two onepole filters, placing a factor of a in front of each. This leaves the feedback

gain at unity. This gets the filter looking even closer to the Chamberlin form, which also has the

outer feedback at unity and has two frequency coefficient in the feedforward, placed in front of

each onepole (roughly).

Next, we work on turning the filter into a constant-Q filter, as currently, it is more of a constant-

radius filter. As in the previous section, we use the approximation for constant Q:

r = 1 − αθ (3.32)

(which is most accurate at low frequencies or high Qs).

Side note: What if we end up with a coefficient is equal to θ (or has θ in it)? In a form like the

Chamberlin form, this does not happen, θ only enters into the filter via the frequency coefficient

2 sin(θ/2), and it would not be good to have to invert that to get back to θ. However, we note

that if the filter is implemented with a frequency transformation, like ff = f(θ), then we do have θ

available: the input to that transformation, and we can just use it. Note that this kind of method

only works if the filter actually implements the transformation internally. If the filter is being used

in “inexpensive mode”, where the approximation 2 sin(θ/2) ≈ θ is being used (i.e., no frequency

mapping at all), then this method becomes less useful (or at least less accurate).

Back to the filter modification: Using the r = 1 − αθ approximation allows us to split the first

onepole into a two-loop structure with an internal forward-difference integrator and an external

loop with a scaling of αθ. This is another step closer to the Chamberlin form, for which the first

onepole is similarly split into two loops. Still, the Chamberlin form has the first frequency co-

efficient inside the outer of the new loops, and the feedback coefficient is not dependent on θ.

Therefore, we push the a scaling forward through the sum, and in so doing push a scale factor of

1/a down into the feedback path, which we will combine with θ, which we have split from α. Thus

we now have the a scale inside the inner feedback loop, as in Chamberlin form. To do so, we have

created two scales in the inner feedback loop: α and θ/a. Now, α is directly related to Q, so in

comparison to Chamberlin form, is exactly where we need it, but what about the θ/a? Here we

note that a = 2 sin(θ/2). If we look at the series expansion of θ/a, we get:

θ

2 sin(θ/2)
= 1 +

θ2

24
+ · · · (3.33)

In other words, θ/a ≈ 1 up to 2ndorder, and we can thus approximate that scale away, leaving us

with an inner feedback nearly identical to that of Chamberlin form.

In summary, we are left with a filter in a form almost exactly that of Chamberlin form, except

for a scale of 1−αθ in the second onepole loop (which, if we want, we can use “low frequency, high

Q” arguments to approximate away as 1.0). As such, we have shown how one might attempt a

derivation of a Chamberlin-like filter by attempting to turn a Circle filter into a constant-Q filter, and

3.2. REVISITING THE DIGITAL STATE-VARIABLE FILTER 119

using a few other hacks here and there (such as the
√

1 − cos(θ)→ 2 sin(θ/2) method, and splitting

a 1 − x feedback into two feedback loops and hence turning a onepole filter into an integrator with

feedback round it).

3.2.4 Deriving Chamberlin Form from 2nd-order Root-Locus Primitives

Now we approach the state-variable filter from a completely different direction. As will be men-

tioned in Appendix A, the author created some tools for interactively exploring root locus behavior,

allowing the user to drag zeros and poles around and see the effect on the locus live. A 2nd-order-

locus version was created to explore 2nd-order loci, and in particular to help understand the effect

of the relative scaling on N1 and N2 (see Section A.1.3), as it was realized that this scaling was

inherent in how the “X” locus (Section 2.4.4) track angles were controlled.

Rather quickly after starting to use the explorer, a couple basic facts were easily noted:

−0.5 0 0.5 1 1.5 2 2.5

−1.5

−1

−0.5

0

0.5

1

1.5
−0.5 0 0.5 1 1.5 2 2.5

−1.5

−1

−0.5

0

0.5

1

1.5
−0.5 0 0.5 1 1.5 2 2.5

−1.5

−1

−0.5

0

0.5

1

1.5

−0.5 0 0.5 1 1.5 2 2.5

−1.5

−1

−0.5

0

0.5

1

1.5
−0.5 0 0.5 1 1.5 2 2.5

−1.5

−1

−0.5

0

0.5

1

1.5
−0.5 0 0.5 1 1.5 2 2.5

−1.5

−1

−0.5

0

0.5

1

1.5

Figure 3.23: SVF-like 2nd-order root-locus exploration. Top Row: moving N1 root closer to the
doubled D roots. Bottom Row: N1 on top of one D root, moving other D root closer. Black: k > 0,
grey: k < 0.

• The basic requirement for getting a locus track pair that leaves the real axis at an angle (and

without extra poles heading into the opposite half plane) is for D(s) to have double roots on

120 CHAPTER 3. DESIGNING FILTERS APPROXIMATING CONSTANT Q

−1.5 −1 −0.5 0 0.5 1 1.5

−1.5

−1

−0.5

0

0.5

1

1.5
−1.5 −1 −0.5 0 0.5 1 1.5

−1.5

−1

−0.5

0

0.5

1

1.5
−1.5 −1 −0.5 0 0.5 1 1.5

−1.5

−1

−0.5

0

0.5

1

1.5

−1.5 −1 −0.5 0 0.5 1 1.5

−1.5

−1

−0.5

0

0.5

1

1.5
−1.5 −1 −0.5 0 0.5 1 1.5

−1.5

−1

−0.5

0

0.5

1

1.5
−1.5 −1 −0.5 0 0.5 1 1.5

−1.5

−1

−0.5

0

0.5

1

1.5

Figure 3.24: SVF-like 2nd-order root-locus exploration. Top Row: moving a finite N2 root closer to
the D roots. Bottom Row: changing the scale on N1.

the real axis, and for N1(s) to have one root on the same location. If the N1 root is away from

the D(s) roots, then the poles leave the real axis perpendicular to it, and only then bend to

the desired angle. In other words, leaving the axis at an angle is a limiting behavior as the N1

root approaches the D roots. Figure 3.23 shows the effects of various relative N1 and D roots.

• The angle is definitely controlled by the relative gains of N1 and N2 (Figure 3.24).

• Giving N2 a finite root bends the rays around the root to come back down to the real axis.

More importantly, the shape they trace in so doing is quite reminiscent of the constant-Q

curves in the z plane (except that they rejoin the real axis perpendicularly). Hence, the

“teardrop” shape can be achieved this way (Figure 3.24).

• The size of the teardrop varies with the departure angle, such that the rejoining location pulls

towards the zero (or even beyond it) as the angle moves from perpendicular to the real axis

(the teardrop is a circle) towards parallel to it (the teardrop disappears)). This is also remi-

niscent of constant-Q shapes. By appropriately locating the N2 root relative to the D roots,

the overall scale can be controlled. To line up with the unit circle, the D roots and the N1 root

3.2. REVISITING THE DIGITAL STATE-VARIABLE FILTER 121

go on z = 1, and the N2 root goes on z = 0.

Therefore, one may be able to contemplate a discrete-time filter design based purely on these ob-

servations:

D(s) = (z − 1)2

N1(s) = α(z − 1)

N2(s) = z

For a root-locus equation:

(z − 1)2 + α(z − 1)k + zk2 = 0 (3.34)

Where α is used to control the relative scaling of N1 and N2, for controlling the departure angle

(and hence low-frequency Q), and the locus parameter k is a pole-angle (i.e., frequency) control.

As noted previously (Section 3.2.2), we can turn this into a block diagram by analogy to a twopole

filter (whose denominator is 1 + d1z
−1 + d2z

−2), replacing z−1 with k, and the coefficients with N1

and N2, and putting 1/D ahead of the first k). Figure 3.25 shows the block-diagram algebra which

takes these equations and directly gives us a filter in Chamberlin form.

z-1

yx
k

z-1

z-1

yx

α

k k

1
(z-1)2

k

zα
z-1

yx
k k

z

α

1
(z-1)

1
(z-1)

yx
k k

α

z
(z-1)

1
(z-1) yx

k k

α

1
(1-z-1)

z-1

(1-z-1)

Figure 3.25: Deriving Chamberlin form from 2nd-order root-locus form.

Essentially, we have a derivation of the Chamberlin form from 2nd-order root-locus primitive

122 CHAPTER 3. DESIGNING FILTERS APPROXIMATING CONSTANT Q

shapes, much as how the Circle Filters were derived from 1st-order primitives in Section 2.2.1.

3.2.5 Conclusions on the SVF section

Although the state-variable filter is quite useful as it stands, we have looked into a few small ways

of possibly extending its useful range, and explored how similar filters may be derived from some

other starting points.

3.3 Moog-Style Discrete-Time Filter Design

Here we look into designing digital filters in the style of the Moog voltage-controlled lowpass filter

[173]. As hinted in the introduction to the chapter, the basic design concept will be to copy the

topology of the analog filter, i.e., a cascade of first-order sections with feedback around the cascade.

We will initially look at applying standard discretization techniques to the first-order filters (or in

one case to the feedforward cascade as a whole). Later, we will move away from discretization and

look at the digital filter directly, apart from any particular discretization of the analog filter, and

explore variations of the filter directly.

A Review of the Design Philosophy

As discussed at the start of the chapter, the philosophy is to design a filter whose control mappings

are as cheap as possible, in the non-oversampled, linear realm. Modulation is expected to update

every sample, so that the control must be as inexpensive as possible. This philosophy treats the

original Moog filter as an ideal continuous-time filter claszR(i.e., four one identical onepoles with

a loop around them), rather than a particular circuit or implementation to be emulated. The intent

is mainly to help understand the basic behavior of the filter and of possible digital variants. The

problem of matching a particular circuit is left to other researchers (for example [110]).

Why not nonlinear? Given that the nonlinear behaviors of the Moog filter and its variants are,

for some users, a primary attraction for their use, one must ask why we would bother looking into

just the linear aspects of the filter behavior. The reasons are many:

• There is quite a bit to be explored in the linear domain. As we have seen and will see further,

there are quite a few interesting variations of these filters to be explored within just the lin-

ear domain. Further, since the primary nonlinearity encountered in analog Moog-style filters

is saturation, it is believed that in small-signal situations, the behavior of the filter is essen-

tially linear. Hence, the basic linear behavior still needs to be designed, and we make the

assumption that it can be done so (to a good approximation) separately from dealing with

3.3. MOOG-STYLE DISCRETE-TIME FILTER DESIGN 123

the nonlinearity, and as an initial design step.11 Note that this research is not intended to pro-

duce as a result a specific filter design, but rather to reveal directions of filter design which

designers might follow to produce their own designs. Thus, the lack of inclusion of nonlin-

earity in the examples shown in this thesis does not imply that it cannot be included in any

particular implementation, nor does it imply that such behaviors were not understood, just

that they were assumed to not significantly effect the design issues under discussion.

• An implementation using nonlinearity should be oversampled to reduce the possibility and/or

audibility of aliasing due to the bandwidth-spreading capabilities of nonlinearities. As noted

earlier, we are attempting to explore design possibilities which do not inherently require over-

sampling. Luckily, such linear design does not preclude the use of oversampling, and it can

always be added onto a design if necessary (for example when adding nonlinearity).

• The author did not desire to drag the whole field of Nonlinear System Dynamics into an

already full thesis. For the interested reader, some recommended references on the field are:

Vidyasagar [285], Slotine and Li [233], Khalil [134], Arrowsmith and Place [9], and Nayfeh,

et al. [188]. It was felt that what one can implement on one’s own is on a different level from

what one has to be accountable for when putting it into a thesis. As such, the author preferred

to leave nonlinear implementation experimentation in “the real world.”

• It is unclear whether good objective measures exist for use in deciding how well a given non-

linear design approximates its continuous-time model. This makes it difficult to objectively

trade off approximation fidelity versus implementation complexity. Such tradeoffs must

therefore be quite subjective, which leaves the implementor open to being pushed around by

the “gold connectors crowd,” (those audiophiles who have convinced themselves that they

can hear the effect of their favorite unmodeled circuit peculiarity, and thus declare any emu-

lation not containing an explicit model to be obviously lacking — “Well I can hear it. . . ”).12

• Good objective measures will probably be psychoacoustically derived and verified, and that

is yet another area that the author did not want to wade into for this thesis.

Before we leave the topic of nonlinearity, we must make mention of some early research per-

formed by Harvey Thornburg. Early in his time at CCRMA (approximately 1997), Harvey was

researching bandlimited nonlinearities (such as fitting a polynomial to a memoryless nonlinearity,

and applying each order to appropriate frequency bands of the input signal). As a side experi-

ment, he explored the subjective effects of placing various saturation nonlinearities into a digital

11In fact, most of the author’s working implementations (and those for musical use) contain the capability for saturation
(usually as two versions: one for speed with just clipping and another for smoother nonlinearity), either due to processor-
implemented saturation (as in fixed-point DSP implementations), or some sort of explicit saturation, either polynomial or
lookup-table based, usually containing a hyperbolic tangent shape (based on [23]).

12These issues also applies if we want to attempt to match fast time-varying behaviors such as audio-rate modulation,
and as such give arguments for why such matching was not attempted.

124 CHAPTER 3. DESIGNING FILTERS APPROXIMATING CONSTANT Q

Moog-style filter implementation, looking for the effect of placing them at various locations, and

comparing the effect of a single nonlinearity versus distributing multiple nonlinearities through

the loop (between one-pole stages being a simple case). He presented the results at an informal

research seminar at CCRMA [268]. The results were preliminary (and unfortunately remained

unpublished), but one of particular interest was that distributing a smooth nonlinearity (i.e., a

polynomial or a tanh) multiple places around the loop gave a more “natural” sound than having

a single such nonlinearity in the loop. The consensus explanation was that having multiple satu-

rations reduced how “strongly” any one of them had to act on the signal to keep it in range, and

therefore their actions could be more subtle. In hindsight, the seminar agreed that that result was

intuitively obvious. At the time, the required oversampling for a “clean” implementation of a fil-

ter with such nonlinearities was still considered too expensive in general (though the Nord Lead

virtual-analog synth, which did use oversampling, did come out around that time), so Harvey and

the author did do some research into implementing some of the perceptual behaviors of a saturat-

ing filter with a time-varying “locally-linear” filter, using a small control system to dynamically

pull back the filter’s Q or gain as the signal became large ([251], also Appendix C), to simulate one

or two of the effects audible in saturating filters.

Finally, due to the linear assumption, the effect of internal gains as separate from external gains

are not explored in this thesis. Such issues become important in nonlinear operation and fixed-

point implementation, and are good topics for further research. For example, if a loop gain of, say

4 or 16 is necessary within a loop, should it be lumped into a single gain in the loop or should it

be distributed among the stages? If multiple outputs from the filter are to be taken (for example,

to create highpass, bandpass, outputs) such gain-distribution questions strongly affect the output

gains. Of course, if nonlinearity is implemented (smooth saturation in particular), then the issue

of gain distribution becomes inextricably linked with the action of the nonlinearity. The author has

heard conjectures that such issues may be the cause of some well-known analog filters sounding

more nonlinear that other designs, since, due to particular ladder characteristics, a much larger

feedback gain is necessary, and hence a stronger nonlinearity when saturation occurs (Hutchins

[114] began discussion along these lines).

3.3.1 Basic discretizations

The first approach to creating a digital Moog-style filter is to do one of the basic discretizations.

For these experiments, we will only look at certain discretizations: Backward-Difference Trans-

form, Forward-Difference Transform, Bilinear Transform, and Pole-Zero Mapping. The Impulse-

Invariant transform was not considered because it was decided that the partial-fraction expansion

that is used in the method would interfere with the desired topology preservation of the result-

ing system. Other discretization methods (such as zero-order hold equivalents, first-order hold

equivalents, etc. [86], and δ-operator methods [82] [168]) were not considered mainly due to time

3.3. MOOG-STYLE DISCRETE-TIME FILTER DESIGN 125

restrictions.

In this section, we will sometimes refer to parts of the filter as named transfer functions, re-

ferring to Figure 3.26. The general filter topology consists of four first-order filters (H1(z), H2(z),

H3(z), H4(z)) in series, with negative feedback around them which contains the loop gain k and

an additional linear system G(z) (which is usually just a delay or a pass-through). Sometimes we

will refer to the feedforward filters as a single system, which we will call Hf(z). The total filter we

will call H(z):

H(z) =
Hf(z)

1 + kHf(z)G(z)
(3.35)

yx H1(z) H2(z) H3(z) H4(z)

k

yx H(z)

G(z)

G(z)

k

p

p

Figure 3.26: Basic block diagram terminology for the Moog-style digital filters.

As part of the analysis of each proposed filter, we will look at the family of loci in k for various

values of the tuning parameter, as well as loci in the tuning parameter and other analyses. We

are already familiar with the shapes of the ideal constant-Q curves (Figure 1.1, for example). For

reference, Figure 3.27 shows the z = esT transforms of the “X” tracks of a continuous-time Moog-

style filter for different open-loop one-pole tunings.

Backward Difference

This is one of the most obvious choices for discretization if starting from the description of a Moog-

style filter (“four one-pole filters in a row with feedback around them”), as the backward difference

is one of the most common discrete-time one-pole implementations.

126 CHAPTER 3. DESIGNING FILTERS APPROXIMATING CONSTANT Q

Figure 3.27: z = esT transforms of the 45-degree “X” traces of a continuous-time Moog-style filter.

3.3. MOOG-STYLE DISCRETE-TIME FILTER DESIGN 127

The backward-difference transform is:

1
s
→ Tz

z − 1
=

T

1 − z−1
(3.36)

For the purposes of this discussion, we are transforming an ideal filter rather than a particular

implementation, so we do not need to preserve coefficient ranges, and can simplify by setting T = 1,

so that the onepole filters are transformed as:

Hi(s) =
a

s + a
→ Hi(z) =

a
z−1
z + a

=
a

(a + 1) − z−1

(a+1)→(−1/p)−→
p + 1

1 + pz−1
(3.37)

The transformed filter is described by:

Hf(z) =
[
(1 + p)

1
1 + pz−1

]4

, G(z) = 1 (3.38)

We will end up describing many of the Moog-style filter implementations by where their open-loop

zeros lie, and this one can be described as “all the zeros on z = 0”. Thus the root-locus equation in

Figure 3.28: Backward-difference transform of ideal Moog-style filter: First-order loci in k for vari-
ous p between p = −1 and p = 0.

k is:

(p + z)4 + k(1 + p)4z4 = 0 (3.39)

i.e., four open-loop poles on z = −p, and four open-loop zeros on z = 0. Figure 3.28 shows loci in k

for the filter. Note that at small k, the locus shape is the X shape we remember from the continuous-

time filter (because of the four coincident open-loop poles on −p), but then the traces curve around

to come back together at z = 0. Remember that the backward difference is a conformal map, and as

128 CHAPTER 3. DESIGNING FILTERS APPROXIMATING CONSTANT Q

such, lines and/or circles map to lines and/or circles. The arms of the X shape in the s plane have

mapped to circles in the z plane. Further, we know that the backward difference maps the left half

plane into the circle between z = 0 and z = 1, with s → ∞mapping onto z = 0. Unfortunately, this

mapping shrinks the curve such that some of the traces don’t even reach the unit circle.

The root-locus equation in p is:

z4(1 + k) + p(4z3(kz + 1)) + p2(6z2(kz2 + 1)) + p3(4z(kz3 + 1)) + p4(1 + kz4) = 0 (3.40)

Using the notation we have used before for higher-order loci, we thus have, for the locus in p:

D(z) = z4(1 + k) (roots: 0, 0, 0, 0)

N1(z) = 4z3(kz + 1) (roots: 0, 0, 0,−1/k)

N2(z) = 6z2(kz2 + 1) (roots: 0, 0,±j/
√
k)

N3(z) = 4z(kz3 + 1) (roots: 0, (3 roots of -1)/ 3
√
k)

N4(z) = 1 + kz4 (roots: (4 roots of -1)/ 4
√
k)

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

Real Axis

Im
ag

 A
xi

s

tol=0.01, numpts=1451

Figure 3.29: Backward-difference transform of ideal Moog-style filter: Fourth-order loci in p (full
range of p) for k = 1. ’x’: roots of D(z), ’o’: roots of N4(z), squares: roots of N1(z) through N3(z).

Figure 3.29 shows a locus in p. Again, since the continuous-time loci are lines in the s-plane,

they transform to circles in the z-plane. This particular figure is hard to read, however, because it

shows the full range of p, so it is hard to tell which traces belong to which range of p. Figure 3.30

shows two loci with p restricted to the range [-1,1], which are a bit easier to interpret.

Unfortunately, this filter is purely theoretical as described (i.e., four onepoles in a row with

feedback around them), because the transformed one-pole filters end up with a delay-free path,

and the resulting loop would not be directly implementable. As such, when using this transform,

one normally adds a delay (possibly doing so without realizing it). The resulting filter will be

examined next, and we will not look any further at the features of this implementation.

3.3. MOOG-STYLE DISCRETE-TIME FILTER DESIGN 129

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

Real Axis

Im
ag

 A
xi

s

tol=0.01, numpts=603

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

Real Axis

Im
ag

 A
xi

s

tol=0.01, numpts=649

Figure 3.30: Backward-difference transform of ideal Moog-style filter: Fourth-order loci in p (−1 <
p < 1) for k = 1 (Left) and k = 4 (Right). ’x’: roots of D(z), ’o’: roots of N4(z), squares: roots of
N1(z) through N3(z).

Backward Difference with Delay

As noted, the backward-difference-transformed one-pole filters have a delay-free loop, so a delay

must be added in order to implement the filter (either intentionally or unintentionally13).

There is anecdotal evidence [49] that quite a few early commercial implementations of Moog-

style filters used this type of implementation (especially in the years before virtual analog became

popular, when the filter was mainly used as a special effect). This form (or the forwards difference

of the next section) is also what designers tend to implement if they build up the filter from a set of

digital onepole filters, as these are the typical forms of one-pole filter implementation.

This filter implementation is the same as the one described in the previous section, but with

G(z) being a unit delay:

Hf(z) =
[
(1 + p)

1
1 + pz−1

]4

, G(z) = z−1 (3.41)

As such, this filter can be described as “Three zeros on z = 0, one at infinity.” Thus the root-locus

equation in k is:

(p + z)4 + k(1 + p)4z3 = 0 (3.42)

i.e., four open-loop poles on z = −p, and three open-loop zeros on z = 0 (note that the fourth zero

has been cancelled by the unit delay). Figure 3.31 shows loci in k for the filter. Again, for small k,

the locus shape is the X shape emanating from the four coincident open-loop poles, and the traces

curve around to the left. However, they aren’t “pulled in” as tightly towards z = 0 as with the pure

backward-difference. The two outer traces meet back up on the real axis rather than meeting back

at zero (As the inner traces still do, since there are still three coincident open-loop zeros on z = 0.

13If one were to simply implement four backward-difference onepoles discretely in code and put a feedback around them,
an implicit delay would end up in the feedback loop of the resulting filter due to the order of operations. In other words,
since a delay-free loop is unimplementable, any actual implementation will not be delay-free.

130 CHAPTER 3. DESIGNING FILTERS APPROXIMATING CONSTANT Q

Figure 3.31: Backward-difference with a delay: First-order loci in k for various p between p = −1
and p = −1/3.

Interestingly, the traces leave z = −p at 45◦angles, but the traces approach z = 0 at 60◦angles. A

benefit of not being pulled in so strongly is that the curves have not shrunk as much as they did

without the delay, such that the traces cross the unit circle all the way out to p = −1/3, and as such

are able to trace the whole unit circle, which was impossible without the delay.

The addition of the delay has also caused the resulting closed-loop filter to no longer be describ-

able by the backward-difference transform, and as such, there is no longer a conformal mapping

between the continuous-time loci and the discrete-time loci. Indeed, the traces are no longer cir-

cles. This is not necessarily a bad thing, as the various desired contours in the z-plane (constant Q,

constant fc, etc) are not circles either.

Still, the fact that the p = −1/3 trace is tangent to the unit circle at z = −1 does not bode well

for fc/Q separation at high frequencies, as near z = −1, k appears to be more of the pole-frequency

control than the Q control.

The root-locus equation in p is:

z3(z + k) + p(4(1 + k)z3) + p2(6z2(z + k)) + p3(4z(z + k)) + p4(1 + kz3) = 0 (3.43)

And the individual coefficient polynomials are:

D(z) = z3(z + k) (roots: 0, 0, 0,−k)

N1(z) = 4(1 + k)z3 (roots: 0, 0, 0)

3.3. MOOG-STYLE DISCRETE-TIME FILTER DESIGN 131

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

Real Axis

Im
ag

 A
xi

s

tol=0.05, numpts=215

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

Real Axis

Im
ag

 A
xi

s

tol=0.05, numpts=231

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

Real Axis

Im
ag

 A
xi

s

tol=0.05, numpts=193

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

Real Axis

Im
ag

 A
xi

s

tol=0.05, numpts=247

Figure 3.32: Backward-difference with a delay: Fourth-order loci in p (−1 < p < 0) for various k:
Top Left: k = 0.25, Top Right: k = 1, Bottom Left: k = 4, Bottom Right: k = 10. ’x’: roots of D(z), ’o’:
roots of N4(z), squares: roots of N1(z) through N3(z).

N2(z) = 6z2(kz + 1) (roots: 0, 0,−1/k)

N3(z) = 4z(kz2 + 1) (roots: 0,±j/
√
k)

N4(z) = 1 + kz3 (roots: (−1, (−1)1/3, (−1)2/3)/ 3
√
k)

We can see from looking at the loci in p (Figure 3.32) that the tracks are not constant-Q tracks, as

we are looking for. This can be interpreted as the fact that fc and Q are not separated in this filter

topology. A useful analysis of this issue is to plot the k required for the poles to hit the unit circle,

versus p (Figure 3.33). Note how it changes with p. Also included in the figure are tuning curves.

The most important being the bottom-right graph, which shows the mapping from pole angle (i.e.,

fc) to p. Note that this filter reaches fs/2 at p = −1/3, rather than p = −1. We will see this kind of

behavior quite a bit in later filters, where the fc range maps onto a smaller range in p than [-1,1].

Forward Difference

This transformation is not likely to be used by someone specifically transforming the filter, as it is

known not to have particularly good transform properties (see Section 1.3.1). However, if one is

132 CHAPTER 3. DESIGNING FILTERS APPROXIMATING CONSTANT Q

−1 −0.9 −0.8 −0.7 −0.6 −0.5 −0.4
4

8

12

16

fe
ed

ba
ck

 g
ai

n
(k

)

one−pole pole coef (p)

feedback gain required to hit unit circle (infinite Q)

0 1 2 3
4

8

12

16

θ (radians)

fe
ed

ba
ck

 g
ai

n

gain vs. θ

0 1 2 3
−1

−0.9

−0.8

−0.7

−0.6

−0.5

−0.4

−0.3

θ (radians)

on
e−

po
le

 p
ol

e
co

ef
 (

p)

tuning curve

Figure 3.33: Backward-difference with a delay: Top: Loop gain (k) required to hit unit circle, vs. p.
Bottom Left: Loop gain vs. pole angle at the unit circle. Bottom Right: Tuning curve (p vs. θ at the
unit circle).

building up the filter from its verbal definition, one might just as easily pick a forward-difference

version of the onepole as pick a backward difference version (the difference being whether to out-

put the sum or the delay — i.e., whether the delay is in the feedforward or feedback part of the

filter). As such, one may want to know what happens.

The forward-difference transform is (assuming T=1):

1
s
→ 1

z − 1
=

z−1

1 − z−1
(3.44)

so that the onepole filters are transformed as:

Hi(s) =
a

s + a
→ Hi(z) =

a
z−1

1 + a
=

az−1

1 + (a − 1)z−1

a→p+1−→
(p + 1)z−1

1 + pz−1
(3.45)

The transformed filter is described by:

Hf(z) =

[
(1 + p)

z−1

1 + pz−1

]4

, G(z) = 1 (3.46)

3.3. MOOG-STYLE DISCRETE-TIME FILTER DESIGN 133

As such, this filter can be described as “All zeros at infinity.” Note that since each onepole has

its delay in the feedforward path, there are no delay-free paths in the outer feedback loop, so no

additional delays are necessary.

The root-locus equation in k is:

(p + z)4 + k(1 + p)4 = 0 (3.47)

i.e., four open-loop poles on z = −p, and four open-loop zeros at z → ∞. Loci in k for this case

Figure 3.34: Forward-difference: First-order loci in k for various p between p = −1 and p = 1.

are shown in Figure 3.34. Since the open-loop zeros are at infinity, the X shapes are not distorted

at all compared to the continuous-time filter. One drawback that becomes quickly clear is that the

left-hand pair of poles is no longer at a much faster decay than the right-hand pair, and so the

right-hand pair is no longer necessarily dominant. In fact, when the open-loop poles move to the

left of z = 0, the left-hand pair of poles actually reaches the unit circle first, in essence flopping the

(tenuous) dominance from one set of poles to the other (indeed, around p = 0, both sets are nearly

the same distance from the unit circle, and so the resulting filter has two distinct peaks). What is

not immediately clear from the locus is that the range π/4 < θ < 3π/4 is not reachable, as in order

for poles to get close to the unit circle there, the ‘X’ must be positioned such that the “other” set of

poles is outside the unit circle. Therefore, if we look at the tuning curve for this filter (Figure 3.35),

we see that the highest-radius pole frequency jumps from π/4 to 3π/4. We can also see the effect

of the change in the top graph, where the gain curve changes character at p = 0. This change and

134 CHAPTER 3. DESIGNING FILTERS APPROXIMATING CONSTANT Q

its associated lack of clearly dominant poles makes this version of the filter undesirable (at least for

our current purposes).

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
0

1

2

3

4

fe
ed

ba
ck

 g
ai

n
(k

)

one−pole pole coef (p)

feedback gain required to hit unit circle (infinite Q)

0 1 2 3
0

1

2

3

4

θ (radians)

fe
ed

ba
ck

 g
ai

n

gain vs. θ

0 1 2 3
−1

−0.5

0

0.5

1

θ (radians)

on
e−

po
le

 p
ol

e
co

ef
 (

p)
tuning curve

Figure 3.35: Forward-difference: Top: Loop gain (k) required to hit unit circle, vs. p. Bottom Left:
Loop gain vs. pole angle at the unit circle. Bottom Right: Tuning curve (p vs. θ at the unit circle).

Bilinear Transform

For those familiar with continuous-time-to-discrete-time discretization, the bilinear transform is

expected to perform much better than the ones presented so far. As discussed in Section 1.3.1, the

transform is:

1
s
→ T

2
z + 1
z − 1

=
T

2
1 + z−1

1 − z−1
(3.48)

so that the onepole filters are transformed as:

Hi(s) =
a

s + a
→ Hi(z) =

a
2
T
z−1
z+1 + a

=
(

Ta/2
Ta/2 + 1

)
1 + z−1

1 + z−1
(
Ta/2−1
Ta/2+1

) (3.49)

Now, we absorb T and a into p, the onepole pole location:

p =
Ta/2 − 1
Ta/2 + 1

(3.50)

3.3. MOOG-STYLE DISCRETE-TIME FILTER DESIGN 135

To get the onepole filter:

Hi(z) =
p + 1

2
1 + z−1

1 + pz−1
(3.51)

As with the previous transforms, we see that the filter is scaled so that the DC gain is 0 dB, as was

in the continuous-time filter. The system is thus described by:

Hf(z) =

[(
1 + p

2

)
1 + z−1

1 + pz−1

]4

, G(z) = 1 (3.52)

As such, this filter can be described as “All zeros on -1.”

The root-locus equation in k is thus:

(z + p)4 + k
(
p + 1

2

)4

(z + 1)4 = 0 (3.53)

i.e., four open-loop poles on z = −p and four open-loop zeros on z = −1. If we compare against the

backward-difference case (Section 3.3.1), we are simply moving the zeros from z = 0 to z = −1. As

such, we should expect much the same root loci in k, just scaled up and shifted over, to move z = 0

onto z = −1. Indeed, that is what we get (Figure 3.36) The nice thing about this scale and shift is

Figure 3.36: Bilinear Transform: First-order loci in k for various p between p = −1 and p = 1.

that the loci now line up very nicely with the unit circle. For example, all the circles intersect the

136 CHAPTER 3. DESIGNING FILTERS APPROXIMATING CONSTANT Q

unit circle at an angle of 45◦from the tangent of the circle.14 Again, as in the backward difference

case, this transform is a conformal map, and we see that the lines of the X’s have transformed to

circles.

−2 −1.5 −1 −0.5 0 0.5 1 1.5 2
−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

Real Axis

Im
ag

 A
xi

s

tol=0.01, numpts=1459

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

Real Axis

Im
ag

 A
xi

s

tol=0.01, numpts=331

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

Real Axis

Im
ag

 A
xi

s

tol=0.01, numpts=417

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

Real Axis

Im
ag

 A
xi

s

tol=0.01, numpts=531

Figure 3.37: Bilinear Transform: Fourth-order loci in p (−1 ≤ p ≤ 1) for various k: Top Left: k = 1
(in this plot, p sweeps full range, to show that the traces are indeed circles), Top Right: k = 1/4,
Bottom Left: k = 1, Bottom Right: k = 4. ’x’: roots of D(z), ’o’: roots of N4(z), squares: roots of
N1(z) through N3(z).

The root-locus equation in p is:

(16z4 + k(z + 1)4) + p(64z3 + 4k(z + 1)4) + p2(96z2 + 6k(z + 1)4)

+p3(64z + 4k(z + 1)4) + p4(16 + k(z + 1)4) = 0 (3.54)

And the individual coefficient polynomials are:

D(z) = 16z4 + k(z + 1)4

N1(z) = 64z3 + 4k(z + 1)4

N2(z) = 96z2 + 6k(z + 1)4

14This happens because conformal maps preserve local angles [189].

3.3. MOOG-STYLE DISCRETE-TIME FILTER DESIGN 137

N3(z) = 64z + 4k(z + 1)4

N4(z) = 16 + k(z + 1)4

Unfortunately, the roots of these are no longer simple to describe.15

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
0

1

2

3

4

5

fe
ed

ba
ck

 g
ai

n
(k

)

one−pole pole coef (p)

feedback gain required to hit unit circle (infinite Q)

0 1 2 3
0

1

2

3

4

5

θ (radians)

fe
ed

ba
ck

 g
ai

n

gain vs. θ

0 1 2 3
−1

−0.5

0

0.5

1

θ (radians)

on
e−

po
le

 p
ol

e
co

ef
 (

p)

tuning curve

Figure 3.38: Bilinear Transform: Top: Loop gain (k) required to hit unit circle, vs. p. Bottom Left:
Loop gain vs. pole angle at the unit circle. Bottom Right: Tuning curve (p vs. θ at the unit circle).
Nice curves, but the filter has a delay-free loop.

Figure 3.37 shows loci in p for various k. Note again, in the top-left plot, that the traces are

circles, due to the bilinear transform being a conformal map. The rest of the plots limit p to between

-1 and 1. The most interesting plot is the k = 4 plot (the bottom-right one), because the output poles

trace the unit circle exactly. As such, the fc and Q controls are separated, at least at infinite Q (this

can also be seen in Figure 3.38). This would be very good news, except for the fact that this filter,

like the backward-difference, has a delay-free loop. In the next section, we look at what happens

when we add a delay into the loop.

We must note that within the field of warped-filter design, the problem of delay-free loops has

typically been handled by some sort of structure modification and online coefficient recomputation

([245] for example). This research did not attempt such a solution, primarily on the assumption

that it would adversely affect the “physical model” nature of the “one big loop” topology, and that

the required coefficient recalculation would be too expensive.
15See Section 3.3.3, which looks into this a bit deeper

138 CHAPTER 3. DESIGNING FILTERS APPROXIMATING CONSTANT Q

Bilinear with delay

In order to make the filter implementable, a delay is put into the loop. Thus:

Hf(z) =

[(
1 + p

2

)
1 + z−1

1 + pz−1

]4

, G(z) = z−1 (3.55)

We can describe this as “Four zeros on z = −1, and another at infinity”.

Figure 3.39: Bilinear Transform with delay: First-order loci in k for various p between p = −1 and
p = 1.

The root-locus equation in k is:

z(z + p)4 + k
(
p + 1

2

)4

(z + 1)4 = 0 (3.56)

i.e., four open-loop poles on z = −p with one more on z = 0, and four open-loop zeros on z = −1.

Note that the polynomials in z have become fifth-order because, unlike the backward-difference

case, the pole in G(z) can’t simply cancel one of the feedforward zeros. Loci in k are shown in

Figure 3.39. As when a delay was added to the backward-difference-transformed filter, the effect

here is to “weaken” the pull of z = −1 on the loci, so that the “right-hand” traces of each ‘X’ don’t

come back together at z = −1, rather coming back together much further down the negative real

axis (the filter is also no longer described by a conformal map of the continuous-time filter, so the

traces are no longer always circles, which we also saw in the backward-difference case).

3.3. MOOG-STYLE DISCRETE-TIME FILTER DESIGN 139

Also of interest: because of the open-loop pole at z = 0, when p crosses past zero, the traces

emanating from the poles on z = −p rotate from the ‘X’ departure angles to the other four possible

departure angles (halfway between the ‘X’ angles: 0,±π/2, π).16 It will be more visible in Fig-

ure 3.40, but one can guess from examining the loci that for p near DC, equal steps in p correspond

roughly to equal steps in crossing angle along the unit circle (i.e., the tuning appears very close to

linear in p near DC). If we look at the tuning curve in Figure 3.40, it certainly looks linear at small

θ. In fact, it looks very close to p = 2 sin(θ/2) − 1. We can show experimentally that it is exactly

that (Figure 3.41, with error down below 10−8) Still, the gain curve is not flat, and so this filter is

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
0

1

2

3

4

fe
ed

ba
ck

 g
ai

n
(k

)

one−pole pole coef (p)

feedback gain required to hit unit circle (infinite Q)

0 1 2 3
0

1

2

3

4

θ (radians)

fe
ed

ba
ck

 g
ai

n

gain vs. θ

0 1 2 3
−1

−0.5

0

0.5

1

θ (radians)

on
e−

po
le

 p
ol

e
co

ef
 (

p)

tuning curve

Figure 3.40: Bilinear Transform with delay: Top: Loop gain (k) required to hit unit circle, vs. p.
Bottom Left: Loop gain vs. pole angle at the unit circle. Bottom Right: Tuning curve (p vs. θ at the
unit circle).

no longer separable, like the ideal bilinear transformed filter was. The curve is less extreme than

in the delayed backward-difference case, though. However, the curve falls rather than rises. The

implication of this is that for k > 1, one can sweep upwards and the Q will rise, and eventually

go unstable, whereas for a rising gain curve, holding k constant and sweeping to higher fc will

result in a lowering of Q, and thus the filter will at least stay stable (in other words, if the delayed

backward-difference filter is stable at fc → 0 for a given k, then it will be stable for all fc at that k,

though at significantly lower Q).

16Also of interest: the traces for p just to the left of z = 0 are warped in a shape very reminiscent of the way the constant-
natural-frequency contours are warped around z = 0. Not sure if this means anything or if it can be exploited.

140 CHAPTER 3. DESIGNING FILTERS APPROXIMATING CONSTANT Q

0 0.5 1 1.5 2 2.5 3
−1

−0.5

0

0.5

1

θ

p

Figure 3.41: Bilinear Transform with delay: Tuning curve. Circles: 2 sin(θ/2) − 1, Line:
experimentally-derived tuning curve.

The root-locus equation in p is quite similar to the equation for the pure bilinear-transform filter:

(16z5 + k(z + 1)4) + p(64z4 + 4k(z + 1)4) + p2(96z3 + 6k(z + 1)4)

+p3(64z2 + 4k(z + 1)4) + p4(16z + k(z + 1)4) == 0 (3.57)

And the individual coefficient polynomials are:

D(z) = 16z5 + k(z + 1)4

N1(z) = 64z4 + 4k(z + 1)4

N2(z) = 96z3 + 6k(z + 1)4

N3(z) = 64z2 + 4k(z + 1)4

N4(z) = 16z + k(z + 1)4

Effectively, the terms aside from the (z+1)4 terms have increased order in z by one. Representative

loci are shown in Figure 3.42. As was noted above, we can see that for k > 1, the sweeps start stable

but leave the unit circle at high cutoff frequencies.

Pole-Zero Placement

To review, the rules for pole-zero placement (see Section 1.3.2) are:

• Place poles according to z = esT . In this case, since the poles are all real, the poles end up

somewhere on the real axis.

• Place finite zeros according to z = esT . There are none in the ideal continuous-time Moog-style

filter.

3.3. MOOG-STYLE DISCRETE-TIME FILTER DESIGN 141

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

Real Axis

Im
ag

 A
xi

s

tol=0.01, numpts=473

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

Real Axis

Im
ag

 A
xi

s

tol=0.01, numpts=467

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

Real Axis

Im
ag

 A
xi

s

tol=0.01, numpts=539

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

Real Axis

Im
ag

 A
xi

s

tol=0.01, numpts=549

Figure 3.42: Bilinear Transform: Fourth-order loci in p (−1 ≤ p ≤ 1) for various k: Top Left: k = 1/4,
Top Right: k = 1, Bottom Left: k = 2, Bottom Right: k = 4. ’x’: roots of D(z), ’o’: roots of N4(z),
squares: roots of N1(z) through N3(z).

• Place all but one of the infinite zeros at z = −1

• Place the remaining infinite zero at z → ∞ which means that the system will have no delay-

free path, and that the feedback term will not need a delay.

Thus we get:

Hf(z) =

[(
1 + p

2

)
1 + z−1

1 + pz−1

]3 [
(1 + p)

1
1 + pz−1

]
, G(z) = 1 (3.58)

And the root-locus equation in k is:

(z + p)4 + k

(
(p + 1)4

23

)
(z + 1)3 = 0 (3.59)

142 CHAPTER 3. DESIGNING FILTERS APPROXIMATING CONSTANT Q

So we can describe this filter as “Three zeros at z = −1 and one at infinity. To do this, we have

actually made a slight change in the methodology: we have transformed the whole fourpole-

feedforward section as a whole, rather than separately transforming each onepole filter (this man-

ifests in the way the zeros were transformed: if we transformed each onepole separately, each

would end up with an infinite zero, and we would have a filter basically the same as the forward-

difference transformed filter, which did not work out). Note that this looks very similar to the

delayed bilinear transform, but instead of getting implementability by adding a pole (and jumping

up to 5th order), it is achieved by moving one of the zeros to infinity. One can also think of this

case as taking the pure bilinear transform and replacing one of the first-order filters with a forward-

difference version (and remapping the meaning of p, if once cares about the relation to the original

continuous-time filter).

Figure 3.43: Pole/Zero Placement (3 zeros at z = 0, one at z → ∞): First-order loci in k for various
p between p = −1 and p = 1.

Loci in k are shown in Figure 3.43, and the gain/tuning curves are shown in Figure 3.44. The

k-loci have features somewhere between those of the pure bilinear transform filter (Figure 3.36)

and the delayed bilinear transform filter (Figure 3.39). In particular, the lack of a fifth pole in the

system makes the behavior a bit more regular across the range of p. Looking at the gain curve, it

is nearly a straight line (it dips a bit from a straight line, actually). On first look, the fact that gain

curve actually approaches zero as p → 1 is a bit worrisome. Of interest is the tuning curve, which

doesn’t have extreme slopes or curvatures, which bodes well for implementing inexpensive tuning

transformation. Still, the gain curve is not flat, so this form is yet again not inherently separable. It

3.3. MOOG-STYLE DISCRETE-TIME FILTER DESIGN 143

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
0

1

2

3

4

fe
ed

ba
ck

 g
ai

n
(k

)

one−pole pole coef (p)

feedback gain required to hit unit circle (infinite Q)

0 1 2 3
0

1

2

3

4

θ (radians)

fe
ed

ba
ck

 g
ai

n

gain vs. θ

0 1 2 3
−1

−0.5

0

0.5

1

θ (radians)

on
e−

po
le

 p
ol

e
co

ef
 (

p)

tuning curve

Figure 3.44: Pole/Zero Placement (3 zeros at z = 0, one at z → ∞): Top: Loop gain (k) required to
hit unit circle, vs. p. Bottom Left: Loop gain vs. pole angle at the unit circle. Bottom Right: Tuning
curve (p vs. θ at the unit circle).

is a good candidate for further exploration, though, like the delayed bilinear form.

The root-locus equation in p is also similar to the equations for the two bilinear-transform-based

filters:

8z4 + k(z + 1)3 + 32z3 + 4k(z + 1)3 + 48z2 + 6k(z + 1)3

+32z + 4k(z + 1)3 + 8 + k(z + 1)3 = 0 (3.60)

And the individual coefficient polynomials are:

D(z) = 8z4 + k(z + 1)3

N1(z) = 32z3 + 4k(z + 1)3

N2(z) = 48z2 + 6k(z + 1)3

N3(z) = 32z + 4k(z + 1)3

N4(z) = 8 + k(z + 1)3

The major differences being the scales of the zn terms, as one of the stages does not have the 1/2 in

144 CHAPTER 3. DESIGNING FILTERS APPROXIMATING CONSTANT Q

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

Real Axis

Im
ag

 A
xi

s

tol=0.01, numpts=403

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

Real Axis

Im
ag

 A
xi

s

tol=0.01, numpts=515

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

Real Axis

Im
ag

 A
xi

s

tol=0.01, numpts=549

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

Real Axis

Im
ag

 A
xi

s

tol=0.01, numpts=573

Figure 3.45: Pole/Zero Placement: Fourth-order loci in p (−1 ≤ p ≤ 1) for various k: Top Left:
k = 1/4, Top Right: k = 1, Bottom Left: k = 2, Bottom Right: k = 4. ’x’: roots of D(z), ’o’: roots of
N4(z), squares: roots of N1(z) through N3(z).

its DC scaling, and the fact that the (z + 1) terms are reduced to third-order (again, since only three

of the stages have the zero at z = −1). Representative loci are shown in Figure 3.45. As evidenced

by the gain curve, the tracks start inside the unit circle but eventually cross outside.

3.3. MOOG-STYLE DISCRETE-TIME FILTER DESIGN 145

3.3.2 Analyzing the Basic Discretizations

As a review:

• Backward Difference: “All four zeros at z = 0”. Unimplementable. We will consider this one

no further.

• Backward Difference With Delay: “Three zeros at z = 0, one zero at infinity”. Common, not

independent controls.

• Forward Difference: “All four zeros at infinity”. Non-dominant poles, hole in frequency

range. We will consider this one no further.

• Bilinear Transform: “All four zeros at z = −1”. Independent controls, but unimplementable.

We will consider this one no further, but may refer to it on occasion.

• Bilinear Transform with Delay: “Four zeros at z = −1 with an extra pole at z = 0”. Not inde-

pendent controls, but closer to independent than backward-difference with delay. Promising.

• Pole/Zero Mapping: “Three zeros at z = −1, and the other at infinity”. Not independent

controls, but promising “non-extreme” behaviors.

Here we will introduce another form of analysis which applies particularly well for analyzing

Q/fc separation. Since Q becomes extremely sensitive near the unit circle (Q ≈ θ/(2(1−r))), minor

variations in Q become hard to pick out on a root locus at high Q. Thus we introduce another plot:

Q vs. fc for a number of different Q tracks. For filters with completely independent controls,

this plot would have tracks that were perfectly flat, and so we can easily pick out variations from

independence rather easily. In practice, we will plot log(Q) vs. log(pole angle), since both are

perceived approximately logarithmically. Also, we use pole angle as the frequency axis, rather than

fc. As an example, let’s present such a plot for the Chamberlin state-variable filter (Section 2.4).

(Figure 3.46). The state-variable filter has highly independent Q and fc controls for Q larger than

3 or so, and for fc less than approximately 1 radian. For lower Q, we see a slight drop in pole

frequency, and higher frequencies, we see a rise in Q, which corresponds to the fact that the tracks

meet perpendicular to the real axis (see Figure2.26), whereas true constant-Q tracks would bend

back inwards as θ → π .

The range of Q shown in Figure 3.46 might be considered excessively wide by some, and they

would have a valid point. It turns out that there are two classes of usage of such filters:

• “Pinging the filter”: In this mode of operation, the filter is used to synthesize a decaying

sinusoid when pinged with an input consisting mainly of impulsive inputs. As such, the

filter is often expected to ring out audibly, so it needs a decay time sometimes as large as

multiple seconds, which corresponds to extremely high Q (as high as 10000 or more). For

146 CHAPTER 3. DESIGNING FILTERS APPROXIMATING CONSTANT Q

10
−2

10
−1

10
0

10
0

10
1

10
2

10
3

10
4

Q

normalized freq (radians)

Figure 3.46: Q vs. freq plot for Chamberlin state-variable filter. Thick lines: ff sweeps for various
values of qq. Thin lines: qq sweeps for various values of ff. Only the complex-poles region of
operation (i.e. ff < 2 − qq) is shown, as the pole-angle definition of Q is being used.

such usage, the filter must be able to get very close to the unit circle without going unstable.17

Keeping separability at such Q becomes difficult.

• “Shaping a spectrum”: In this mode of operation, the filter is acting as a brightness or vowel

effect, or a “wah” effect. In these situations, Q values beyond about 20 cause the filter to

become so narrow as to start dominating the sound that it is filtering, and reducing the effec-

tiveness of the filter.

Therefore, we will make two versions of this plot: one with a high-Q range and one with a low-Q

range, to more clearly show the low-Q behaviors of the filters. For the state-variable filter example,

the low-Q plot is shown in Figure 3.47. Note that this plot does more clearly show how the filter’s

approximations start breaking down below Q = 1 or so.

As discussed elsewhere, our current goal is to find Moog-style filter topologies for which Q and

fc are independent (or “separable”): If we hold the Q coefficient constant, we can sweep the fc
coefficient around and stay on the same Q, without having to readjust the Q coefficient. We saw

that the ideal continuous-time Moog-style filter had this property, and that the state-variable filter

17Further, if the filter is to be used in a self-oscillating state (i.e., very slightly unstable, probably with some sort of loop
saturation), then having separation at very high Q will help maintain a consistent “level of instability” across the tuning
frequency range.

3.3. MOOG-STYLE DISCRETE-TIME FILTER DESIGN 147

10
−2

10
−1

10
0

10
0

10
1

Q

normalized freq (radians)

Figure 3.47: Q vs. freq plot for Chamberlin state-variable filter, lower Q range.

very closely approximates this property over a large range ofQ and fc. If, for some reason, this goal

isn’t achievable (and so far, we haven’t found such a topology), the next goal is to make mappings

which separate Q and fc as cheaply as possible. We will mainly be considering mappings which

take the form of k = f(Q)g(p), where g is as cheap as possible (as is f , of course). We will call

mappings such as g “Separation Functions” (or Separation Tables, or Separation Curves, etc.).

We also, of course, desire separation in the other axis (i.e., if we hold the fc coefficient constant,

we can sweep the Q coefficient around and stay on the same fc. We are making the assumption

that this separability will tend to “work itself out” if the above separability is achieved. Thus we

will not be working with mappings like p = f(k), or, more correctly, k = f(Q, fc), p = g(fc, Q). As

was discussed in the introduction to this chapter, we assume that the use of such 2-dimensional

function/tables can achieve perfect tuning and separability, but is considered overkill.

Therefore, we postulated in the introduction that it is sufficient to use at most three lookup

tables (or functions) in a design:

p = ftuning(fc) (computed at infinite Q)

k = fseparation(p) × fQ(Q)

Where, depending on the circumstances and the necessity for accurate Q selection, we may leave

out fQ, or replace it with an inexpensive approximation. In some special-effects situations, it may

148 CHAPTER 3. DESIGNING FILTERS APPROXIMATING CONSTANT Q

even be possible to replace ftuning with a cheap approximation. However, we will be assuming

that all three lookup tables will be needed in many musical situations. We will now analyze fil-

ters, based on the basic discretizations, which make use of these lookup tables, to verify the above

assumption (Figures 3.48–3.53).

In the Q-vs-p analyses, we used the following k values for the raw filters. For the high-Q range:

k = 4 ∗ (1 − 10x), where x varied between 10−4 and 0 in 20 steps. For the low-Q range: k = 4 ∗ x,

where x varied between 0 and 1 in 20 steps. The maximum of k was chosen to be 4.0 because all the

filters have k = 4 as the infinite-Q value as fc → DC (due to the DC gains of their onepoles being

normalized to 0 dB).

For the analyses using separation tables, the maximum k was changed from 4.0 to be the

separation-table value. Thus for the high-Q range, we used k = f(p) ∗ (1 − 10x), with the same

set of x values as before, and for the low-Q range, k = f(p) ∗ x, with the same x values as before.

Note that logarithmic spacing of k away from 4.0 (or from f(p)) tends to give approximately

equal spacing in Q (at least near DC). We will look into that a bit later.

3.3. MOOG-STYLE DISCRETE-TIME FILTER DESIGN 149

10
−2

10
−1

10
0

10
0

10
1

10
2

10
3

10
4

Q

normalized freq (radians)
10

−2
10

−1
10

0

10
0

10
1

Q

normalized freq (radians)

10
−3

10
−2

10
−1

10
0

−40

−30

−20

−10

0

10

20

G
ai

n
(d

B
)

normalized freq (radians)

10
−3

10
−2

10
−1

10
0

−3

−2

−1

0

1

2

3

ph
as

e
(r

ad
ia

ns
)

normalized freq (radians)

Figure 3.48: Backward Difference with Delay: Raw filter (no Lookup tables). Top Left: Q vs. p, wide
Q range. Top Right: Q vs. p, narrow Q range. Bottom Left: representative frequency responses for
a p sweep (k = 3.5). Bottom Right: Pole traces (Dark: constant k, Light: constant p) (−1 < p < 0).

150 CHAPTER 3. DESIGNING FILTERS APPROXIMATING CONSTANT Q

10
−2

10
−1

10
0

10
0

10
1

10
2

10
3

10
4

Q

normalized freq (radians)
10

−2
10

−1
10

0

10
0

10
1

Q

normalized freq (radians)

10
−3

10
−2

10
−1

10
0

−40

−30

−20

−10

0

10

20

G
ai

n
(d

B
)

normalized freq (radians)

10
−3

10
−2

10
−1

10
0

−3

−2

−1

0

1

2

3

ph
as

e
(r

ad
ia

ns
)

normalized freq (radians)

Figure 3.49: Backward Difference with Delay: Using separation table shown in Figure 3.33. Top
Left: Q vs. p, wide Q range. Top Right: Q vs. p, narrow Q range. Bottom Left: representative
frequency responses for a p sweep (k = 0.8f(p)). Bottom Right: Pole traces (Dark: constant k,
Light: constant p).

3.3. MOOG-STYLE DISCRETE-TIME FILTER DESIGN 151

10
−2

10
−1

10
0

10
0

10
1

10
2

10
3

10
4

Q

normalized freq (radians)
10

−2
10

−1
10

0

10
0

10
1

Q

normalized freq (radians)

10
−3

10
−2

10
−1

10
0

−40

−30

−20

−10

0

10

20

G
ai

n
(d

B
)

normalized freq (radians)

10
−3

10
−2

10
−1

10
0

−3

−2

−1

0

1

2

3

ph
as

e
(r

ad
ia

ns
)

normalized freq (radians)

Figure 3.50: Bilinear Transform with Delay: Raw filter (no Lookup tables). Top Left: Q vs. p, wide
Q range. Top Right: Q vs. p, narrow Q range. Bottom Left: representative frequency responses for
a p sweep (k = 3) (light traces: unstable filters). Bottom Right: Pole traces (Dark: constant k, Light:
constant p).

152 CHAPTER 3. DESIGNING FILTERS APPROXIMATING CONSTANT Q

10
−2

10
−1

10
0

10
0

10
1

10
2

10
3

10
4

Q

normalized freq (radians)
10

−2
10

−1
10

0

10
0

10
1

Q

normalized freq (radians)

10
−3

10
−2

10
−1

10
0

−40

−30

−20

−10

0

10

20

G
ai

n
(d

B
)

normalized freq (radians)

10
−3

10
−2

10
−1

10
0

−3

−2

−1

0

1

2

3

ph
as

e
(r

ad
ia

ns
)

normalized freq (radians)

Figure 3.51: Bilinear Transform with Delay: Using separation table shown in Figure 3.40. Top Left:
Q vs. p, wide Q range. Top Right: Q vs. p, narrow Q range. Bottom Left: representative frequency
responses for a p sweep (k = 0.8f(p)). Bottom Right: Pole traces (Dark: constant k, Light: constant
p).

3.3. MOOG-STYLE DISCRETE-TIME FILTER DESIGN 153

10
−2

10
−1

10
0

10
0

10
1

10
2

10
3

10
4

Q

normalized freq (radians)
10

−2
10

−1
10

0

10
0

10
1

Q

normalized freq (radians)

10
−3

10
−2

10
−1

10
0

−40

−30

−20

−10

0

10

20

G
ai

n
(d

B
)

normalized freq (radians)

10
−3

10
−2

10
−1

10
0

−3

−2

−1

0

1

2

3

ph
as

e
(r

ad
ia

ns
)

normalized freq (radians)

Figure 3.52: Pole Placement (Three zeros on z = −1, one zero at z → ∞): Raw filter (no Lookup
tables). Top Left: Q vs. p, wide Q range. Top Right: Q vs. p, narrow Q range. Bottom Left:
representative frequency responses for a p sweep (k = 3) (light traces: unstable filters). Bottom
Right: Pole traces (Dark: constant k, Light: constant p).

154 CHAPTER 3. DESIGNING FILTERS APPROXIMATING CONSTANT Q

10
−2

10
−1

10
0

10
0

10
1

10
2

10
3

10
4

Q

normalized freq (radians)
10

−2
10

−1
10

0

10
0

10
1

Q

normalized freq (radians)

10
−3

10
−2

10
−1

10
0

−40

−30

−20

−10

0

10

20

G
ai

n
(d

B
)

normalized freq (radians)

10
−3

10
−2

10
−1

10
0

−3

−2

−1

0

1

2

3

ph
as

e
(r

ad
ia

ns
)

normalized freq (radians)

Figure 3.53: Pole Placement: Using separation table shown in Figure 3.44. Top Left: Q vs. p, wide
Q range. Top Right: Q vs. p, narrow Q range. Bottom Left: representative frequency responses for
a p sweep (k = 0.8f(p)). Bottom Right: Pole traces (Dark: constant k, Light: constant p).

3.3. MOOG-STYLE DISCRETE-TIME FILTER DESIGN 155

Some notes:

• Backward difference with table (Figure 3.49) has some problems at low-Q/high-freq, and the

freq variation with Q seems a bit larger than the others.

• Bilinear with table (Figure 3.51) has a slight dip in Q at high freqs, which extends down to

low Q’s too. Pole placement has a similar dip (Figure 3.53). Looking at the pole traces, we

can see that the curves do dip in to lower radii than the current Q contour for a bit at around

1 o’clock to 2 o’clock, before heading out to higher radii.

• We should note that the different shapes of separation tables might imply differences in in-

ternal gains between the discretizations which may be significant in implementations using

saturation nonlinearities. These may affect discretization decisions in those cases, or require

the addition of scales at points in the loop to renormalize signals.

• At very high Q, the sensitivity of Q to gain gets very high. As such, limitations in separation-

table sampling density and/or interpolation method can have effects. This can be seen as

wiggles in the Q curves in some of these plots. In particularly sparse tables, this issue can be-

come important: lower-order interpolated gains (such as linear) might result in significantly

higher Q or instability.

Having shown experimentally that the above “three-tables” postulate is workable for several

of the basic discretizations, we therefore set as a restriction to our further design work that tun-

ing/separation be implemented using methods cheaper than the three lookup tables. Now, “cheaper”

can have different meanings in different situations. For example it may refer to memory usage, such

as in a design that must fit on some no-memory microcontroller, where a lookup-table array might

not fit in available fast memory, or it may refer to a cycles-limited design. Therefore, we choose the

following rule of thumb:

• a 2nd-order polynomial will be considered the maximum complexity we will feel comfortable

with for a mapping.

However, we take as a given that ftuning will have to be a full lookup-table in order to get sufficient

tuning precision (and fQ when necessary). Thus, we apply this restriction mainly to the fseparation

mapping.

Admittedly, we have set ourselves a very small design target, as we have just seen that the

three-lookup-table method works well, and is not outrageously expensive. We fully expect a large

number of usage cases to be satisfied by the above methods, and such designs should be good

enough. Still, we believe there are situations where smaller implementations may be of use, and

we believe there are interesting things still to be found by looking in that direction.

From here on, we break away from the concept of discretizing the continuous-time filter, and

concentrate solely on the discrete-time filter as a type in and of itself. As such, we will no longer

156 CHAPTER 3. DESIGNING FILTERS APPROXIMATING CONSTANT Q

look for a “better discretization”, but rather a “better filter” (though specifically staying with the

loop topology). We will take as our starting points the discretized filters of the previous section,

and look at variants of those filters, ignoring any further relation back to the continuous-time filter.

Our main design objective will be to attempt to flatten the infinite-Q gain curve, on the idea

that a flat gain curve can be approximated be a very inexpensive function (a constant). The flatter

the curve, the better it is approximated by the constant, and therefore the wider range of Q can be

achieved using the constant approximation. Later, we will also look at a variation or two of this

basic objective, but for now, we will concentrate on flattening.

If we study the results of the basic discretizations (in particular, Figures 3.48 and 3.50), we

note that the gain curve for the backward-difference (with delay) case slopes upward, and the

gain curve for the bilinear case (with delay) slopes downward. Remembering that the difference

between these two cases is simply the locations of the zeros in the onepole filters, we wonder if

there may some intermediate zero location were the gain curve may have a nearly horizontal trend

— in other words, a “compromise” between the two behaviors.

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
0

2

4

6

8

10

12

14

16

p

k
to

 h
it

un
it

ci
rc

le

Backward
Difference

Bilinear

−1 −0.9 −0.8 −0.7 −0.6 −0.5 −0.4 −0.3 −0.2 −0.1 0
−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

zero location

p
va

lu
e

fo
r

f c →
 π

Figure 3.54: Left: The family of gain curves for filters between the Delayed Backward-Difference
Filter (top curve) and the Delayed Bilinear-Transformed Filter (bottom curve). Intermediate filters
have all their zeros on an intermediate location between z = 0 and z = −1. Right: p limit as a
function of open-loop zero location.

Figure 3.54 is a plot of the family of gain curves. Sure enough, there are curves with a nearly

flat trend (though not exactly flat). Also note that most of the curves to not end at p = 1. As we

noticed when introducing the backward-difference filter, the infinite-Q poles reach z = −1 before p

has reached 1. The intermediate filters also have this property. The right-hand plot of Figure 3.54

shows value of p at which the poles reach z = −1, versus zero location (this curve is pretty-well

approximated by the polynomial −0.38273z2
0 − 1.70596z0 − 0.32817, where z0 is the open-loop zero

3.3. MOOG-STYLE DISCRETE-TIME FILTER DESIGN 157

location). Beyond these values, the poles move along the real axis. For some filters (the backward-

difference included) the poles may again split off the unit circle at higher values of p. This can be

seen in the top-right plot of Figure 3.68, which is the backward-difference case we have seen before,

but with p allowed to go all the way out to 1 (in Figure 3.48, the p range was limited to −1 < p < 0

in order for the locus to be more readable, as otherwise this secondary effect obscured the p < 0

locus at high frequencies).

Figure 3.55: Frames from an animation of the Q/f space (“High-Q” range: vertical axis goes up
to Q=10000) for various open-loop zeros (raw filters, no separation tables). Left to right: zeros at
-0.25, -0.3, -0.325, -0.333. Max gain: 4.0.

Unfortunately, none of the intermediate gain curves is perfectly horizontal. As such, there is

some tradeoff in choosing which zero location upon which to base a filter. Figure 3.55 shows four

frames from an animation exploring the Q/f space as the zeros move between z = −0.2 and z =

−0.4. z = −1/3 jumps out as having an interesting property: dQ
df appears to be zero at DC for all

Q tracks, whereas for zeros closer to z = 0, the higher Q tracks trend downward from DC for a

while.18 However, nearly all of the Q tracks above some low Q eventually go unstable, and the

higher-Q tracks go unstable at lower frequencies, which is considered undesirable. Note that the

above behavior can be be explained by the fact that z0 = −1/3 appears to be the case for which the

gain curve has zero slope at DC.,

The tradeoff becomes one of placing the bottom of the “dip” in the Figure 3.55 plots. Moving it

down/right (i.e., zeros closer to z = 0) pushes up the frequencies at which “high-Q” tracks which

start stable at DC (i.e. those with k < 4) go unstable, at the expense of limiting the maximum Q for

which the Q traces are relatively flat from DC up to reasonably high fc. Moving it up/left (zeros

closer to z = −1/3) increases the maximum Q range of the “nearly flat” traces, but reduces their

maximum fc. Past -1/3, nearly all the traces go unstable, just faster and faster.

A zero location of z = −0.3 was chosen as a viable tradeoff [249] (Figure 3.56 shows the gain

curve family with the -0.3 curve highlighted). We call the filter based on this choice the “compro-

mise” filter, since the zero location decision was a practical compromise between a few issues. Note

that any zero location in the vague range of −0.275 < z0 < −0.325 probably works as a compromise.

18Since these filters have DC gain normalized to 0dB, k = 4 corresponds to infinite Q as fc → DC for all open-loop zero
locations. However, since the Q tracks trend downwards, there are regions in fc > 0 where gains of k > 4 are stable. These
regions correspond to the empty areas in the Q/f plots.

158 CHAPTER 3. DESIGNING FILTERS APPROXIMATING CONSTANT Q

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
0

2

4

6

8

10

12

14

16

p

k
to

 h
it

un
it

ci
rc

le
Backward
Difference

Bilinear

Figure 3.56: Copy of Figure 3.54, with the -0.3 curve highlighted.

The open-loop filters resulting from choosing -0.3 are:

Hf(z) =

[(
1 + p
1.3

)
0.3 + z−1

1 + pz−1

]4

, G(z) = z−1 (3.61)

And we can describe this as “Four zeros on z = −0.3, and a delay in the feedback”.

We will repeat the analyses of the previous sections on this filter.

The root-locus equation in k is:

z(z + p)4 + k
(
p + 1
1.3

)4

(z + 0.3)4 = 0 (3.62)

i.e., four open-loop poles on z = −p with one more on z = 0, and four open-loop zeros on z = −0.3.

Remember, like the bilinear-with-delay, there is an extra pole.

The root-locus equation in p:

(134z5 + k(10z + 3)4) + p(1344z4 + 4k(10z + 3)4) + p2(1346z3 + 6k(10z + 3)4)

+p3(1344z2 + 4k(10z + 3)4) + p4(134z + k(10z + 3)4) = 0 (3.63)

And the individual coefficient polynomials are:

D(z) = 134 z5 + k(10z + 3)4

N1(z) = 134 4z4 + 4k(10z + 3)4

N2(z) = 134 6z3 + 6k(10z + 3)4

3.3. MOOG-STYLE DISCRETE-TIME FILTER DESIGN 159

Figure 3.57: Compromise Filter: First-order loci in k for various p between p = −1 and p = 0.3.

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4
0

1

2

3

4

5

fe
ed

ba
ck

 g
ai

n
(k

)

one−pole pole coef (p)

feedback gain required to hit unit circle (infinite Q)

0 1 2 3
0

1

2

3

4

5

θ (radians)

fe
ed

ba
ck

 g
ai

n

gain vs. θ

0 1 2 3
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

θ (radians)

on
e−

po
le

 p
ol

e
co

ef
 (

p)

tuning curve

Figure 3.58: Compromise Filter: Top: Loop gain (k) required to hit unit circle, vs. p. Bottom Left:
Loop gain vs. pole angle at the unit circle. Bottom Right: Tuning curve (p vs. θ at the unit circle).

160 CHAPTER 3. DESIGNING FILTERS APPROXIMATING CONSTANT Q

N3(z) = 134 4z2 + 4k(10z + 3)4

N4(z) = 134 z + k(10z + 3)4

Even though this filter was designed in an attempt to make a filter which does not need a

separation table, we present analysis of the filter with a separation table (Figure 3.61) as well as the

analysis without (Figure 3.60).

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

Real Axis

Im
ag

 A
xi

s

tol=0.01, numpts=457

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

Real Axis

Im
ag

 A
xi

s

tol=0.01, numpts=483

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

Real Axis

Im
ag

 A
xi

s

tol=0.01, numpts=523

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

Real Axis

Im
ag

 A
xi

s

tol=0.01, numpts=549

Figure 3.59: Compromise Filter: Fourth-order loci in p (−1 ≤ p ≤ 0.3) for various k: Top Left:
k = 1/4, Top Right: k = 1, Bottom Left: k = 2, Bottom Right: k = 4. ’x’: roots of D(z), ’o’: roots of
N4(z), squares: roots of N1(z) through N3(z).

Pseudocode for a C implementation of this filter is given in Figure 3.62. Note that this code

is not guaranteed to be the most optimal for any particular processor or compiler, and users are

encouraged to further optimize as far as possible. This code also implements Direct-Form-2 filter

forms, which are not expected to work as well in fixed-point number systems. Any algorithm

should be modified as appropriate for the specific architecture that it will be implemented on.

3.3. MOOG-STYLE DISCRETE-TIME FILTER DESIGN 161

10
−2

10
−1

10
0

10
0

10
1

10
2

10
3

10
4

Q

normalized freq (radians)
10

−2
10

−1
10

0

10
0

10
1

Q

normalized freq (radians)

10
−3

10
−2

10
−1

10
0

−40

−30

−20

−10

0

10

20

G
ai

n
(d

B
)

normalized freq (radians)

10
−3

10
−2

10
−1

10
0

−3

−2

−1

0

1

2

3

ph
as

e
(r

ad
ia

ns
)

normalized freq (radians)

Figure 3.60: Compromise Filter: Raw filter (no Lookup tables). Top Left: Q vs. p, wide Q range.
Top Right: Q vs. p, narrow Q range. Bottom Left: representative frequency responses for a p sweep
(k = 3.5). Bottom Right: Pole traces (Dark: constant k, Light: constant p).

162 CHAPTER 3. DESIGNING FILTERS APPROXIMATING CONSTANT Q

10
−2

10
−1

10
0

10
0

10
1

10
2

10
3

10
4

Q

normalized freq (radians)
10

−2
10

−1
10

0

10
0

10
1

Q

normalized freq (radians)

10
−3

10
−2

10
−1

10
0

−40

−30

−20

−10

0

10

20

G
ai

n
(d

B
)

normalized freq (radians)

10
−3

10
−2

10
−1

10
0

−3

−2

−1

0

1

2

3

ph
as

e
(r

ad
ia

ns
)

normalized freq (radians)

Figure 3.61: Compromise Filter, Using separation table shown in Figure 3.58. Top Left: Q vs.
p, wide Q range. Top Right: Q vs. p, narrow Q range. Bottom Left: representative frequency
responses for a p sweep (k = 3.5). Bottom Right: Pole traces (Dark: constant k, Light: constant p).

3.3. MOOG-STYLE DISCRETE-TIME FILTER DESIGN 163

s = state->filterStateArray;

A = state->feedbackState;

for (i=0; i<vectorLength; i++) {

pval = 0.55*tuningCoef[i] - 0.45; // Bring (-1.0,1.0) into (-1.0,0.1) range

A = SATURATE(0.25*(in[i] - A)); // Since loop has a DC gain of 2^4 = 16,

// pull it back to 4 here

// WARNING: DF2 filters (not recommended for fixed-point implementations)

for (j=0; j<4; j++) {

tmp = s[j];

A = SATURATE((2.0/1.3)*(1.0+pval)*A) - pval*tmp);

s[j] = A;

A = SATURATE(0.3*tmp + A);

}

out[i] = A;

A *= gainCoef[i];

}

state->feedbackState = A;

// Deal with denormals on floating-point processors which need it:

for (j=0; j<4; j++)

s[j] = CLAMP_DENORMAL_TO_ZERO(s[j]);

Figure 3.62: C pseudocode for an implementation of the Compromise Filter. This implementa-
tion assumes that any desired fc → p and Q → k mapping has been done externally to this loop.
SATURATE() implements whatever saturation is desired (none, hard clipping, polynomial, tanh,
LUT, etc.). This implementation can be considered to contain “too many” saturations, and cheaper
implementations should limit the number of expensive saturations in the loop. Note that this code
demonstrates DF2 implementations for the onepole filters. One may prefer DF1 or TDF2 imple-
mentations in that case, as well as possibly modifying how gain is distributed throughout the loop.

164 CHAPTER 3. DESIGNING FILTERS APPROXIMATING CONSTANT Q

Zeros and output combinations There is a good chance that moving the open-loop zeros to loca-

tions other than z = 0 (or z→∞) will effect the ways that outputs are combined to produce various

gross filter shapes. However, the analysis of this effect had to be dropped for time in the course of

finishing the research for this thesis.

Digression: Setting Q

For most accurate Q setting, one would measure Q vs. k at some frequency (typically a low audio

frequency), and from those measurements create a Q → k table. However, a basic rule of thumb

can be theorized: for any particular fc, if the gain required to hit the unit circle (i.e., the gain curve)

is kmax (either when implemented as kmax = f(p) or as a constant), then:

k ≈ kmax
(

1 − 2
Q

)
(3.64)

Such approximations tend to be best for high Q, and become less accurate as Q gets on the order of

1.0 and less. See Figure 3.76 for an experimental verification of this rule of thumb for a later filter

design.

3.3.3 Beyond the Compromise Filter

In 1998 Duane Wise [293] discussed building a filter on the same basic paradigm (a number of first-

order sections with feedback around them) using allpass filters as the first-order sections. From

the standpoint of separation, this compelling, as the allpass nature of the feedforward cascade

guarantees that the poles will reach the unit circle at k = 1 regardless of tuning. However, one must

practically be limited to two first-order stages in the loop, as all the poles will reach the unit circle

at the same time, so if there are more than two poles, the total filter will exhibit multiple peaks

(which is usually not desired). As an example, Figure 3.63 shows a family of loci in loop gain for a

filter consisting of two first-order allpasses in a loop (plus a delay to make the loop implementable)

for various values of the allpass coefficient between −0.95 and 0.95. Note that in this example, the

delay causes a third pole, which will unfortunately reach z = −1 at the same gain as the other poles

reach the unit circle, since the loop is allpass. A workaround (discussed by Wise) is to put zeros

on z = −1 in cascade with the filter to keep energy from this mode, as well as assist in achieving a

lowpass response.

This method achieves perfect separation at infinite Q, due to the use of the allpass in the loop,

and as such is another useful direction for Moog-style filter design, but since this thesis mainly

concentrated on four-stage designs (for which this concept does not work well given the multiple-

peak issue), this direction was not deeply explored in this research. Interestingly, this method may

be roughly viewed as an intermediate filter type between state-variable designs (which also have

3.3. MOOG-STYLE DISCRETE-TIME FILTER DESIGN 165

−1.5 −1 −0.5 0 0.5 1 1.5
−1.5

−1

−0.5

0

0.5

1

1.5

Figure 3.63: Loci families for a system consisting of two first-order allpass filters in a loop (with
a delay to make the loop implementable). Left: Loci in feedback gain for various allpass poles
between −0.95 and 0.95. Right: Loci in pole location for various feedback gains between 0.0 and
1.0.

perfect separation at infinite Q, but are only 2nd-order systems) and the 4th- and 5th-order single-

loop topologies explored in this part of this thesis.

One may ask the question “Do we need to go beyond the Compromise filter design?” For low-Q

usage cases, the compromise filter works just fine for a large range of corner frequencies. However,

if one needs a wider Q range without bumping up against loop instability (or inconsistent self-

oscillation vs. frequency if using saturation within the loop), or if one needs less Q variation for a

given k value at high-Q ranges (and one doesn’t want to use separation tables), further tweaking

of the design may be desired.

From the standpoint of the thesis, it was assumed that one would want a filter with a flatter

separation table, simply in order to have a reason to continue exploring the filter design space.

Attempts at optimization-based root-locus track fitting

One area of interest at this time was exploring whether some sort of optimization could be used

to help design filters in the Moog style. The primary concept would be: “optimize a feedforward

filter to have a constant-Q locus.” Practically, this meant to explore the viability of programs such

as:

minimizeN,D ‖err(Z(N,D), pdes)‖p

166 CHAPTER 3. DESIGNING FILTERS APPROXIMATING CONSTANT Q

s.t. various constraints

Essentially, minimize the “distance” between the root locus Z(N,D) (i.e., the zero set of D(s) +

kN(s) for all k) and a set of points pdes along a desired track, using the polynomials N(s) and D(s)

as the free variables (or maybe their root locations). Further intended design directions would be

to optimize feedforward filters more in the Moog-style topology (i.e., a chain of first-order filters

with). Possible constraints may be to try to have the fitted track be the only track (or the highest

radius, or that there are no unstable tracks in the same k range, etc.). Since the Moog-style filters

have two major control parameters, fc andQ, we should really optimize for loci in both parameters

at once, fitting a surface in (s,Q) space (or (s, fc) space)), which should theoretically mean just a

slightly larger program. However, initial experiments were performed using a locus in just one

parameter.

There is an active field of research in the computer-graphics and image-processing fields on the

fitting of curves and surfaces to point data. If we look at the wide field of fitting any representa-

tion, the field is enormous. Of particular interest recently has been the fitting of parameterizable

surfaces to range data, as comes from 3-D scanning devices (with pioneering work being done here

at Stanford by Marc Levoy and his group, a representative paper being [145]).

Root loci can be viewed as implicit curves, so a subgenre of particular interest is that of fitting

implicit curves and surfaces to data. By removing explicit k from the fitting, we would not overly

restrict the fitting by requiring a particular tuning curve. Though the topic existed before, it had a

bit of a revolution with Gabriel Taubin’s work starting in 1991 ([261] [258] [259]) which culminated

in [260], which presented the most accurate distance approximations up to that time. As discussed

in that paper, though the closest point on an algebraic curve can be found exactly, the math is not

efficient, effectively requiring the enumerating of the intersections between the curve in question

(f(x, y)) and another derived implicit curve (f ′(x, y)) which depends on the original curve and

the point (p = (u, v)) being checked:

f ′(x, y) = (x − u) ∂
∂x

f(x, y) − (y − v) ∂
∂y

f(x, y) (3.65)

These intersection points are the points where the curve f is perpendicular to the point p. We

note in passing that f ′(x, y) for a root-locus equation is another root-locus equation, but one with

complex coefficients. In general, that method is taken to not be efficient. Instead, Taubin de-

scribed a method for first-order, second-order, and higher-order approximations to the distance

which are quite accurate within an impressive region surrounding the implicit curve or surface.

As discussed in Appendix A, this leads immediately to an extremely fast and versatile root-locus

rendering method as well as to fitting methods.

Since the 1994 paper, Taubin presented further work on fitting in [263]. About the same time,

Baja and group described an implicit-surface fitting algorithm for use as in interpolation method.

3.3. MOOG-STYLE DISCRETE-TIME FILTER DESIGN 167

1996 was a big year for implicit-function fitting, with Redding and Newsam presenting two papers

on the subject, in the field of image understanding ([215] and [216]), Varah discussing least-squares

fitting of implicit functions [281], and Lei and Cooper presenting an improved algorithm [155]. In

2000, Blane joined Lei and Cooper to present an updated algorithm which became quite popular

(the “3L” algorithm). Recently, Helzer described more updates to the techniques [106] in 2004, and

Sahin and Unel continued in 2005. Both of these were focused on making the fitting algorithm more

stable in the presence of certain difficult situations. On a familiar note for root locus, Gao and Li

described in 2004 an algorithm for fitting rational plane curves.

However, most of these types of algorithms do not fit well into the proposed problem. Two

basic issues:

• In most of the methods, the implicit function’s order is quite freely variable, and the best fits

use rather high function orders. However, in our variable filters, we have an order in mind

and do not particularly want to add further roots into the system. Further, our filter orders are

rather small compared to orders often used in such fitting algorithms, so fitting to arbitrary

shapes is quite limited. In practice, we need to prove to ourselves using some other method

(experimentation, usually) that the filter order is capable of a particular shape, and only then

try to optimize to that shape.

• It is usually fine in graphics to approximate a curve or shape with a combination of implicit

functions which only fit parts of the surface, so that the total fit is from several equations. In

variable filters, the concept of “handing off” to another filter part-way through the range of

the control is not desirable (at least for Moog-style filtering, as it is strongly hoped that there

is a single filter which can handle the whole range). It may be applicable in some areas of

variable filter design, though, as multi-filter designs are not unheard of (such as the Farrow

structure [77], and vector-array decomposition-based filter designs [62]).

Early-on, the author experimented with approximating a constant-Q locus curve by alternating

some first-order poles and zeros on the real axis, on the concept that controlling their relative lo-

cations could be used to “push and pull” on the locus to give the desired shape. Early hand-fitted

experiments, such as that shown in Figure 3.64, seemed promising, but they did not translate to

automatic optimization methods very well at all,19 and the fit quality appeared to be tied to the

order of the open-loop system in an undesirable way.

Interestingly a paper on fitting root loci to desired tracks was found. Prokhorova described in

1991 a method [207] effectively using

∑
si∈sdes

∣∣∣∣Im(N(si)
D(si)

)∣∣∣∣2 (3.66)

19Though it may be that just not enough time was put in to working out bugs.

168 CHAPTER 3. DESIGNING FILTERS APPROXIMATING CONSTANT Q

10
−4

10
−2

10
0

10
0

10
1

freq (rad)
Q

Figure 3.64: Manual attempt at fitting a constant-Q trajectory using real open-loop roots as opti-
mization variables. Left: locus, Right: Q

As the error function. Unfortunately, this is a rather weak distance measure, and allows quite large

errors in regions where the measure is quite low. Further, it is pretty badly non-convex. Still, it did

provide a starting point for further exploration. A variation on this measure, vaguely inspired by

Prony’s method for rational-filter design, was to note that

Im
D(s)
N(s)

=
D(s)N(s∗) −D(s∗)N(s)

2j|N(s)|2 (3.67)

and take the numerator, to make the program

minimizeD,N
∑

si∈sdes
|D(s)N(s∗) −D(s∗)N(s)|2 , (3.68)

on the hope that this would make for a program that was closer to convex. It was still non-convex,

but it appeared that the number of local minima may be small and manageable. Still, this measure

exhibited the same problem with allowing large errors in locus shape where the gradient of the

distance measure got small. Finally, it was noted that there is a trivial zero in this measure when

N(s) = D(s), which is not the desired result (so it would have to be constrained somehow).

In searching for distance measures, the brute-force method (i.e. calculating a root locus and di-

rectly finding the distance to desired points) was considered too expensive for optimization work,20

since it would require the calculation of a full root locus at least once per optimization iteration.

There was some experimentation into performing some sort of gradient-descent on the above

20not to mention inelegant

3.3. MOOG-STYLE DISCRETE-TIME FILTER DESIGN 169

function, on the hope that it would arrive at the locus at the point closest to the starting point. Un-

fortunately, that assumption was not true. However, some experiments in using Newton’s method

on the function produced an intriguing form of Newton’s-Method fractal (Figure 3.65, for exam-

ple), where rather than there being discrete zeros and thus discrete regions of attraction, the zero

set is continuous, and the “regions of attraction” are a more amorphous concept.

Figure 3.65: Newton-Fractals and details for various first-order root-loci.

In the end, Taubin’s first- and second-order distance approximations appeared to be the best

170 CHAPTER 3. DESIGNING FILTERS APPROXIMATING CONSTANT Q

Locus equation: D(s)+kN(s) = 0, hence full locus is solutions of Im(D(s)/N(s)) =
0. Now if D = dr + jdi, and N = nr + jni, then

D

N
=

(nrdr + nidi) + j(nidr − nrdi)
dr2 + di2

=
Im(D(s)N∗(s))

|D(s)|2

=
Im(D(s)N(s∗))

|D(s)|2 because N has real coefs

Now we only need to look at the numerator in order to trace where the zeros are,
so we perform Newton’s method on the function

f(s) = D(s)N(s∗) (3.69)

Or, in terms of the real components (D = dr+jdi,N = nr+jni, dD/ds = ddr+jddi,
dN/ds = dnr + j dni, s = sr + j si), the Newton iteration is:

dr + j di = D(s)

nr + j ni = N(s)

ddr + j ddi =
dD(s)
ds

dnr + j dni =
dN(s)
ds

∂Im = (dnr dr − dni di) − (nr ddr − ni ddi)
∂Re = (dnr di + dni dr) + (nr ddi + ni ddr)

x =
(nr di + ni dr)
∂2
Im + ∂2

Re

sr = sr − x∂Re
si = si − x∂Im

(3.70)

Figure 3.66: Newton’s method on a root locus (1st-order in k):

3.3. MOOG-STYLE DISCRETE-TIME FILTER DESIGN 171

upon which to base optimization measures. Still, there were quite a few issues that slowed progress.

General convexity issues In general, trying to fit locus tracks to points is not a convex prob-

lem. Aside from any issues as to the convexity of any particular optimization variables to any

particular root locus shape, there are issues with the convexity of distance measures and the multi-

plicity of ways in which a curve might be seen as “fitting” a set of point data. Since point-distance

measures effectively ignore the behavior of the curve away from the points, any combination of

curve behaviors can be exhibited away from the fitting points and still have sections of the curves

which pass through or near the fitting points. There can even be situations where different tracks

might “trade off” the fitting, such that one track is near one subset of the fitting points but a com-

pletely different track is near another subset. As such, quite a bit of work needs to go into control-

ling these behaviors, such as coming up with a number of program constraints, or restricting the

feedforward topology to ones which are known to generate desirable locus shapes.

Even so, some experimentation was done using global optimization packages, such as ASA,

VerGO, etc. The primary results were to confirm the difficulties mentioned previously.

In general, a couple of problem areas were noticed (beyond ones mentioned previously), which

make locus fitting for audio filtering a difficult problem:

• The need to fit a surface rather than a curve in order to optimize over both controls. Within

the optimization community, this is not considered a problem, but it does complicate things,

especially if the problem is non-convex.

• There is significant amount that must be handled in constraints, including enforcing that the

fitted tracks are those of dominant poles (and thus, trivially, any other poles are not unstable).

For example, some of the best fits have had other pole tracks that stayed completely outside

the unit circle.

• Most fitting tends to put pressure on increasing the filter order in order to get a better fit.

Finally, it was realized that z-plane distance measures are not well-suited for Q-based filter

design, as the sensitivity of Q in pole location goes to infinity at the unit circle. In other words, very

small errors in z distance can imply very large errors in Q for high-Q tracks. As such, much better

distance measures should be in some (log(f), log(Q)) plane. Now we will see in Appendix A that

certain distance measures, such as Taubin’s approximations, can warp to such planes just fine, but

in so doing, the concept moves away from the original idea of root-locus track fitting, and as such

became less exciting for work being done using a root-locus perspective. However, further work

on fitting should probably follow this direction.

In summary, these locus-track optimization directions were not heading towards promising re-

sults in the near term, whereas other directions we will discuss in upcoming sections were proving

fruitful.

172 CHAPTER 3. DESIGNING FILTERS APPROXIMATING CONSTANT Q

Comparing the Discretizations Further

In Section 2.3, we noted that it is possible to offset k in a root locus, and for filters where the DC

end of the frequency tracks do not correspond to k = 0 (or p = 0, or whatever the tuning variable

is), such a transformation might make the coefficient polynomials (D(z),Ni(z)) more intuitively

interpretable. Here we apply that notion to the discrete-time Moog-style filters we have looked at

so far.

Backward Difference with Delay: If we take Equation 3.43 and change variables as p = p0 − 1,

such that fc = DC now corresponds to p0 = 0, rather than to p = −1, then the root locus equation

becomes:

(z − 1)4 + 4(z − 1)3p0 + 6(z − 1)2p2
0 + 4(z − 1)p3

0 + (1 + kz4)p4
0 = 0 (3.71)

As such, the roots of the coefficient polynomials are:

D(z) : [1, 1, 1, 1]

N1(z) : [1, 1, 1,∞]

N2(z) : [1, 1,∞,∞]

N3(z) : [1,∞,∞,∞]

N4(z) : [−3
√
k]

Now, while the roots of the coefficient polynomials of Equation 3.43 aren’t that difficult to interpret,

these are even easier to interpret (especially in light of the continuous-time locus , Section 2.5).

Bilinear with Delay: Applying the same transform p = p0 − 1 to Equation 3.57, we get:

16z(z − (p0 − 1))4 + k(z + 1)4p4
0 = 0 (3.72)

or, expanded in terms of powers of p0:

16z(z − 1)4 + 64z(z − 1)3p0 + 96z(z − 1)2p2
0 + 64z(z − 1)p3

0 + 16z + k(z + 1)4p4
0 = 0 (3.73)

As such, the roots of the coefficient polynomials are:

D(z) : [0, 1, 1, 1, 1]

N1(z) : [0, 1, 1, 1,∞]

N2(z) : [0, 1, 1,∞,∞]

N3(z) : [0, 1,∞,∞,∞]

3.3. MOOG-STYLE DISCRETE-TIME FILTER DESIGN 173

N4(z) : [complicated]

Now, in comparison to Equation 3.57, in which all the coefficient polynomials had complicated

roots, the transformed locus only has complicated roots for N4, all the others are very straightfor-

ward, and again we get nearly the same pattern of roots on z = 1 as with the backward difference.

The extra roots at z = 0 come from the fact that this filter is actually fifth-order due to the delay that

was added to make it implementable.

Pole/Zero Mapping: Again, applying the transform to Equation 3.60, we get:

8(z − 1)4 + 32(z − 1)3p0 + 48(z − 1)2p2
0 + 32(z − 1)p3

0 + 8 + k(z + 1)3p4
0 = 0 (3.74)

And the roots of the coefficient polynomials are:

D(z) : [1, 1, 1, 1]

N1(z) : [1, 1, 1,∞]

N2(z) : [1, 1,∞,∞]

N3(z) : [1,∞,∞,∞]

N4(z) :
[

3
√
−8
k − 1

]
Again, the roots of the coefficient polynomials of Equation 3.60 are all complicated, whereas the

transformed locus equation is much more interpretable, and yet again, we get the same pattern in

D(z),N1(z),N2(z), and N3(z).

Compromise Filter: Transforming Equation 3.63, we get:

(134)
(
z(z − 1)4 + 4z(z − 1)3p0 + 6z(z − 1)2p2

0 + 4z(z − 1)p3
0

)
+ 134z + k(10z + 3)4p4

0 = 0 (3.75)

And the roots of the coefficient polynomials are:

D(z) : [0, 1, 1, 1, 1]

N1(z) : [0, 1, 1, 1,∞]

N2(z) : [0, 1, 1,∞,∞]

N3(z) : [0, 1,∞,∞,∞]

N4(z) : [complicated]

174 CHAPTER 3. DESIGNING FILTERS APPROXIMATING CONSTANT Q

This is quite similar to the bilinear-with-delay case, as it is based on it, and as such has the extra set

of roots on z = 0.

Comparison: Comparing these transformed locus equations, we see that this transformation does

indeed make the locus equations more understandable, as a common structure among the coeffi-

cient polynomials becomes clear. Further, aside from extra zeros in the fifth-order filters, all these

filters have the same roots for all the coefficient polynomials except N4(z). Although not included

here, we also get the same results if we transform the forward-difference version, and the two non-

implementable discretizations (pure bilinear and pure backward difference). In essence, we can

theorize that the only difference between these designs is where the N4(z) roots end up.

As such, this may suggest a further research direction: attempting to design a Moog-style filter

by optimization, where the free variables are the roots of N4(z) (and possibly some scalings on the

coefficient polynomials). This would make for a much smaller optimization space for attempting

to design such filters than trying to optimize over all five polynomials.

A difficulty in working in this direction, being purely root-locus based, is the problem, once a

good locus is found, of translating that back into a Moog-like filter topology, with its nice “physical-

model” structure. This is an area of future research.

Further work on trying to flatten the separation curve

Here we tackle the problem of further varying the structure of the Moog-style filter in order to

get an even flatter separation curve (i.e. the gain required to high infinite Q vs. p). But first, a

digression:

On practical calculation of the separation curve. the author has made use of two different meth-

ods in the course of this research. First off, it is not easily found in closed-form (the equations get

ugly fast), so these are numerical methods. The original method was simply to perform a binary

search in feedback gain (Algorithm 1). The algorithm may be further augmented by noting if the

poles have hit the real axis (or simply by storing away an additional array of outer pole locations

corresponding to ksep(P)), as the range of p for which the poles are complex may not be known

ahead of time.21

This algorithm is quite robust (as long as the required gain is within the search range), but it

was noted that the gain can be found via another bit of knowledge about the filter topology: the

poles will only hit the unit circle where the phase angle of the open-loop transfer function (let’s call

it G for now) is a multiple of 2π (as long as we’re only considering positive gains), thus we can

find the required gain by finding all frequencies θi with the required phase angles, and then simply

invert |G| at that point (Algorithm 2). The function find2PiPhaseFreqs in this algorithm may use

21Note that a similar binary search can (usually) be used to directly find the value of p at which the poles hit the real axis.

3.3. MOOG-STYLE DISCRETE-TIME FILTER DESIGN 175

Algorithm 1: Binary Search for Calculating Separation Table
Data: Filter Hp,k(z), and set of p values P.
Result: Values of ksep(P) which put poles on unit circle.

foreach p ∈ P do
// Search in range (k0 − 2∆k0, k0 + 2∆k0)
k ← k0, ∆k ← ∆k0;
while ∆k > εk do

ri ←roots(Hp,k(z));
rmax ← max |ri|;
if |rmax − 1| < εr then break ;
if max |ri| > 1 then

k ← k −∆k;
else

k ← k + ∆k;
end
∆k ← ∆k/2;

end
ksep(p)← k;

end

Algorithm 2: Phase Search for Calculating Separation Table
Data: Open-loop Filter Gp,k(z), and set of p values P.
Result: Values of ksep(P) which put poles on unit circle.

foreach p ∈ P do
θi ← find2PiPhaseFreqs(Gp,k(z));

ksep(p)← min
(∣∣Gp,k(ejθi)

∣∣−1
)

;

end

any number of methods for finding the frequencies at which the phase passes through multiples of

2π : binary search, variations on Newton’s method, etc. In practice, however, it has been noted that

care has to be taken to handle if the search method diverges (as has happened on some occasions

with p near DC, presumably due to numerical issues). In general, this algorithm is a bit faster than

the binary search algorithm. When using Newton-like search methods, this algorithm also allows

the result of the previous iteration in p to be used as the starting-point of the search for the next

p, possibly accelerating it by several steps. This type of acceleration is not as viable in the binary

search method.

This method can be further modified if G(z) is known to consist of four identical one-pole

filters (G(z) = G0(z)4), and if there is no additional delay in the loop, in which case we know that
6 G(z) = 46 G0(z). i.e., we search for frequencies where the phase angles of the single one-pole filters

pass through π/2. This problem is simple enough to be solvable in closed-form. However, since

this method requires no additional delays in the loop, it can’t be applied to many of the filters we

176 CHAPTER 3. DESIGNING FILTERS APPROXIMATING CONSTANT Q

are considering. Extending this to handle a unit delay in the loop makes it such that the closed-form

solutions are no longer straightforward, and the method becomes no more efficient or elegant than

looking directly at the phase angles of G(z).

Flattening the separation curve: Pole Placement Zeros

The Compromise Filter was based upon the bilinear-transformed filter, and hence had an extra

delay in the loop to be implementable. The Pole/Zero Placement transform, on the other hand,

eliminated the need for the extra delay by making one of the feedforward onepoles a forward-

difference form. What if we repeat the Compromise design, but based on this form instead? The

Compromise filter was designed by choosing a location for the zeros which had a nearly flat sep-

aration curve. This design would similarly choose a location for the remaining three zeros of the

pole-placement form.

−1 −0.8 −0.6 −0.4 −0.2 0 0.2
2

2.5

3

3.5

4

4.5

5

5.5

p

ga
in

 fo
r

in
fin

ite
 Q

Figure 3.67: Separation curves for modified pole-placement-transform filter. Open-loop zeros rang-
ing from 0.25 (top) to 0.5 (bottom). The separation curve for the Compromise filter is superimposed
on top (thick line)

However, if we plot separation curves for prospective zero locations (Figure 3.67), we see that

the curves have a much wider variance than the curve of the Compromise filter, hence “less flat,”

and thus less desirable.

3.3. MOOG-STYLE DISCRETE-TIME FILTER DESIGN 177

Other pole-placement variants? Remember that the pole-placement-transformed filter had open-

loop zeros at [−1,−1,−1,∞], and the backward-difference-with-delay filter had open-loop zeros at

[0, 0, 0,∞]. What if we try other mixtures of zeros? Figure 3.68 shows a set of loci for filters, starting

with all open-loop zeros at z = 0 (i.e., the pure backward difference), and replacing one zero at a

time until we have the forward-difference filter. There is a recognizable trend in the locus shapes

as more and more of the open-loop zeros move out to infinity. The same comparison can be done

between bilinear (all zeros at z = −1) and forward difference (Figure 3.69). Note that the loci are

basically the same shape as in Figure 3.69, just scaled up such that the left-hand extent is z = −1

rather than z = 0, though the difference relative to the unit circle can be significant.

In the spirit of the Compromise Filter, we can explore the space of zero locations between the

backward-difference case and the bilinear case (zeros at z = 0 and zeros at z = −1) for the two

cases we haven’t looked at yet (the four-finite-zeros case is unimplementable, the three-finite-zeros

case we just looked at, and the no-finite-zeros case is the forward difference that we looked at in

Section 3.3.1.)

Looking at the families of separation curves for the two remaining various numbers of forward-

difference onepoles (Figure 3.70), it appears that neither of these variants is a promising direction

for further exploration.

178 CHAPTER 3. DESIGNING FILTERS APPROXIMATING CONSTANT Q

Figure 3.68: First-order loci in k for various p between p = −1 and p = 1. Left-to-right, top-to-
bottom: Four zeros on z = 0 (backward-difference with no delay), three zeros on z = 0 (backward-
difference with delay), two zeros on z = 0, one zero on z = 0, and no finite zeros (i.e., fwddiff).

Figure 3.69: Same as Figure 3.68, but with bilinear onepoles rather than backward-difference (i.e.,
finite open-loop zeros at z = −1 rather than z = 0).

3.3. MOOG-STYLE DISCRETE-TIME FILTER DESIGN 179

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
0

1

2

3

4

5

p

ga
in

 fo
r

in
fin

ite
 Q

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
0

1

2

3

4

p

ga
in

 fo
r

in
fin

ite
 Q

Figure 3.70: Separation-table families (various open-loop zero locations between z = 0 and z = −1).
Top: Two finite zeros and two at infinity. Bottom: One finite zero and three at infinity.

180 CHAPTER 3. DESIGNING FILTERS APPROXIMATING CONSTANT Q

Flattening the separation curve: Different Zero Locations

Here we explore modifying the Compromise Filter by allowing the zeros to be on different locations

from each other. We assume that having all the zeros on the same location is somehow suboptimal,

and set up an optimization to find a better set of zero locations. We admit, however, that since the

compromise filter was chosen with as a subjective tradeoff, such optimization may not choose a

design with the same general behavior as the compromise filter.

The optimization we set up was to minimize the weighted sum of squares of the deviation of

the curve from its mean value, normalized by the number of points in the curve (this last bit is

due to the fact that the curve was only calculated at values of p where the dominant poles are

complex, and since p is sampled across the range (-1,1), the number of points in the resulting

curve will not be known ahead of time). The weighting is accomplished by spacing the samples

of p logarithmically (a la -1+logspace(0,log10(2),N) in Matlab), to give approximately equal

weighting to each octave (which is also the reason why an L∞ norm isn’t used). In order to remove

some obvious non-convexities, the search variables were chosen to be z = [z0,∆z1,∆z2,∆z3], such

that the open-loop poles are:

z0 = z0

z1 = z0 + ∆z1

z2 = z1 + ∆z2

z3 = z2 + ∆z3

And the ∆zi are restricted to be positive, such that the zi are monotonic:

minimize ‖ginfQ(z, p) −mean(ginfQ(z, p))‖2/count(ginfqQ(z, p))

subject to zi < 1

zi > −1

∆zi > 0

Now we doubt that the resulting problem is actually convex, so the initial exploration optimiza-

tion was performed by doing a 1000-point initial monte-carlo search (using valid search points to

make full use of all 1000 points), and then using the most optimal point from that search as a start-

ing point for a local search (in this case, Matlab’s fminsearch function, which performs a form of

simplex search). This is not guaranteed to find the global minimum, but it was felt that the result

would be sufficient to decide if this design direction was worth following.

The result of the exploratory optimization was

z = [−0.2650,−0.2784,−0.2951,−0.3091]

3.3. MOOG-STYLE DISCRETE-TIME FILTER DESIGN 181

0 0.5 1 1.5 2 2.5 3
3.5

3.6

3.7

3.8

3.9

4

4.1

4.2

ga
in

normalized freq (radians)

10
−2

10
−1

10
0

10
0

10
1

10
2

10
3

10
4

Q

normalized freq (radians)

Figure 3.71: Compromise variation with optimized open-loop zero locations [-0.2650, -0.2784, -
0.2951, -0.3091]. Top: Separation Curve (Compromise filter separation curve shown in dashed
line). Bottom: Q vs. p (compare against Figure 3.60).

182 CHAPTER 3. DESIGNING FILTERS APPROXIMATING CONSTANT Q

This filter is analyzed in Figure 3.71. While the separation curve can be considered to have a slightly

smaller variation (and a bit more of a horizontal trend) than the compromise filter, it cannot be said

to be vastly better. In fact, comparing the Q-vs-p curves against those of the compromise filter

(Figure 3.60), one might still prefer the compromise filter.

As such, we decided not to explore this direction further.

Flattening the separation curve: Tilted Rather Than Flat

Looking at the separation curves, one may notice that some, while not anywhere near horizontal,

to appear to be pretty “straight.” As such, they could be represented as a first-order polynomial,

which should be significantly cheaper than a lookup table. Thus, a viable direction should be to

look for filter variations where the separation curve is as close to a straight line segment as possible.

For example, the pole/zero mapping transform gives a separation curve which is quite close to a

straight line (though the gain does approach zero as fc → fs/2).

A few initial experiments were made in this direction, with promising results. However, they

were not followed up due to the result of the next section, which effectively halted further work on

these previous directions. As such, there is some good work left to do on these lines of inquiry.

Flattening the separation curve, “X1 Filter”: Moving the zeros with p

While contemplating the tradeoff that was necessary in the creation of the compromise filter (re-

view Figure 3.55), one begins to wish that the open-loop zero locations could be varied with fre-

quency. For example, note that z0 = −1/3 has quite nice properties at low frequencies, but has the

problem of going unstable at higher frequencies, whereas z0 closer to zero get progressively more

stable at high frequencies, at the cost of being “too stable” at low frequencies.

As such, we next explore moving the open-loop zeros as a function of p. Now, we remember

that we are trying to keep things inexpensive, so we try the simplest movement function we can

think of: a first-order polynomial:

z0 = z00p + z01 (3.76)

Remember that the intent is to remove the need for a separation table, so if this is successful, the

addition of this polynomial would replace one lookup table.

As before, we set up an optimization to search for the best value of the optimization variable

z = [z00, z01]. Our first attempt will simply be a minimax optimization:

minimize ‖ginfQ(z, p) −mean(ginfQ(z, p))‖∞
subject to z0 < 1

z0 > −1

3.3. MOOG-STYLE DISCRETE-TIME FILTER DESIGN 183

It is important to note that all of the previous Moog-style filter designs have implemented one-

pole filters which are normalized to have a DC gain of 0 dB:

Hi =
(

1 + p
1 + z0

)
1 + z0z

−1

1 + pz−1
(3.77)

Normally, this did not require a divide at runtime, as z0 was fixed, so 1/(1 + z0) could be pre-

calculated. However, in this case, z0 will not be fixed, and this normalization would therefore

require at at least one divide per change in p, or one divide per sample if we are allowing p to

vary at the sample rate. This would be unacceptable. Therefore, for this design we will change the

onepoles to no longer be fully DC normalized:

Hi = (1 + p)
1 + z0z

−1

1 + pz−1
(3.78)

Again, this optimization is not expected to be convex. However, we have what we consider

to be a good starting point in the compromise filter (z00 = 0.3, z01 = 0.0).22 Again, the Matlab

simplex search was used, and the result was found to be: z00 = −0.07429, z01 = 0.3569, or z0 =

−0.07429p + 0.3569. Thus, the pole moves in a range near the fixed zero of the compromise filter, as

might be expected. What is not expected is how flat the resulting separation curve turns out to be

(Figure 3.72).

This design is significantly better than the compromise filter. Whereas the compromise filter’s

separation curve has a range of nearly 0.5, (or about ±0.1 at low frequencies), this design (which

the author has been referring to as the “X1 filter”23) has a variation of only about 0.001. Even if we

take into account the difference in gain range due to the lack of DC normalization of the filters, this

is still a factor of somewhere between 25x to 100x smaller variation (depending if we look at the

whole range of the compromise filter’s curve, or just the low-frequency range).

Let’s analyze this filter with the same analyses we have applied to the previous designs (Fig-

ures 3.73 through 3.78).

The open-loop filters are, in the notation used to analyze the earlier filters:

Hf(z) =

[
(1 + p)

(z00p + z01) + z−1

1 + pz−1

]4

, G(z) = z−1 (3.79)

And we can describe this as “Four zeros moving together as a first-order polynomial in z, and a

delay in the feedback”.

22And the upcoming result was later replicated using a minimization seeded with a monte-carlo search.
23For no particular reason

184 CHAPTER 3. DESIGNING FILTERS APPROXIMATING CONSTANT Q

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4
0.953

0.9532

0.9534

0.9536

0.9538

0.954

0.9542

fe
ed

ba
ck

 g
ai

n
(k

)

one−pole pole coef (p)

feedback gain required to hit unit circle (infinite Q)

0 1 2 3 4
0.953

0.9532

0.9534

0.9536

0.9538

0.954

0.9542

fe
ed

ba
ck

 g
ai

n
(k

)

normalized freq (radians)
0 1 2 3 4

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

on
e−

po
le

 p
ol

e
co

ef
 (

p)

θ (radians)

tuning curve

Figure 3.72: “X1” Filter. Open-loop zeros moving as a first-order polynomial with respect to p. Top:
Loop gain (k) required to hit unit circle, vs. p. Bottom Left: Loop gain vs. pole angle at the unit
circle. Bottom Right: Tuning curve (p vs. θ at the unit circle).

Figure 3.73: X1 Filter: First-order loci in k for various p between p = −1 and p = 0.29 (max of tuning
curve is at p = 0.21).

3.3. MOOG-STYLE DISCRETE-TIME FILTER DESIGN 185

The root-locus equation in k is:

z(z + p)4 + k
[
(p + 1)4(z + z00p + z01)4

]
= 0 (3.80)

i.e., there are four open-loop poles on z = −p with one more on z = 0, and four open-loop zeros at

some point on the real axis near z = −0.3. Remember, like the bilinear-with-delay, there is an extra

pole. Now the root locus in k is still a basic 1st-order locus, but note that by making the open-loop

zeros first-order polynomials in p, we have made the locus 8th-order in p!

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

Real Axis

Im
ag

 A
xi

s

tol=0.001, numpts=905

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

Real Axis

Im
ag

 A
xi

s

tol=0.001, numpts=1181

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

Real Axis

Im
ag

 A
xi

s

tol=0.001, numpts=1393

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

Real Axis

Im
ag

 A
xi

s

tol=0.001, numpts=1641

Figure 3.74: X1 Filter: Eighth-order loci in p (−1 ≤ p ≤ 0.33333) for various k: Top Left: k = kmax/16,
Top Right: k = kmax/4, Bottom Left: k = kmax/2, Bottom Right: k = kmax. Using the DC end of the
separation curve for kmax. ’x’: roots of D(z), ’o’: roots of N8(z), squares: roots of N1(z) through
N7(z).

Still, with the help of Mathematica, we can note some interesting patterns in the locus polyno-

mials, like the patterns of the roots of the coefficient polynomials after transforming p to p0 − 1:

D(z) : [0, 1, 1, 1, 1]

N1(z) : [0, 1, 1, 1,∞]

186 CHAPTER 3. DESIGNING FILTERS APPROXIMATING CONSTANT Q

N2(z) : [0, 1, 1,∞,∞]

N3(z) : [0, 1,∞,∞,∞]

N4(z) : [complicated]

N5(z) : [(z00 − z01), (z00 − z01), (z00 − z01),∞,∞]

N6(z) : [(z00 − z01), (z00 − z01),∞,∞,∞]

N7(z) : [(z00 − z01),∞,∞,∞,∞]

N8(z) : [∞,∞,∞,∞,∞]

Interestingly, we get the same pattern as with the compromise filter in the first five coefficient

polynomials. There is no theory yet as to the meaning of the pattern in the later polynomials.

When calculating the Q-vs-p curves (Figure 3.75), we have a choice of values for the maximum

k value (i.e.,the value that we will treat as “infinite Q”). Remember that the idea is to have made a

filter whose separation curve is as close to a constant as possible. The question is, since there is still

some variation, what value do we use? Three obvious candidates are: the minimum of the curve,

the mean of the curve, and the max of the curve. However, since the curve does not hit an extreme

(or the min) at p = −1 (i.e., at fc → DC), another option is to use the p = −1 value. Figure 3.75,

shows the plots for each case. In the author’s opinion, using the DC value of the separation curve

gives the most evenQ distribution when using the logarithmic approximation for k(Q), as opposed

to using measured k(Q) curves. Note that in all of these cases, one can get pretty flat Q curves up

past Q = 1000 without needing to use a separation table (the limit for the Compromise filter is

around 50 to 100).

Speaking of measured Q curves, let’s look at the logarithmic approximation of k for a given Q:

In Figure 3.76, we see two approximations: the upper approximation (the straight line) is:

k = kmax
(

1 − 2
Q

)
(3.81)

The lower approximation (the closer one) is:

k = kmax
(

1 − 2
Q + 1.5

)
(3.82)

Note that this approximation requires an accurate value of kmax. As can be seen in Figure 3.75,

which uses logarithmically-spaced k values, the constant-k traces end up getting compressed to-

gether in actual Q at high values of intended Q if kmax corresponds to roots inside the unit circle

(as in much of the lower-right graph), or they end up spreading out in actual Q if kmax corresponds

to roots outside the unit circle (as in the upper-left graph). The Q values in Figure 3.76 were mea-

sured near DC using the DC value of the separation curve for kmax (i.e., the lower-left graph of

Figure 3.75), so it was accurate for that measurement.

3.3. MOOG-STYLE DISCRETE-TIME FILTER DESIGN 187

10
−2

10
−1

10
0

10
0

10
1

10
2

10
3

10
4

Q

normalized freq (radians)
10

−2
10

−1
10

0
10

0

10
1

10
2

10
3

10
4

Q

normalized freq (radians)

10
−2

10
−1

10
0

10
0

10
1

10
2

10
3

10
4

Q

normalized freq (radians)
10

−2
10

−1
10

0
10

0

10
1

10
2

10
3

10
4

Q

normalized freq (radians)

Figure 3.75: X1 Filter (raw, no Lookup tables). Q vs. p, wide range. Top Left: kmax set to max
value of separation curve (0.9541). Top Right: using mean of separation curve (0.9536). Lower
Left: using p = −1 value (0.95346). Lower Right: using min of separation curve (0.9532).

188 CHAPTER 3. DESIGNING FILTERS APPROXIMATING CONSTANT Q

10
−4

10
−3

10
−2

10
−1

10
0

10
−1

10
0

10
1

10
2

10
3

10
4

x

m
ea

su
re

d
po

le
 Q

Figure 3.76: X1 Filter, k(Q) approximation. Dots: Measured Q vs. x (where k = kmax(1 − x)).
Straight Line: 2/x, Lower Line: 2/x − 1.5. This plot obtained using kmax = 0.95346, the DC value of
the separation curve. Q measured at frequencies near DC.

10
−4

10
−3

10
−2

10
−1

10
0

10
−1

10
0

10
1

10
2

10
3

10
4

x

m
ea

su
re

d
po

le
 Q

Figure 3.77: X1 Filter, k(Q) approximation with inaccurate kmax. This plot obtained using kmax =
0.9532, the minimum value of the separation curve.

3.3. MOOG-STYLE DISCRETE-TIME FILTER DESIGN 189

10
−2

10
−1

10
0

10
0

10
1

Q

normalized freq (radians)

10
−3

10
−2

10
−1

10
0

−40

−30

−20

−10

0

10

20

G
ai

n
(d

B
)

normalized freq (radians)

10
−3

10
−2

10
−1

10
0

−3

−2

−1

0

1

2

3

ph
as

e
(r

ad
ia

ns
)

normalized freq (radians)

Figure 3.78: X1 Filter: Raw filter (no Lookup tables). Left: Q vs. p, narrow Q range. Right:
representative frequency responses for a p sweep (k = 0.75 kmax, using mean value of separation
curve for kmax).

Note that a side-effect of removing the DC normalization from the feedforward one-pole filters

is that the I/O gain of the filter is increased. If one compares the example frequency responses of

this filter (Figure 3.78) versus those of the compromise filter and the basic discretizations, one will

see that this filter has a gain approximately a factor of 4 higher. This can also be seen by the fact

that the values of the separation table dropped from near 4 (at fc → DC) to just below 1.0, so that

the loop gain for unity feedback dropped by about 4x.

Finally, we do not present analyses of this filter using separation tables, because the filter is con-

sidered good enough that the use of separation tables is not expected to be necessary. Furthermore,

one can be pretty sure from the analyses of the other filters when using separation tables (especially

the Compromise filter, Figure 3.61) that the use of a table will have predictably good results, and

therefore showing such an analysis would be redundant.

Pseudocode for a C implementation of this filter is given in Figure 3.80. Note that this code

is not guaranteed to be the most optimal for any particular processor or compiler, and users are

encouraged to further optimize as far as possible. This code also implements Direct-Form-2 filter

forms, which are not expected to work as well in fixed-point number systems. Any algorithm

should be modified as appropriate for the specific architecture that it will be implemented on.

Flattening the separation curve: Future Directions

The “X1” filter is pretty good, so it becomes difficult to justify further exploration, especially in

(or outside) the realm of this thesis. However, quite a few possible directions are left open for

exploration, which may produce further useful filter design methods:

190 CHAPTER 3. DESIGNING FILTERS APPROXIMATING CONSTANT Q

Figure 3.79: X1 Filter (raw, no Lookup tables). Pole traces. Dark: constant k, Light: constant p. Left:
−1 < p < 1, Right: −1 < p < 0.21.

• Several directions involving two- or three-stage feedforward systems were ignored out of

hand, due to concentration on four-stage systems. In particular, good work can be done

following up Wise’s work on allpass-based loops, and there is some evidence that three-stage

methods may produce viable four-pole filters.

• Looking at all the combinations of (-1,0,1) zero locations across the stages.

• Taking the “X1” filter further, and moving the different zeros independently.

• Varying the fc → pole mapping for each stage. Looking deeply into the effects of having the

open-loop poles not co-located. Hutchins has discussed that in some experiments this causes

the required feedback gain to grow much larger. It would be useful to have a good intuitive

understanding of why this may be so.

• Variants on the onepole gains, possibly varying with some of the controls. All of the Moog-

style designs except the X1 filter used onepole filters with a DC gain of 1.0, and the X1 filter

only moved away from that for efficiency reasons. There may be useful directions in explor-

ing other gain behaviors.

• Picking off outputs in various combinations for various filter types, as done in the state-

variable filter, and as discussed by Hutchins and more recently by Huovilainen for the Moog-

style filters.

3.3. MOOG-STYLE DISCRETE-TIME FILTER DESIGN 191

s = state->filterStateArray;

A = state->feedbackState;

for (i=0; i<vectorLength; i++) {

pval = 0.6*tuningCoef[i] - 0.4; // Bring (-1.0,1.0) into (-1.0,0.2) range

z0 = 0.3569 - 0.0742*p; // choose the zero location from the pole location

A = SATURATE(in[i] - A); // feedback

// WARNING: DF2 filters! (not recommended for fixed-point implementations)

for (j=0; j<4; j++) {

tmp = s[j];

A = SATURATE((1.0+pval)*A - pval*tmp);

s[j] = A;

A = SATURATE(z0*tmp + A);

}

out[i] = A;

A *= gainCoef[i];

}

state->feedbackState = A;

// Deal with denormals on floating-point processors which need it:

for (j=0; j<4; j++)

s[j] = CLAMP_DENORMAL_TO_ZERO(s[j]);

Figure 3.80: C pseudocode for an implementation of the X1 Filter. This implementation assumes
that any desired fc → p and Q → k mapping has been done externally to this loop. SATURATE()

implements whatever saturation is desired (none, hard clipping, polynomial, tanh, LUT, etc.). This
implementation can be considered to have “too many” saturations, and cheaper implementations
should limit the number of expensive saturations in the loop. Note that this code demonstrates
DF2 implementations for the onepole filters. One may prefer DF1 or TDF2 implementations in
that case, as well as possibly modifying how gain is distributed throughout the loop. This code
is not guaranteed to be the most optimal for any particular processor or compiler. Designers are
encouraged to further optimize as far as possible.

192 CHAPTER 3. DESIGNING FILTERS APPROXIMATING CONSTANT Q

3.3.4 Conclusions on the Moog-style Filter Section

For most work, we have seen that basic discretization can work fine when using two or three one-

dimensional lookup tables for mapping and control separation. For situations where fewer tables

are desired, two filter methods: the “Compromise,” whereby the open-loop zeros are placed at 0.3,

and the “X1”, where those zeros are moved as a first-order polynomial in the pole location, are

described. The Compromise technique is useful for low-Q situations (below 20 to 100), and the X1

technique is useful for Q up past 1000.

Future directions

Note that this research concentrated solely on the use of four onepole sections. There are likely some

good alternative designs to be found using two or three onepole sections rather than four (Duane

Wise’s allpass-based concept in [293], whereby two first-order allpass stages are used rather than

first-order lowpass filters, can be considered to be in these classes).

In particular, certain discretizations required an extra delay in the feedback and actually ended

up with a higher-order filter. As such, using those discretizations with three one-pole stages rather

than four would result in a true fourth-order filter. There is a good chance that such three-stage

filters may make for particularly nice designs. For a quick preview exploration of the area, let us

look at a family of k loci for a three-stage bilinear-with-delay filter (Figure 3.81) the design is the

same as before, but with one onepole stage removed. If we follow the same design methodology

Figure 3.81: Three-stage moog-style filter, bilinear Transform with delay: First-order loci in k for
various p between p = −1 and p = 1.

3.3. MOOG-STYLE DISCRETE-TIME FILTER DESIGN 193

as the X1 filter, we get the following polynomial for open-loop zero locations:

z0 = 0.154993 − 0.0632325p (3.83)

The separation and tuning tables for this design are shown in Figure 3.82. Note that the separation

curve has a bit more variation than the 4-stage case. It is as yet unclear why that may be. Q-vs.-freq

analyses and an example set of frequency responses are shown in Figure 3.83.

0 0.5 1 1.5 2 2.5 3
4.425

4.43

4.435

4.44

4.445

ga
in

normalized freq (radians)

gain required to hit unit circle (infinite Q) −−− X1 Filter (zeros at 0.154993 + −0.0632325 p)

0 0.5 1 1.5 2 2.5 3
−1

−0.8

−0.6

−0.4

−0.2

0

on
e−

po
le

 p
ol

e
co

ef

normalized freq (radians)

tuning curve

Figure 3.82: Three-stage filter following the “X1” design method. Open-loop zeros moving as a
first-order polynomial with respect to p. Top: Loop gain (k) required to hit unit circle, vs. p.
Bottom Left: Loop gain vs. pole angle at the unit circle. Bottom Right: Tuning curve (p vs. θ at the
unit circle).

Another possible design direction which was not be followed in this discussion is the cascading

of 2nd-order filters. for example: design only 2nd-order set of resonant poles (maybe even a state-

variable filter), and add in the non-dominant poles in cascade, possibly as a static filter (since the

motion of the non-dominant poles has lees effect). This direction was not taken because of the de-

sire to stay with the “one big loop” concept of the filter topology. Thus other similar directions like

cascading two state-variable filters were also not followed. One may argue that if one implements

nonlinearity, that such cascaded designs would not display the same type of nonlinear behaviors

as a single-loop implementation.24

24In other words, they would be “less physical.”

194 CHAPTER 3. DESIGNING FILTERS APPROXIMATING CONSTANT Q

10
−2

10
−1

10
0

10
0

10
1

10
2

10
3

10
4

Q

normalized freq (radians)
10

−2
10

−1
10

0
10

0

10
1

10
2

10
3

10
4

Q

normalized freq (radians)

10
−3

10
−2

10
−1

10
0

−40

−30

−20

−10

0

10

20

G
ai

n
(d

B
)

normalized freq (radians)

10
−3

10
−2

10
−1

10
0

−3

−2

−1

0

1

2

3

ph
as

e
(r

ad
ia

ns
)

normalized freq (radians)

Figure 3.83: Three-stage filter following the “X1” design method: Raw filter (no Lookup tables).
Top Left: Q vs. p, wideQ range, nomalized to DC value of separation curve. Top Right: normalized
to maximum value of separation curve. Bottom Left: representative frequency responses for a p
sweep (k = 0.8kmax). Bottom Right: Pole traces (Dark: constant k, Light: constant p).

3.3. MOOG-STYLE DISCRETE-TIME FILTER DESIGN 195

A closing thought

It is noted that the state-variable filter seemed to discretize much more easily than the Moog-style

filter. In particular, the infinite-Q contour was not a problem in the state-variable-filter’s discretiza-

tion. Here are a few theories as to why that may have been:

• The infinite-Q contour for the continuous-time state-variable filter occurs where the qq coef-

ficient equals zero, whereas for the Moog-style filter, it occurs on a non-zero value of the k

coefficient. It may be possible that the behaviors of a zero coefficient discretize better than

those of a nonzero coefficient. Note that this may be tied into the fact that these filters were

discretized by keeping the same topology in discrete time. As such, the a zero coefficient in

a feedback loop will have the same effect in continuous and discrete time (to block a signal),

whereas a nonzero coefficient’s action may not transfer as directly.

• A more likely interpretation is thus: The state-variable filter works by taking an undamped

system and damping it by applying feedback. As such, all that is necessary to recreate the

behavior in discrete-time is to create an undamped system which is dampable. The infinite-Q

contour is thus inherent to the filter (without touching anything). Doing anything further

damps the system (or destabilizes it), but the default of doing nothing gives exactly the de-

sired contour. In the Moog-style filter, on the other hand, we take an extremely damped

system (a bunch of real poles), and by applying feedback, undamp it (essentially destabiliz-

ing it). Thus, the default behavior is the highly damped state. The infinite-Q contour must

be reached by giving a very particular feedback gain, which (as we have seen) can be easily

affected by many different side-effects of the discretization. Interestingly, this interpretation

is further validated by noting the difficulty the state-variable has in keeping consistent be-

havior at very low Q, which in this way of looking at it, is at the other end of the Q control

from the default state, and thus most likely to be affected by discretization side-effects. This

may shed light on possible further directions for Moog-like four-pole exploration: can an in-

herently nondamped four-pole system be created with two poles on the unit circle and two

others highly damped, which (1) can be damped by feedback (without adversely undamping

the inner poles), (2) still has the loop structure and (3) saturates similarly to the original loop.

The saturation question is an interesting one. In such a structure, the outer feedback would

be highly attenuated in a high-Q situation, whereas in the current Moog-style topology, the

primary feedback has its highest gain near approaching infinite Q. That difference alone may

be enough to make this direction have strongly different saturation behavior.

Chapter 4

Bandlimited Waveform Synthesis

4.1 Introduction

Virtual Analog deals primarily with subtractive synthesis. As such, it requires harmonically-rich

waveforms from its oscillators. The classic analog waveforms (sawtooth, rectangle (square), and

triangle) fit this requirement by containing discontinuities either in the waveform or in a low

derivative. As such, they were effectively infinite bandwidth (within the limits of the analog cir-

cuitry).

Any such signal must be bandlimited to less than half the sampling rate before sampling to ob-

tain a corresponding discrete-time signal, or else images of the higher harmonics will end up in the

discrete-time signal (also known as “aliasing artifacts”). Similarly, a discrete-time signal which is

to be generated, if it is to model such a waveform, must be generated with the effect of such ban-

dlimiting, or else the generated wave will contain aliasing artifacts. Trivial methods of generating

such waveforms digitally contain aliasing due to having to round off the discontinuity time to the

nearest available sampling instant.

Aliasing produces distortions which are typically objectionable. Such artifacts are “grunginess”

(low-frequency changes in the signal character as the signal passes through various temporary

integer-period states, and slight clicks are other noise on the transitions), possible beating between

aliased partials which get too close to non-aliased partials, and spectral components which audibly

move in the opposite direction of the primary signal’s frequency motion. This last behavior is par-

ticularly noticeable in virtual analog, given the tendency to smoothly modulate frequency. Further,

among many users, the more they hear aliasing, the more attuned they become to it and the more

objectionable it becomes to them over time.

In this chapter, we will first review the generation of the waveforms in the analog domain,

and review our design philosophies, then we will review why digitally-generated waveforms tend

to alias, followed by an overview of existing methods for generating waveforms without aliasing

196

4.2. REVIEW 197

(or without significant aliasing). Next, we will present the concept of deriving the popular wave

types from impulse trains via purely linear operations, such that if a bandlimited version of the

impulse train can be generated, these other waves can be derived without introducing further

harmonics, and hence staying bandlimited. Finally, we will discuss the generation of bandlimited

impulse trains (“BLITs”), in the light of the previous exploration of existing bandlimited waveform

synthesis methods, and look at recent developments in the field.

4.2 Review

4.2.1 Analog Synthesizer Waveforms

The classic analog synthesizer waveforms were as follows ([37][119][107][108]:

• Sawtooth. This was typically implemented as some sort of integrator of controllable slope

with some method to reset it when a threshold value is reached. As such, the slope controlled

the frequency.

• Rectangle. (Aka “Pulse” or “Square”, though “Square” implies a 50% duty-cycle to many.).

This was typically implemented by offsetting a sawtooth and running through a comparator.

As such, the resulting wave’s duty cycle (the amount of time the wave is in the high state as

a percentage of the period) could be controlled via the offset amount. It is also noted that

one can also derive a rectangle wave by subtracting delayed sawtooth waves of the same

frequency. However, this technique was not used much in the analog days, as delay was a

difficult operation in analog, so would end up requiring the implementation of two sawtooth

generators instead. The comparator method was in general a much easier and smaller circuit.

As the system ran in continuous time, the fact that this was a strongly nonlinear operation

was of little consequence (whereas in discrete time, this is a very important fact).

• Triangle. This one was implemented by a variety of methods, including integrating a square

wave, implementing an integrator which flipped its slope when it reached the limits, or full-

wave rectifying a sawtooth (which was tricky, though, due to possible glitches on the saw-

tooth reset). Note that some called this wave a “sawtooth”. In fact, some implementations

allowed the up and down slopes to be varied, in which case a limiting case would be the

sawtooth as discussed above.

Note that sinusoidal waves were not necessarily implemented in analog synthesizers, at least as

sound sources, as the subtractive-synthesis philosophy required harmonically-rich signals, and the

sine wave was the opposite. However, many users would sometimes put a filter into self-oscillation

(if possible) in order to get a sinusoid. Note that many LFOs (“Low-Frequency Oscillators”, which

run a (usually) sub-audible frequencies to be used as control signals) also did not have sinusoidal

198 CHAPTER 4. BANDLIMITED WAVEFORM SYNTHESIS

outputs (again, the above shapes were the most common), though some synths did implemented

them as a wave-shaping of triangle wave to get an LFO with a smoother reversal than the triangle

[119] [37].

Note that the various waves could be derived from the sawtooth, a concept which will come up

again. However, we should note that the derivation in the analog world was usually via extremely

non-linear operations, such that these exact methods are not applicable for all discrete-time work

(though they can work just fine for low-frequency work, where aliasing is often not an issue).

4.2.2 Review of Design Philosophy

As discussed in Chapter 1 and Chapter 3, the general design philosophy for this work is that of

inexpensive modulatability: assume that the frequency and amplitude (and possibly other param-

eters such as pulse-width/duty-cycle, sync, etc.) may change to any arbitrary value from sample to

sample. Thus, not only should the basic waveform-generating algorithm be inexpensive, so should

the tuning mappings, if any.

As we will see, the primary tradeoffs for achieving this will be the amount of aliasing and pos-

sibly modulation quality. Some of the proposed algorithms will end up trading off some efficiency

in parts of the operation range for reduced aliasing. We will see other algorithms which take the

other extreme, implementing extremely efficient calculations at the expense of increased aliasing.

Finally, as before, we take as a basic assumption that oversampling is too expensive. As men-

tioned earlier, many of the issues discussed in this chapter become almost trivially easy when over-

sampling (i.e. trivially-calculated waves are sufficient). As such, in a rather large-grained tradeoff,

we choose to ignore oversampling in favor of calculation at “low” sample rates (typically some-

where between 22 kHz and 48 kHz), and in favor of having something interesting to work on.

However, if a designer can get away with oversampling (or if some other part of the system con-

tains nonlinearities which must be oversampled), we will not discourage them.

4.2.3 Why Trivially-Calculated Discrete-Time Pulse Trains Alias

The “obvious” way to generate a discrete-time version of an impulse train is to approximate it by a

unit-sample-pulse train. The unit sample pulse δ(n) is defined as

δ(n) ∆=

{
1, n = 0

0, |n| = 1, 2, 3, . . .
(4.1)

However, the unit-sample pulse only exists on integer sample locations (i.e., we cannot put an

impulse on a fraction of a sample, though we will later attempt to approximate doing so. Every-

thing in discrete time must happen on integer sample locations), so we have a problem when a

4.2. REVIEW 199

0 5 10 15 20
0

0.2

0.4

0.6

0.8

1

impulse train

0 5 10 15 20
0

0.2

0.4

0.6

0.8

1

Box Train, and Sample Positions

0 5 10 15 20
0

0.2

0.4

0.6

0.8

1

Rounded−Time Pulse Train

Figure 4.1: Rounded-Time Impulse Train as a Sampled Version of an Ideal Rectangular Pulse Train

200 CHAPTER 4. BANDLIMITED WAVEFORM SYNTHESIS

periodic wave’s period 1/f1 is not an integer, which is nearly always the case (it is only an integer

if fs/f1 is an integer, where fs is the sampling rate).

It does not work to round the period M to the nearest integer, except at low frequencies, since

for short periods, the set of achievable frequencies fs/M would be extremely sparse. Therefore,

to make the pitch right, it is necessary to compute the impulse arrival times accurately and round

each arrival time to the nearest sample instant, such that their periods average out to the correct

value. This process can be thought of as phase jitter which adds noise to the signal.1 It can also

be modeled as a uniform sampling of a sequence of rectangular pulses one sample wide centered

on the ideal periodic impulse-train locations (Figure 4.1) (i.e., the impulse train convolved with a

one-sample-wide box function, then sampled on the sample periods).

box(t) ∆=

{
1, |t| ≤ T/2

0, |t| > T/2
(4.2)

The Fourier transform of the box is a sinc function

Box(ω) ∆=
∫∞
−∞

box(t)e−jωtdt = T sinc(fT) (4.3)

where ω = 2πf , and

sinc(x) ∆=
sin(πx)
πx

. (4.4)

A periodic sequence of these box functions is constructed as

x(t) ∆=
∞∑

l=−∞
box(t + lT1) (4.5)

equivalent to convolving an impulse train of period of T1 with the box function. Its Fourier trans-

form is:

X(ω) ∆=
∞∑

l=−∞
ejωlT1Box(ω)

∝ Box(ω)
∞∑

l=−∞
δ(ω − lω1)

∝
{

Box(lω1), ω = lω1

0, ω 6= lω1, ∀l

where δ(ω) denotes the discrete-time delta function, and ω1 = 2πf1. Thus, the rectangular-pulse

train has an infinite harmonic spectrum weighted by a sinc function having zeros at multiples of

the sampling rate fs (because the original rectangular pulse was taken to be one sampling interval
1Since the jitter is within one sample, the smaller the period, the larger percentage of a period is the jitter. This is one

explanation for why aliasing is less audible at low frequencies: the jitter is a nearly insignificant percentage of the period.

4.2. REVIEW 201

wide). Since the sinc function has a lot of energy above its first zero crossing, sampling x(t) will

cause aliasing of an infinite number of harmonics whose amplitudes have a lot of energy (they fall

off at 6 dB per octave (since sinc(fT) falls off as 1/f)). The harmonics under the outer half of the

main lobe of the sinc function will also alias. Sampling, we get

y(n) ∆= x(nT) ↔

Y (ejωT) ∝
∞∑

k=−∞
X(ω + k2πfs)

=
∞∑

k=−∞
Box(ω + k2πfs)

×
∞∑

l=−∞
δ(ω + k2πfs − lω1)

The desired pulse-train spectrum is only the k = 0 term above. Each nonzero k term contributes a

string of aliased of harmonics across the entire frequency band. The amount of aliasing is highly

significant and audible, as can be predicted from looking at an example spectrum (Figure 4.2, top

plot).

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
−100

−80

−60

−40

−20

0

freq (normalized to f
s
)

am
p

(d
B

)

Rounded−Time Impulse Train

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
−100

−80

−60

−40

−20

0

freq (normalized to f
s
)

am
p

(d
B

)

Rounded−Time Rectangle Wave (50% duty cycle)

Figure 4.2: Top: Spectrum of a rounded-time impulse train with a frequency of 0.1828fs. Bottom:
Spectrum of a rounded-time square wave of the same frequency.

The only frequency which does not see any aliasing is DC, since the sinc spectral envelope

goes through zero at all multiples of the sampling rate (which are the frequencies which would

alias onto DC). For this reason, the aliasing also is reduced at very low frequencies relative to

the sampling rate. This provides another explanation why the aliasing is not as objectionable for

202 CHAPTER 4. BANDLIMITED WAVEFORM SYNTHESIS

low fundamental frequencies (where the nearest-integer roundoff is an insignificant fraction of the

period): The aliased frequencies that would tend to be most noticeable — those near or below the

fundamental frequency — are most attenuated.

The above analysis extends to rectangle waves: the trivially generated rectangle wave has its

transitions rounded to the nearest sample. Since a rectangle wave can be viewed as the integration

of a bipolar impulse train (one with pulses of alternating sign, see Section 4.3.2), we get a spectrum

which has similar aliasing (Figure 4.2, lower plot). Because of the integration, there is a different

tilt to the spectrum, but the aliasing is still very strong.

Trivial Sawtooth Trivial Square

0 0.2 0.4
−60

−40

−20

0

freq (norm)

Saw. Spec.

0 0.2 0.4
−60

−40

−20

0

freq (norm)

Sq. Spec.

Figure 4.3: Spectra of Trivial Sawtooth and Square-Wave Signals, Low Frequency, note how the
aliased harmonics wrap back and forth in the spectrum between the “correct” harmonics

A similar argument applies to explain why sawtooth signals alias: If the unit-amplitude saw-

tooth is generated by

s(n) = (f1nT)mod 1 (4.6)

where f1 is the desired frequency, then it can be shown to be simply a sampling of a continuous-

time (“analog”) sawtooth of equivalent slope. Since the analog sawtooth is not bandlimited, the

sampled version will be aliased.

This is slightly different from a rounded-time retriggered sawtooth (i.e. a phase ramp which is

reset to zero whenever it is determined that a new period is starting). It differs from the previous

4.2. REVIEW 203

Trivial Sawtooth Trivial Square

0 0.2 0.4
−60

−40

−20

0

freq (norm)

Saw. Spec.

0 0.2 0.4
−60

−40

−20

0

freq (norm)

Sq. Spec.

Figure 4.4: Spectra of Trivial Sawtooth and Square-Wave Signals, High Frequency. The aliased
harmonics are quite prominent, and would be very audible.

sawtooth in that the reset value is a constant (i.e., zero), whereas the previous algorithm “resets” to

a value that is equal to the amount by which the wave had exceeded the threshold). Such a wave

can also thus be described as the convolution of a discrete-time copy of a single cycle of a sawtooth

wave with a rounded-time impulse train, which was just shown to be aliased as well.2 Since a single

cycle of a sawtooth has a Fourier transform which falls off at 6 dB per octave (all discontinuous

waveforms have spectral fall-offs no faster than 6 dB per octave [200]), it follows that the spectrum

of the rounded-time retriggered sawtooth also falls off at 6 dB per octave. Therefore, sampling it

causes aliasing in an amount similar to that in the sampled rectangular pulse train.

Note that this description of rounded-time retriggered sawtooth (i.e. convolving a rounded-

time impulse train with a shape) also describes a few vocal synthesis algorithms, particularly for-

mant synthesis methods, such as VOSIM [133], Chant [225] (see also [221]). These also relate to

the “PET” (periodic excitation table) method of commuted synthesis of bowed-string instruments

[129], whereby a violin-body impulse response is periodically played into a string, controlled by a

rounded-time impulse train (when used in a non-interpolated setting). It is also related to window-

function synthesis [92] (summarized in [221]), where a rounded-time impulse train is multiplied by

2With the variable addition or subtraction of the last sample of this single-cycle shape, depending on the actual rounded
number of samples in a particular period.

204 CHAPTER 4. BANDLIMITED WAVEFORM SYNTHESIS

an amplitude pattern, and then convolved by a Blackman window. In all these cases, a possibly

non-integer period is convolved with the impulse response of some formant filter (or lowpass fil-

ter in the case of window-function synthesis). These perhaps overlap if the period is short. The

impulse-response start times are quantized to the nearest sample, thus causing pitch-period jitter.

As will be seen later on, this jitter can be reduced or removed by estimating the subsample-location

of each impulse, and translate that into interpolated resampling of the impulse responses (a dif-

ferent subsample resampling for each pulse). When most of these methods were derived, such a

resampling was considered very expensive, so it appears not to have been done in practice. We will

see later, though that the interpolated version of this idea is the basis for the BLIT-SWS method.

4.2.4 Bandlimited Synthesis Review

There has been quite a bit of work done on the generation of waveforms with little or no aliasing, as

from the beginning of digital music research, aliasing has been a constant problem. As such, most

overview books give at least some discussion to the topic ([221], [65]) Vesa Välimäki has recently

published a good review of the field as well [276], and as such mentions much in common with

this review (though with a slightly different but technically similar taxonomy).

In this section, we will look primarily into methods for generating bandlimited versions of

general waveforms. In a later section, we will look at some more specific methods for generating

bandlimited impulse trains. Algorithms specifically for impulse trains will not be discussed in this

section.

4.2.5 Bandlimited Synthesis Review: Steady-State Algorithms

In this section, various preexisting methods for synthesis of general bandlimited waveforms will be

reviewed. In particular, this section looks at methods which calculate waves using a “steady-state”

assumption.

For some background, imagine a truly bandlimited impulse train, which can be viewed as a

train of sinc functions centered on each impulse location. Since ideal sinc functions have infinite

extent in time, the value of the resulting signal is an infinite sum of such sincs: the value at any par-

ticular time is affected by the center locations and scales of all of these sincs, both in the past and in

the future. This thought experiment can be extended to other waveforms as well: the bandlimited

version of a cycle of a periodic waveform is its convolution with a sinc function, and hence each

point in the final sum is theoretically affected by all past and future periods.

Steady-state waveform synthesis algorithms are based on the assumption of true periodicity, as

that allows the past and future periods to be predicted. The algorithms generate the values of a

wave as though it were exactly periodic for all time (usually by implementing some closed-form

solution or otherwise recording the solution). As such, they are exact if the waveform does not

4.2. REVIEW 205

ever change. Any change in their parameters with time breaks this assumption, but it is usually

assumed that the effect of such a break wold be inaudible (or hidden by the fact that it may only

occur rarely). However, if changes happen repeatedly, as when the system is being modulated

(FM, AM, sync), the effect may become noticeable. In Section 4.4.4, we will look into this issue.

As a restatement, steady-state algorithms generate, for any point in time, samples of the ban-

dlimited version of a waveform as though it were exactly periodic. They can achieve bandlimiting

by being able to predict the history and future of the wave and thus predict at design time and

implement the required math to generate a signal that will be bandlimited.

Additive Synthesis using Discrete Oscillators

Additive synthesis is trivially bandlimited simply by not generating harmonics higher than Fs/2;

typically this also presents a computational savings, in that those harmonics need not be calculated.

The central idea of additive synthesis — that a sound can be constructed from a superposi-

tion of a number of sinusoids — is based on the concept of the Fourier transform and its inverse,

which take an infinite range of time into account. In fact, any signal which is not infinite in time

corresponds in the frequency domain to localized continuua of frequencies, rather than discrete

frequencies [26]. In other words, any signal represented by discrete frequencies (i.e., individual

sinusoids) actually exists infinitely in time, and is hence a steady-state representation.

Additive synthesis is unlike the other steady-state methods in that it does not precalculate the

harmonic superposition (rather it creates it by brute-force summation), as such, its artifacts in the

presence of modulation tend to be a bit different. Since theoretically we can modulate all the com-

ponent oscillators, we can tend to get what appears to be a modulated signal audibly free of ar-

tifacts. However, it is usually the case that the signal being generated does not match the ideal

signal being approximated. For example, if only modeling frequencies up to a certain limit, then

frequency components due to modulation of otherwise inaudible harmonics past the limit, which

would otherwise come down into the audible range, would be left out of the final signal. However,

such frequencies are usually not missed by the listener.

The primary drawback of this method is the cost of the calculation of the oscillators. Figure 4.18

(on p. 232) shows the number of harmonics below half the sample rate for frequencies in various

ranges, and we can see that at low frequencies, the number of harmonics easily becomes unwieldy,

if not inefficient. However, at very high frequencies, the number of harmonics is actually quite

low, and one might consider using discrete-oscillator additive in hybrid with some other technique

with an opposite cost trend (i.e., one which gets more expensive at high frequencies but is rather

inexpensive at low frequencies).

Variations on additive synthesis have been proposed over the years, including Inverse-FFT syn-

thesis (to be discussed later), group additive [143] (grouping a large number of harmonics into a

206 CHAPTER 4. BANDLIMITED WAVEFORM SYNTHESIS

smaller number of wavetables which are combined on playback), and multirate additive [202]. Fi-

nally, just about any method can be used in additive-like ways, by simply adding together multiple

waveforms that have relatively simple spectra to produce a more complicated spectrum.

Wavetable Synthesis

One of the very earliest synthesis techniques used in computer music was periodic wavetable syn-

thesis [163] (not to be confused with sample playback synthesis which is also called wavetable

synthesis these days). In this technique, a wavetable contains only one period of the desired tone,

sampled at a high rate, such as N = 512 samples per period. Playing out the table repeatedly

generates a periodic waveform with fundamental frequency fs/N, where fs is the sampling rate.

Skipping every other sample on playback yields a fundamental frequency of 2fs/N and so on. In-

termediate frequencies f0 are obtained using a non-integer skip-factor, or “phase increment,” given

by inc = Nf0/fs; in such cases, the wavetable address has a fractional part which is often either

discarded or used to round to the nearest integer (which only works if the wavetable is sufficiently

oversampled, usually requiring a very large oversampling factor), or it is used to determine an

interpolated table value. By far the most common interpolation technique is linear interpolation.

However, higher order interpolation methods, especially Lagrange [227] and bandlimited interpo-

lation [242], have been used commercially. Moore presented a classic analysis of interpolation-error

noise versus table length for sine-wave tables in [174], which may be applied to the harmonics of

the table.

Interpolated wavetable synthesis is not guaranteed to be bandlimited when the phase incre-

ment is larger than one sample. In these cases, one is performing the equivalent of a decima-

tion of the waveform, with the decimation factor being equal to the phase increment in samples.

Therefore, for nonsinusoidal wavetables, an upper bound (for a particular quality or lack of alias-

ing) is imposed on the phase increment by the highest harmonic of the signal in the wavetable

(max(Inc) = Nf0/(fsnh), where nh is the harmonic number of the highest harmonic.). In such sit-

uations, higher-order interpolation may be used to effectively perform an antialiasing filter on the

waveform. However, the required filtering can become expensive. In general, one can consider the

problem to be one of sample-rate-conversion, where the output sample-rate is varied to produce

various pitches, with high pitches requiring a high conversion ratio and hence requiring a nar-

row antialiasing filter. If the restriction on exact bandlimiting is relaxed, then the phase increment

can have a higher bound, based on the highest harmonic whose amplitude is large enough to be

objectionable when aliased.

Interpolated wavetable synthesis is equivalent in principle to additive synthesis employing a dig-

ital sinusoidal oscillator on every harmonic. In practice, wavetables were generally computed as a

weighted sum of harmonics up to some maximum harmonic number (though in recent years, they

may simply be processed recordings of a waveform). Thus, we may either add the outputs of N

4.2. REVIEW 207

oscillators together, or we may add their effective wavetables together with the same weightings to

obtain a single wavetable oscillator. If the highest harmonic frequency is well below half the sam-

pling rate, and/or if the harmonic amplitudes decrease rapidly with harmonic number, as normally

happens in natural waveforms, inexpensive interpolation techniques such as linear interpolation

can give high quality results. In the presence of modulation, this precalculation of the summed

harmonics can be the source of artifacting (see Section 4.4.4).

Bandlimited Interpolation

Here we look a bit deeper at the sample-rate conversion interpretation given above. We follow

concepts described in [242].

For a general discrete-time signal x(nT), exact bandlimited interpolation, which we call sinc

interpolation, is carried out by placing a sinc function whose zero-crossing width is the sampling

period T on each sample and summing them all up. This is interpretable as reconstructing the

sequence into continuous time using a brickwall reconstruction filter (the sincs).

To resample x(t) at a new sampling rate f ′s = 1/T ′, we need only evaluate the sum at integer

multiples of T ′, as long as the output sampling rate is higher than the sampling rate of x, otherwise,

x must be filtered with an antialiasing filter to remove harmonics which would be above half the

new sampling rate. This is often accomplished in many design procedures by changing the width

of the sinc in the above equations to the larger of T and T ′.

Now, the summation cannot be implemented in practice, because the sinc functions actually

extend infinitely in time. It is necessary to window the ideal impulse response so as to make it

finite. The Fourier transform of the window determines the rolloff rate of the equivalent lowpass

filter, and hence the probability of aliasing. This is also the basis of the window method for digital

filter design [212]. (See also the fir1() function in Matlab.) While many other filter design tech-

niques exist (e.g., [14]), the window method is simple and robust, especially for very long impulse

responses. The filter impulse response ends up being very long because for most implementations

it is heavily oversampled to increase its accuracy when used as a lookup table. Interpolation tech-

niques of this nature which approximate sinc interpolation in the frequency domain are generally

referred to as bandlimited interpolation techniques [227, 53, 242].

In general, this level of interpolation is not used in practice for wavetable playback. Most sys-

tems resort to some low-order polynomial (first-order (i.e linear interpolation) being the most com-

mon, but orders up to 10-15 have been used in commercial synthesizers).

Exact Wavetable Interpolation Schanze showed in [228] that a periodic wavetable of length N

can be ideally reconstructed with the information in just one period, by noting that the overlapping

208 CHAPTER 4. BANDLIMITED WAVEFORM SYNTHESIS

of the periodic sinc functions would produce the periodic sinc (or time-aliased sinc) function:

SincN(t)
∆=

sin(πt)
N sin(πt/N)

(4.7)

And that therefore a periodic reconstruction can be performed by placing a SincN on each sample

of the period and summing these (a finite sum). A more detailed derivation can be found in [239]

and [248]. However, just as the bandlimited interpolation mentioned in the previous section is

rarely used in practice in favor or low-order polynomial interpolations, this method is rarely used

in practice for synthesis.

“Bank of Wavetables”, a.k.a. “MIP Mapping” Given that wavetable technology has become

the de facto standard for most synthesis hardware and a large percentage of synthesis software,

many systems are well-suited to wavetable-based methods. Now, the method described above has

shortcomings when the system must resample the wavetable upwards at a large ratio, especially if

the wavetable is not oversampled.

However, taking a technique from sampling synthesis, we can distribute multiple samples

across the pitch space and transition between them as we vary frequency. Now, most sample-

based synthesizers already have this capability, but they only choose which sample to use at the

start of a note. However, since virtual analog can theoretically sweep over the entire frequency

range at any moment (regardless of when the “note” might have started), the algorithm needs

adjustments to continuously choose which wavetable(s) to use. Such modifications are often not

difficult, depending on the synth architecture.

As such, one can set up a system whereby a wave bank is set up with tables containing various

numbers of harmonics (for example, in an octave-spaced bank, each wavetable would have twice

the number of harmonics as the previous one). These can then be switched between and the max-

imum upsampling ratio therefore limited, thus allowing the implementation of more inexpensive

interpolation.

However, since switching instantaneously between wavetable banks as the frequency crosses

certain boundaries would usually cause discontinuities in the signal (i.e., clicks), a further exten-

sion of the algorithm is to interpolate between adjacent wavetables according to the location of the

fundamental frequency in the current octave, essentially “fading out” or “fading in” the waveta-

bles, so that they do not come into and out of existence discontinuously. Note that this implicitly

assumes that all the harmonics that are in common between neighboring tables are of the same

amplitude, frequency, and phase, so that interpolating between them will not get any unexpected

cancellations (i.e., only the harmonics that are different between tables should change with the

interpolation amount).

We should note that this method has a clear parallel in the world of computer graphics, whereby

surface texture maps are split into a series of increasingly lowpassed pre-filtered maps in order to

4.2. REVIEW 209

implement much simpler on-the-fly texture resampling. In that world, the technique is called “MIP

Mapping”, introduced in 1983 by Lance Wiliams [289]. Interestingly, some have begun calling this

multi-wavetable synthesis method by the same name, since the connection is obvious once one

realizes it.

This method can implement just about any static waveform, and via combinations of sawtooths

can produce pulse-width modulation without requiring changes to the waveforms. However, mod-

ifications such as sawtooth slope modulation cannot be directly implemented without moving to

further interpolation axes in the wavetable bank (actually quite straightforward, though memory

usage grows fast with increasing interpolation dimensions).

There are some design tradeoffs that can be made in deciding how the wavetables are laid out

in memory. In graphical MIP Mapping, the filtered versions of the textures are also downsampled,

so that they take up less space (in other words, each level is “critically sampled”). In an octave-

spaced bank, the whole bank would thus take less than twice the size of the bottom octave, as

each subsequent octave’s bank would be half the length. However, this would require a bit of

extra pointer math to derive the pointers into each of the wavetables (though in a fixed-point-

phase system, that should be just a shift). Another possibility is to have all of the wavetables the

same size. This uses much more memory (N times the number of tables in the bank), but has the

advantage that a single phase offset can be used to index into all the tables.

This method has been described by Phil Burk in [31] and used in his late-1990s synth JSyn

[30]. Julius Smith and the author also mentioned the method in class lectures [250] around that

time, and there are anecdotal mentions of it already being used by a few commercial synthesizer

manufacturers by then.

In general, this technique is very useful, straightforward to understand and implement, and

depending on memory cost and speed, probably quite efficient. As such, it may be the preferred

implementation for many designers. However, on systems where memory is a premium, or mem-

ory access is slow, this technique is much less desirable.

DSF Synthesis

In [175] (partially summarized in [65, pp. 149–154] and [221, pp. 260–261]), Discrete-Summation

Formulae (DSF) are proposed for synthesizing bandlimited periodic signals based on the identity3

N−1∑
k=0

zk =
1 − zN
1 − z (4.8)

and replacing z with the exponential form sin(x) = (ejx − e−jx)/(2j) (or the cosine form cos(x) =

(ejx + e−jx)/2). After some algebra and various trigonometric identities, the sum of a geometric

3Note that Winham and Steiglitz [292] also described similar equations for use in sound synthesis

210 CHAPTER 4. BANDLIMITED WAVEFORM SYNTHESIS

series of sinusoids can be derived:

N−1∑
k=0

ak sin(θ + kβ) =

[
sin(θ) − a sin(θ − β) − aN sin(θ +Nβ)aN+1 sin

(
θ + (n − 1)β

)]
1 − 2a cos(β) + a2 (4.9)

By setting θ and β to various values, a wide class of bandlimited waveforms can be generated.

Bandlimiting is achieved by controlling N such that the highest frequency generated is less than

fs/2 (for example, for θ = 0 and β = f1t,N = bfs/(2f1)c+1). Note that Csound’s buzz and gbuzz

unit generators implement this method [22].

This method is a classic example of a steady-state method: it assumes a set of discrete sinusoids

and uses a closed-form version of the sum to calculate the waveform.

4.2.6 Bandlimited Synthesis Review: Non-Steady-State Algorithms

As opposed to steady-state algorithms, which generate for any point in time a sample of a wave that

is assumed to be exactly periodic, non-steady-state algorithms make no assumption of periodicity.

Instead, they only consider the signal locally in time. The extreme of such locality is to consider

only the value at the current point in time, and the “trivially-generated” wave algorithms fall into

this class. These algorithms simply calculate the ideal waveform at any point in time. Of course,

as we have noted, such waves are aliased. To apply bandlimiting (i.e., filtering) to such algorithms

requires that their “window of locality” be made wider than just a single sample. Bandlimited ver-

sions of such algorithms thus must generate a filtered version of their ideal signal. However, since

non-steady-state algorithms assume that the signal will change over time, and since the extent of

the filtering is limited by processing capability, the filtering must have a finite extent. That is where

this class of algorithms breaks with the ideal: by limiting the extent of the effective bandlimiting

filters to some finite width in time, and hence limiting their filtering to some finite rolloff rate (thus

never completely removing aliasing, rather just reducing it strongly).

By not being able to predict the history and future of the waves, as is possible in the steady-state

assumption, these methods must specifically perform bandlimiting “on the fly” during playback.

This usually involves implementing, either directly or via some assumption-based simplification,

some sort of high-quality resampling.

Oversampling Trivially-Generated Waves

This is the most straightforward method for generating approximately bandlimited signals, and it

has the desirable property of applying to any waveform that can be calculated, as the bandlimiting

is implemented brute-force as part of the downsampler, and is thus independent of the wave being

generated. Most other bandlimited-wave generation algorithms limit the waveform selection in

some way to just those waves which apply to the particular simplifications of the bandlimiting that

4.2. REVIEW 211

are implemented. On the other hand, since oversampling implements its bandlimiting by brute-

force methods, it tends to be rather expensive.

To repeat a phrase from elsewhere in this thesis: Oversampling makes things easy, but expen-

sive.

However, the waves are usually trivial to generate in this domain, so if oversampling is neces-

sary for other reasons, this methods is easy and works.

Note that when using oversampling, one tends to stay away from implementing impulse trains.

In order to assist the downsampling antialiasing filter, one is better off generating waveforms which

have some sort of rolloff in their harmonic amplitudes. Impulse trains do not have any rolloff in

their harmonic amplitudes, so one stresses the downsampler most strongly with such waveforms.

Reduced-Aliasing Shaped Waves

Algorithms of this type tend to implement the simplest approximations to bandlimiting that are

possible. Usually, these algorithms are derived not in terms of bandlimiting, but in terms of reduc-

ing the amount of harmonic energy.

Typical early algorithms were attempts at inexpensive sine-wave generation. For example, a

triangle wave may be turned into an approximation of a sine wave by running it through a poly-

nomial which implements the first couple terms of the Taylor-series approximation of sine, or one

of any number of other approximations to that shape. Other examples include the use of a bipolar

parabola as a cheap approximation to a sine.

Later, Lane et al. described a method [150] for generating a reduced-aliasing harmonically-rich

waveform by taking the absolute value of a sine wave and filtering it to give the desired rolloff rate

(in their case a sawtooth rolloff), and also to remove high-frequencies, where aliasing is worst. Of

course, such an algorithm still has aliasing problems when the aliasing components descend into

the region not being filtered out, and hence the method tends to have a low upper frequency limit.

Recently, Vesa Välimäki has approached sawtooth generation (and hence rectangle-wave gen-

eration by the method of subtracting two sawtooths) from this perspective [275] (further analyzed

in [276] and [277]), applying preemphasis and noise shaping concepts to the waveform generation.

The technique is called “differentiated parabolic wave” (DPW), and the general concept is that a

sawtooth is the derivative of a piecewise parabolic wave. Since the parabolic wave was harmon-

ics that fall off twice as fast as those of a sawtooth (due to the integration/differentiation relation

between them), its aliasing components will have dropped to lower amplitudes by the time they

wrap around back to the audio band. Thus, when this signal is re-differentiated, which boosts

the high frequencies of the discrete-time signal, the aliased components in the low frequencies will

stay at their low amplitudes (particularly compared to where they would be in a directly-generated

sawtooth).

In the same paper, an enhanced version of the algorithm which performs the initial steps at an

212 CHAPTER 4. BANDLIMITED WAVEFORM SYNTHESIS

oversampled rate (2X is described), which then antialiased and downsampled before performing

the differentiation at the base band. Since, in general, calculating signals at oversampled rates

causes them to have reduced aliasing (as long as the downsampling antialiasing filter is works

well), the result is further reduced aliasing, primarily at the cost of the antialiasing filter (since the

parabolic wave calculations are quite inexpensive, even oversampled). The paper discusses the

pros and cons of extremely low order antialiasing filters, in particular 2-point averaging, which at

2X oversampling will notch those frequencies that would alias to and near DC. Within the goal

of extreme low cost, that was considered sufficient. In [276], higher-order filters are analyzed. In

[277], the extension to controllable-duty-cycle square-waves is presented (by subtracting sawtooths

of different phase offset), and a triangle-wave method is presented which works very similarly to

the sawtooth algorithm by differentiating a bipolar parabolic wave.

These methods take one extreme of the cost-vs.-aliasing tradeoff by implementing extremely

inexpensive algorithms at the cost of some midrange aliasing.

Additive Synthesis Using Inverse FFT

Additive synthesis systems that use the inverse FFT to compute the oscillators [224] [154] [153] are

bandlimited, by definition, because the inverse FFT only generates frequencies up to Fs/2. Sim-

ilarly, frequency aliasing is trivially avoided since such frequencies would have to be specifically

modelled. Instead, in inverse-FFT synthesis, time-aliasing is the issue to worry about.

IFFT-based additive synthesis straddles the duality between frequency and time, and as such,

can in some situations be viewed as a steady-state synthesis method, and in other situations viewed

as more localized in time. Since any particular frame represents a specific limited range of time,

and since frames are generally crossfaded by virtue of some sort of overlap-add technique, many

artifacts which might otherwise occur due to its local steady-state nature may be made relatively

unnoticeable.

Note that fast modulation of the oscillator is tricky in IFFT synthesis. Modulation that must

occur near or faster than the frame rate must be turned into the equivalent effect on the spectrum.

Work has been done on deriving the spectral bin values necessary for various sub-frame pitch

trajectories [96], but it requires special-case math depending on the shape of the modulation, and

so it is difficult to add general modulation into the method.

As mentioned previously, the major drawback of additive synthesis is the amount of data that

must be handled to perform the synthesis. The existence of the other inexpensive algorithms men-

tioned in this chapter, such as the DPW and various BLIT/BLEP algorithms, tend to make IFFT-

based synthesis seem like a bit of overkill for Virtual-Analog signal generation, though it is very

useful in more general sound-synthesis applications.

4.3. DERIVING WAVEFORMS FROM OTHER WAVEFORMS 213

4.3 Deriving Waveforms from Other Waveforms

As we saw in the introduction, there is a history in analog synthesis of deriving waveforms from

other waveforms. We have also seen in the review some further cases where this was done as part

of a waveform derivation, in order to help reduce aliasing. It was also noted that many of the

analog methods are unfortunately highly nonlinear, such that their use in digital implementations

would generate significant aliasing (or exacerbate any existing aliasing), so would not be of much

use, except at particularly low frequencies, where aliasing is not as audible.

4.3.1 Linear Operations

However, it is possible to modify signals via linear operations as well as by nonlinear operations.

Linear operations will not generate any frequencies not already in their input signals so that, if a

bandlimited signal is presented to a linear operation, its output will remain bandlimited.4

We have already come across the use of summation to turn two sawtooth waves (or one delayed

sawtooth wave) into a rectangle wave. Summation is of course linear, and thus if the sawtooths are

bandlimited, the rectangle will be bandlimited as well.

We will now discuss the concept of deriving sawtooth, rectangle, and triangle waves from im-

pulse trains. Since impulse trains are in some ways nearly degenerate signals, it is conjectured that

bandlimited versions can be more easily generated than more general signals might be (this will be

the subject of Section 4.4). This method was first presented by the author and Julius Smith in [248].

4.3.2 Successive Integration of BLIT

It turns out that the three classic waveforms can all be derived from impulse trains via the appli-

cation of integration in various combinations: Sawtooth and Rectangle from single integrations of

impulse trains and Triangle from a further integration of the Rectangle wave.

Sawtooth from BLIT

A continuous-time sawtooth function can be generated as follows:

SawCTS(t) =
∫ t

0
CIT(τ) − C1 dτ (4.10)

where CIT(τ) is a continuous-time impulse train, and C1 =
∫T

0 CIT(τ) dτ , the DC component of

4However, if low-level aliasing components exist in the input, a linear operation might amplify them.

214 CHAPTER 4. BANDLIMITED WAVEFORM SYNTHESIS

the impulse train. This converts directly to discrete-time (via the impulse-invariant transform):

Saw(n) =
n∑
k=0

BLIT(k) − C2

⇔ Saw(z) =
z

z − 1
(BLIT(z) − Z(C2))

Saw(n)BLIT(n) z
z-1

C2

Figure 4.5: Direct Sawtooth Generation

which is trivially implementable with a single sum and one-pole digital filter. For example,

see Figure 4.6. The offset C2 is the average value of BLIT , which should be subtracted off to keep

Figure 4.6: Generating a sawtooth. A BLIT (upper signal) is integrated (with the DC value re-
moved) to get a sawtooth (lower signal).

the integration from ramping off to infinity (or saturating). C2 is a function of frequency (for the

4.3. DERIVING WAVEFORMS FROM OTHER WAVEFORMS 215

steady-state case, C2 = a/T , where T is the period of the impulse train, and a is the amplitude of

the pulses. Depending on the initial conditions of the integrator, a DC offset may end up on the

output of the integrator (this will be discussed in Section 4.3.3). Alternatively, the BLIT could be

passed through a DC blocking filter such as

Block(z) =
z − 1

z − (1 − ε) (4.11)

Which will have the effect of drifting the BLIT down by the right amount to have no DC component,

and thus no offset need be calculated (though one may want to be careful about the width of the

notch in the DC blocker versus the BLIT frequency, else the low harmonics of the BLIT may also

be attenuated: the tradeoff is between low-harmonic attenuation and responsiveness to changes in

the DC value of the BLIT due to changes in frequency).

Rectangle from BP-BLIT

A continuous-time rectangle wave can be computed as:

RectCTS(t) =
∫ t

0
CIT(τ) − CIT(τ − t0) − C3 dτ

Which discretizes to:

Rect(n) =
n∑
k=0

BLIT(k) − BLIT(k − k0) − C4

=
n∑
k=0

BP-BLITk0(k) − C4

⇔ Saw(z) =
z

z − 1
(BP-BLITk0(z) − Z(C4))

Where BP-BLIT is a “BiPolar” BLIT, whose pulses alternate sign. See Figure 4.7 for an example. See

Section 4.4.2 for discussion on methods for efficiently generating BP-BLIT. It turns out that a bipolar

impulse train has a DC component of zero, which means that C3 = 0 (and subsequently C4 = 0).

The rectangle width is controlled with k0 (the spacing between an “up” pulse and the subsequent

“down” pulse, in samples), which can be varied to give PWM (pulse-width modulation). The

range of k0 in these equations is [0,Period] (or, depending on the implementation of the BLIT, the

PWM control may also be in the range [0,1]). Depending on the initial conditions of the integrator,

there may be a DC offset on the output. Also, time-variation of k0 and/or the BP-BLIT frequency

will cause temporary DC offsets which can get “caught” in the integrator (we will look into this in

Section 4.3.3).

216 CHAPTER 4. BANDLIMITED WAVEFORM SYNTHESIS

Figure 4.7: Generating a rectangle wave. A bipolar BLIT (upper signal) is integrated to get a rect-
angle wave (lower signal).

We can also note the relation between integrating BP-BLIT and subtracting sawtooths: essen-

tially the integration is transposed with the subtraction:

Saw(n) = Integrate(BLIT(n) − C1)

Rect(n) = Saw(n) − Saw(n − k0)

Rect(n) = Integrate(BLIT(n) − C1) − Integrate(BLIT(n − k0) − C1)

Rect(n) = Integrate(BLIT(n) − BLIT(n − k0))

Rect(n) = Integrate(BP-BLITk0(n))

Since the DC offsets are dependent on the BLIT frequency and since both sawtooths have the same

frequency, they would have the same internal offsets (assuming other offsets due to time-variation

are taken into account).

Triangle from Rect

A triangle wave can be generated as:

TriCTS(t) =
∫ t

0
RectCTS(τ) − C5 dτ (4.12)

4.3. DERIVING WAVEFORMS FROM OTHER WAVEFORMS 217

Where C5 is the DC component of the rectangle wave: C5 =
∫T

0 RectCTS(τ) dτ . This discretizes to:

Tri(n) =
n∑
k=0

Rect(k) − C6

⇔ Tri(z) =
z

z − 1
(Rect(z) − Z(C6))

Rect(n)

z
z-1

C4

Tri(n)

C6

BP-BLIT

BLIT(n)

BP-BLIT(n)

duty-cycle: d

frequency: f
g(f,d) z

z-1

amp amp

amp

Figure 4.8: Rectangle and Triangle Generation

The offsetsC5 andC6 are functions of the rectangle wave duty cycle and of a DC offset that arises

from the initial conditions of the integration that produces the rectangle wave: C6 = k0/Period+C7.

C7 is a function of BLIT(0), the initial condition of the integration. To get appropriate amplitude on

the triangle wave (so that its extrema are the same size as those of the BLIT and Rectangle wave), a

frequency- and duty-cycle-dependant scaling must be performed on the Triangle integration:

Tri(n) =
n∑
k=0

g(f, d)(Rect(k) − C6)

g(f, d) =
2f

d(1 − d)

Where f is the frequency in units of (cycles/sample), and d is the duty cycle (d ∈ [0, 1]).

For example, see Figure 4.9. Note that if the Rect wave has 50% duty cycle, then the triangle

wave has equal up and down slopes (which corresponds to a common definition of the triangle

wave). However, if the Rect wave has some other duty cycle, then the slopes will not be equal, pro-

ducing what is variously referred to as a “variable-slope sawtooth”, or a “variable-slope triangle”

wave. Theoretically, one could take the duty cycle to a limit of almost 0% or 100% and generate the

equivalent of the sawtooth, but care must be taken if the duty cycle causes either the up or down

pulse to become narrower than a sample, as the required gains may become problematic. Further,

since the method in Section 4.3.2 requires a single integration from the BLIT whereas this method

takes two integrations, it is less susceptible to DC-offset issues (Section 4.3.3), and so is generally

preferred for generation of “pure” sawtooth waves.

218 CHAPTER 4. BANDLIMITED WAVEFORM SYNTHESIS

Figure 4.9: Generating a triangle wave. A rectangle wave (upper signal) is integrated to get a
triange wave (lower signal).

4.3.3 Handling DC Offsets

Since even temporary DC offsets get integrated by the integrators and can cause the waveforms to

drift out of range, etc., they must be dealt with for such a method to be practical.

Appropriate Scalings/Offsets and Non-Steady-State Fixups

In order to keep the integrators from ramping their outputs to infinity (or at least beyond the

capabilities of the number system or the DACs), any DC offset in the input to the integrator must

be avoided. As already noted, BP-BLIT has no DC offset, so there need be no special offsets for the

square-wave integration. The initial conditions of the first integrator, however, can produce a DC

offset on the output that must be canceled before the second integration. The value of this offset

is also dependant on the duty-cycle of the signal,5 so that the correct initial condition will change

based on: (1) desired phase, and (2) desired duty cycle. There is also a frequency-dependant scaling

necessary for the second integration (because the triangle slopes are proportional to frequency),

whose effects must be accounted for during frequency changes. It is important to remember that

the old state (right before the change) acts as a new “initial condition” for the integrator when the

parameters are changed.

5Any amplitude dependance can be avoided by assuming unit amplitude in all the integrations and simply post-scaling
the outputs. Thus the scaling gains are: on input of first integrator, 1.0; on input of second integrator 2/(Td(1 − d)) where d
is the duty cycle (∈ [0, 1]) and T is the period in samples.

4.3. DERIVING WAVEFORMS FROM OTHER WAVEFORMS 219

In practice, the accounting necessary for multiple integrations in the presence of various fre-

quency, amplitude, phase, and pulse-width modulations (not to mention oscillator sync), make

trying to subtract off the appropriate offsets either impossible or at least not viable in general.

However, there is still a solution.

Leaky Integrators

The use of pure integrators can present problems in the presence of numerical errors, such as round-

off. These errors accumulate in the integrators, causing unwanted (and unpredictable) offsets in

the signals, which can destroy the ability to create the desired waveforms, especially in the sec-

ond integration. Add to this the difficulties mentioned in keeping track of all the DC offsets in the

presence of time-variation, and some more automatic method for dealing with DC is in order.

Therefore, we move the poles of the filters that implement the integration slightly in from the

unit circle. These “leaky” integrators slowly forget bad initial conditions and numerical errors, so

that they don’t continue the build up forever. The impulse response of a leaky integrator is an

exponential that slowly decays to zero. This has two more effects:

First, the decay rate places an effective lower bound on oscillator frequency (especially in cases

where the signal is to be used as a control signal), as when the period gets on the order of the decay

time, the ‘held’ output (as in a rectangle wave), is no longer even close to being constant over its

portion of the cycle. Equivalently, the low harmonics of the oscillator waveform can end up with

lower amplitudes than expected, as the leaky integrator’s low-frequency boosting is “chopped off”

by the leakiness. The faster the leak (i.e., the faster the decay of the impulse response), the higher

the frequency that the integration gain is chopped at, and the higher the frequency at which signal

harmonics will begin to be attenuated from their theoretical amplitudes. In audio signals, this

is probably not a problem (it just attenuates the lowest-frequency harmonics, which may not be

terribly audible anyway), but in control signals, where the exact shape of the signal is important,

this can be a big problem. On the other hand, LFOs are often not modulated as much as audio

oscillators by many users, and so DC-offset accounting may be viable there, in tandem with very

slow leaks to handle numerical grit.

Second, In steady-state, the outputs of the integrators (for Rectangle and Triangle waves) will

have no DC component (because BP-BLIT has none and non-BP blit can be dealt with using a DC

blocker), regardless of initial conditions, since the leaky integrators eventually forget them. Thus,

if one can live with occasional transient DC offsets (which decay at the leak rate), then just the

presence of the leaky integrators can handle all offset cases.

Variable-Leak Integrators

However, practical implementations have shown that these “transient DC offsets” can be quite

audible, as “bangs” or “bumps”, or situations in which the signal temporarily gets clipped out of

220 CHAPTER 4. BANDLIMITED WAVEFORM SYNTHESIS

existence as the temporary DC offset swings the signal past clipping limits. Therefore, we introduce

a further extension to the leaky integrators: temporarily increase the leak rate of the integrators in

question, to more quickly leech off the DC offset, and then slowly recover the leak rate to a steady-

state location. This can be implemented by using integrators whose pole locations can be signal

inputs, which are hooked up to one-pole decays, which decay towards the steady-state value of the

pole location, and get “pinged” to faster pole values as necessary. In other words, the integrators

can be made to temporarily “center themselves”. A side benefit of this technique is that the steady-

state leakiness can be placed much slower than it would have been otherwise, since most of the

DC can be leaked out during the temporarily fast leakiness (some leakiness is still a good idea to

handle any numerical rounding issues or the like). There is sill the problem of identifying when to

speed up the leakiness. As most temporary DC offsets occur due to modulations, one could sum

up the derivatives of the various modulation sources feed that in to the integrator-pole decay units,

basically setting the leak rate to be proportional to the modulation rates. It may also be possible

(though this hasn’t been tried), to implement some sort of feedback method whereby the average

of the oscillator’s output over some period of time is used to determine if the oscillator has a DC

offset, which can then be fed back to control the leakiness rates. This system would have to be

verified to see if it can react fast enough to suppress “bumps” due to unexpected modulations.

Definitions of Amplitude

Moorer presents a discussion of amplitude compensation in his DSF paper [175]. Similar compen-

sation is necessary in BLIT generation. The compensation to be used depends on how one defines

amplitude, which depends on how the signal is to be used. If the signal is to be used as an audio

signal, signal power or some psychoacoustic loudness measure is appropriate, but if the signal is

to be used as a control signal, a maximum-value (Chebychev) measure is more appropriate.

4.3.4 Can DSF directly generate sawtooth, square, triangle waves?

One may wonder if DSF can be used to directly generate these waves via appropriate settings of the

a parameter. The short answer is no, because (as can be shown from the integrations) the square-

wave’s harmonics’ amplitudes fall of as 1/f (or, equivalently, as 1/n, where n is the harmonic

number), and the triangle’s as 1/f2. DSF harmonics, on the other hand, fall off as an (i.e. exponen-

tially in n rather than as a polynomial in n). This keeps the DSF from being able to generating exact

rectangle or triangle waves, but depending on the circumstance (i.e., the signal not being used as

a control signal, etc), fitting an an fall-off rate to approximate 1/n or 1/n2 might be close enough

(perceptually, for example). Other possibilities might be the use of a post-filter to shape the spectral

rolloff. This brings up the next question as to whether the DSF harmonics are in the correct phase

relationship to give the desired wave shapes. This is a topic that the author has not yet looked into.

4.4. BANDLIMITED IMPULSE TRAIN (BLIT) GENERATION 221

4.4 Bandlimited Impulse Train (BLIT) Generation

Some of the previously mentioned techniques can be used to generate BLITs, but can also generate

other waveforms. Now we will discuss techniques designed especially to generate BLITs, with-

out consideration for extension to other waveforms (although it may be possible in some cases).

By restricting to bandlimiting impulse trains, which is mathematically much simpler than generic

waveforms, these methods may be much more efficient than the other methods.6

4.4.1 Steady-State Synthesis

Again, these methods can be classified in terms of whether they are based on a steady-state as-

sumption or not.

Additive

True additive synthesis methods can gain no additional efficiency when implementing impulse

trains, so there is nothing new to say from the earlier discussion.

Sum of sincs and SincM

As noted earlier, the standard operation before sampling is to apply an anti-aliasing filter. The

ideal anti-aliasing filter has a continuous-time impulse response that is a sinc function with a zero-

crossing interval of one sample:

hs(t) = sinc(fst) =
sin(πfst)
πfst

. (4.13)

The ideal unit-amplitude impulse train with period T1 seconds is given by

x(t) =
∞∑

l=−∞
δ(t + lT1) (4.14)

Since this signal is nearly everywhere zero, the convolution by the antialiasing filter is a particularly

simple expression (as compared to a more general convolution):

xf(t) = (x ∗ hs)(t) =
∞∑

l=−∞
sinc(t/T + lP)

6The basic operation to be simulated is Sample[ImpulseTrain(t) ∗ sinc(t)], where “∗” denotes convolution. Since
ImpulseTrain is just impulses, the convolution is almost trivial. This operation would be much more difficult to calculate
for more complex waveforms

222 CHAPTER 4. BANDLIMITED WAVEFORM SYNTHESIS

where P = T1/T is the period in samples, (probably not an integer). The filtered impulse train is

now sampled to obtain

y(n) = xf(nT) =
∞∑

l=−∞
sinc(n + lP) (4.15)

As before, the above expression for y(n) can be interpreted as a time aliasing of the sinc function

about an interval of P samples. As with DSF, this infinite sum has a closed form solution:

y(n) = (M/P)SincM[(M/P)n] (M odd) (4.16)

where7

SincM(x)
∆=

sin(πx)
M sin(πx/M)

(4.17)

Thus,

y(n) =
sin(πnM/P)
P sin(πn/P)

(4.18)

or, in terms of frequency normalized to the sample rate (fn = f1/fs), rather than period (f1 =

fs/P → fn =):

y(n) =
fn sin(πnMfn)

sin(πnfn)
(4.19)

This function provides a closed-form expression for the sampled bandlimited impulse train (BLIT),

and it can be used directly for synthesis in a manner similar to DSF. While P is the period in

samples, M is the number of harmonics in the two-sided spectrum (i.e.,including the negative-

frequency harmonics). It is always odd because an impulse train has one “harmonic” at DC, and

an even number of non-zero harmonics always exists in the two-sided spectrum because the sig-

nal is real, (provided no harmonic is allowed at exactly half the sampling rate, which we assume

and require). Now assuming that we have the maximum number of harmonics possible (i.e., all

those out to but not including half the sampling rate), then M/P is always close to 1. When P is

an odd integer, P = M, and y(n) is simply SincM(n). As P departs from M, the above equations

implement a time scaling along with a compensating amplitude scaling. We can relate the number

of harmonics M in the two-sided spectrum to the period P of the impulse train as

M = 2 bP/2c + 1 (4.20)

i.e.,M is the largest odd integer not exceeding the period P in samples.

This method of synthesis is very similar to DSF, in that a series of harmonic partials are synthe-

sized via a closed-form expression which allows the number of harmonics to be controlled8 Note

that DSF is often used with a constant number of harmonics, rather than harmonics that go all way

7SincM has also recently been denoted as asincM, meaning time-aliased sinc of period M.
8One should be able to algebraically relate the two methods by setting the amplitude decay ratio of DSF to 1.0 and

aligning the harmonic phases (by replacing sin with cos in the DSF formula) to derive the SincM formula.

4.4. BANDLIMITED IMPULSE TRAIN (BLIT) GENERATION 223

out to Fs/2. This can produce a slightly different result, which can be reconciled using the above

equation which relates M and P for a full-bandwidth impulse train.

Note that in normal operation, keeping M up to date while the oscillator frequency changes

may involve a division (to get P if it isn’t already derived for other reasons), but also may require

changing M from one integer value to another from sample to sample, which can cause disconti-

nuities in the signal (audible clicks). We will see this later in Figure 4.25 on p. 241.

4.4.2 Generating Bipolar BLITs with SincM and DSF

Difference of BLITs The most obvious method of generating the bipolar BLITs is simply to take the

difference to two BLITs, one delayed (or otherwise phase-shifted) relative to the other. This is the

technique most commonly used with BLIT-SWS (to be described later).

0 5 10 15 20 25 30 35 40
−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

0 5 10 15 20 25 30 35 40
−1

−0.5

0

0.5

1

Figure 4.10: Top: SincM with M=9, P=9.6. Bottom: SincM with M=10, P=9.6.

SincM method One will note that the definition of SincM Equation 4.16 restricted M to be odd.

If, instead, M is chosen to be even, then a bipolar signal is generated, at half the expected frequency

(see Figure 4.10).

This behavior can be explained intuitively based on the fact that M represents the number of

total harmonics in the full spectrum (i.e., negative frequencies included). See Figure 4.11. There-

fore, since a unipolar signal would have a nonzero DC component, and since it is real and hence

conjugate symmetric about DC, there will always be an even number of harmonics not on DC, plus

the one on DC, making an odd number of harmonics. An even value of M, therefore, implies that

224 CHAPTER 4. BANDLIMITED WAVEFORM SYNTHESIS

−0.5 −0.4 −0.3 −0.2 −0.1 0 0.1 0.2 0.3 0.4 0.5
−60

−50

−40

−30

−20

−10

−0.5 −0.4 −0.3 −0.2 −0.1 0 0.1 0.2 0.3 0.4 0.5
−60

−50

−40

−30

−20

−10

Figure 4.11: Top: Two-sided spectra of the signals in Figure 4.10. Top: SincM with M=9, P=9.6.
Bottom: SincM with M=10, P=9.6.

there would be no harmonic on DC. The harmonics would still be evenly distributed through the

spectrum, but would line up such that DC lands halfway between two harmonics. This leads to

the harmonics landing on purely odd multiples of a frequency which is half the harmonic spacing,

and hence describing a bipolar BLIT of half the frequency with a 50% duty cycle.

DSF method Since DSF has a few more degrees of freedom in its definition, we can generate a

more flexible bipolar BLIT based on its equations.

First, we note that BLITs can be generated via DSF by replacing the sin by cos in the DSF formu-

las from [175] (this ends up essentially replacing sin by cos in the numerator of the original DSF

equation, the denominator stays the same). See Figure 4.12.

50% duty cycle First, it can be shown that using a negative a in the DSF formula
∑N

k=1 a
k sin(0+

kf1t) produces a signal that is shifted from the positive-a signal by exactly half a cycle (Figure 4.13),

this gives a slightly more elegant way of producing the shifted BLIT than offsetting t. This can lead

to showing that:

N∑
k=1

ak sin(a + bk) −
N∑
k=1

(−a)k sin(a + bk)

= 2a
N/2∑
k=1

(a2)k sin((a + b) + 2bk)

4.4. BANDLIMITED IMPULSE TRAIN (BLIT) GENERATION 225

0 0.5 1 1.5 2
−10

0

10

20

t/pi

y

y = sum(.99^k cos(0 + 3 k t)), N=20

Figure 4.12: Using cosine-DSF to generate BLIT

0 0.5 1 1.5 2
−20

−10

0

10

20

y

y = sum(.99^k cos(0 + 3 k t)), N=20

0 0.5 1 1.5 2
−20

−10

0

10

20

t/pi

y

y = sum((−.99)^k cos(0 + 3 k t)), N=20

Figure 4.13: DSF: half-cycle shift

226 CHAPTER 4. BANDLIMITED WAVEFORM SYNTHESIS

The same applies to the sum-of-cosines DSF, which is shown in Figure 4.14. Thus a 50% duty-

cycle bipolar DSF BLIT can be generated almost as efficiently as a single DSF BLIT.

0 0.5 1 1.5 2
−20

−10

0

10

20

y

y = sum(.99^k cos(0 + 3 k t)), N=20

0 0.5 1 1.5 2
−20

−10

0

10

20

t/pi

y

y = 2*.99*sum((.99^2)^k cos(3 + 6 k t)), N=10

Figure 4.14: 50% duty-cycle BP-BLIT using DSF

PWM: For other duty cycles, there is another variation on DSF that is of interest. Let a be com-

plex and take either the real or imaginary part of the DSF, this imposes a sin(k 6 (a)) (or cosine)

amplitude envelope onto the harmonics, which is equivalent to a comb filtering, which in turn is

equivalent to summing a real DSF with a shifted version of itself (possibly with a sign flip), all of

which can be shown mathematically. See Figure 4.15. This method implements BP-BLIT in essen-

tially the same complexity as evaluating the difference of two real DSF BLITs, but with a bit more

elegance. However, in synthesis systems where complex arithmetic is not already implemented, it

may be considered too much work to use this method, and an implementor may just fall back to

subtracting offset-phase versions.

4.4.3 Non-Steady-State Synthesis

Oversampling

As noted in the review, generating impulse trains via oversampling generally places unnecessary

stress on the capabilities of the downsampler’s antialiasing filter. As such, if oversampling is go-

ing to be used anyway, due to other decisions in the synthesizer, one is much better off directly

4.4. BANDLIMITED IMPULSE TRAIN (BLIT) GENERATION 227

0 0.5 1 1.5 2
−10

−5

0

5

10

t/pi

y

y = Im[sum((.99*exp(j pi/4))^k sin(0 + 3 k t))], N=20
0 0.5 1 1.5 2

−10

−5

0

5

10

y

y = Re[sum((.99*exp(j pi/4))^k cos(0 + 3 k t))], N=20

Figure 4.15: Using a complex multiplier in DSF to generate BP-BLIT

calculating the desired waveform (and all the classics are generally very cheap to calculate) rather

than generating a BLIT via oversampling and deriving them from it. However, as noted, the design

philosophy for this discussion is to look for situations where oversampling is not required, so we

look elsewhere.

Sum of Windowed Sincs (BLIT-SWS)

An efficient method for synthesizing digital impulse trains may be based on the windowed-sinc

method for general bandlimited interpolation [242]. The technique is equivalent conceptually to

bandlimited periodic wavetable synthesis of an impulse train, as mentioned earlier: Bandlimited

interpolation is used to convert the sampling rate of a discrete-time unit sample pulse train from

a pitch which divides the sampling rate (so that the period is an integer) to the desired pitch. The

rate conversion causes each unit sample pulse δ(n) to be replaced by a windowed sinc function

w(t)hs(t) sampled at some phase which generally varies each period. As such, each pulse is sepa-

rately generated and added into the output. If the period is shorter than the windowed sinc width,

multiple sincs will overlap.

This method was first presented by the author and Julius Smith in [248].

228 CHAPTER 4. BANDLIMITED WAVEFORM SYNTHESIS

Algorithm 3: Typical BLIT-SWS Algorithm
Data: Instantaneous frequency (phase increment) pinc
Result: Audio signal out[n]

foreach n do
pn ← pn + pinc;
if p ≥ pthresh then

// Find sub-sample offset of the pulse

x ← findPulseOffset (pn−1, pn, p0);
startNewPulse (x);
pn ← pn − pthresh;

end
foreach Active Pulse Generator geni do

out[n]← out[n]+lookupSincTable (xi);
xi ← xi+sincstep ;
if xi >sinclen then

removeFromActiveList (geni);
end

end
end

Typical BLIT-SWS Algorithm In order to reduce the amount of work the table lookup interpo-

lation must do, we can oversample the windowed sinc table (as mentioned in [242]). the author’s

implementations have typically oversampled such that the table contains on the order of 128-1024

samples per zero crossing, which gives very clean results when used with linear interpolation,

though that probably can be considered a bit of overkill, especially in memory-limited implemen-

tations (and there may be cache-clobbering consequences as well). the author has not deeply mea-

sured the effect of the table size on fidelity, (beyond analyses such as Figure 4.16), though Moore’s

analysis of sine-table noise in [174] may be used as a guide for the effect of the sinc sable size on

the noise of the highest harmonics.

The choice of window can have a noticeable effect on the noise floor. Figure 4.17 shows spec-

tra for integrated BLITs (i.e. sawtooths) using the same windows width (32 sinc zero crossings),

table oversampling factor (1024 samples per zero crossing), and corner frequency (0.9fs/2). The

difference is the window. The top spectrum is for a Blackmann-Harris window, the middle is a

Kaiser windows with β = 3.5, and the bottom is a Kaiser window with β = 20. Note how the wider

Kaiser window whose sidebands do not fall off very far, raises the general noise floor. Such a de-

sign would be at the limit of usefulness for a system with a 16-bit output, and as in [276] we see

how the additional boosting of the noise can cause it to rise above the theoretical 16-bit noise floor.

Note that the algorithm shown is derived from a PET/Granular paradigm, where each pulse

is a separate interpolated wave to be played out and overlapped. It is also possible to interpret

the algorithm more from a sample-rate conversion standpoint and note that the system can be im-

plemented via a polyphase structure. However, to be implemented in a pure polyphase bank, the

4.4. BANDLIMITED IMPULSE TRAIN (BLIT) GENERATION 229

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
−200

−150

−100

−50

0

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
−200

−150

−100

−50

0

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
−200

−150

−100

−50

0

Figure 4.16: Effect of number of samples per sinc zero crossing on BLIT-SWS noise floor (linearly
interpolated). 32-zero crossings, corner pulled back to (0.9Fs/2), Kaiser window (β = 20 to get
extremely low noise floor from the window). Top: 32 samples per zero crossing, Middle: 128
samples, Bottom: 1024 samples.

230 CHAPTER 4. BANDLIMITED WAVEFORM SYNTHESIS

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
−200

−150

−100

−50

0

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
−200

−150

−100

−50

0

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
−200

−150

−100

−50

0

Figure 4.17: Effect of window (i.e., filter design) on BLIT-SWS noise floor. 32-zero crossings, 1024
samples per zero crossing, corner pulled back to 0.9fs/2. Top: Blackmann-Harris window, Mid-
dle: Kaiser Window, β = 3.5, Bottom: Kaiser Window, β = 20 (note slower rolloff of the aliasing
components due to the large β).

4.4. BANDLIMITED IMPULSE TRAIN (BLIT) GENERATION 231

subsample impulse offsets must be rounded to the nearest subphase of the polyphase bank, and

hence some time-rounding aliasing artifacts will creep back in (though attenuated). Instead, some

interpolation between polyphase outputs should be used to approximate a smooth continuum of

subsample offsets for the impulses. Note that interpolating polyphase outputs can be seen to be

equivalent to interpolated lookup into the windowed sinc table (this fact is partially described in

[13], from an asynchronous sample rate conversion standpoint). Also, when implemented with

a polyphase structure, the effective number of points in the table tends to be more restricted by

efficiency and memory concerns (see the discussion of cost Section 4.4.3), and so can end up imple-

menting lower-quality BLITs.

Relation of BLIT-SWS to Existing Synthesis Methods

CHANT/Vosim/PSOLA/etc As mentioned in Section 4.2.3 (p. 198), CHANT, Vosim, and the like

are methods which play back an impulse-response wave pseudo-periodically as a filter impulse-

response to produce (typically) vocal formants. BLIT-SWS uses the same concept: reading out

a filter response (this time a bandlimiting filter) at a periodic rate. However, BLIT-SWS imple-

ments what was considered too expensive at the time those algorithms were implemented:

subsample offsets. This allows the virtual impulse train to not be rounded to sample bound-

aries. Further, by using a highly oversampled table for the filter response, lookups into it

do not have to do as much work as they otherwise might (linear interpolation works fine,

whereas if the table were less oversampled or not oversampled, much higher interpolation

order would be necessary).

PET Periodic-Excitation-Table synthesis [129] is basically equivalent to the above methods, but

was applied to implement commuted synthesis of bowed strings, by periodically playing a

body impulse response into a string. It was this conceptual framework upon which the author

based the BLIT-SWS implementations.

Granular Implementations as in Algorithm 3 (as opposed to polyphase implementation) are also

very similar philosophically to implementations of Granular synthesis systems, except with

completely deterministic grain-generation timings, and the sub-sample offset capability (which

is not always implemented in Granular systems, as the randomness in most of their imple-

mentations can help break up the effects of time-rounding in a dithering-like manner).

Phase Format Note that one shortcoming of this algorithm is that the calculation of the sub-

sample location of the impulse is most inexpensive if the phase of the oscillator is in units of

samples, and therefore the frequency is defined by its period rather than its frequency. As such,

a divide is necessary to compute the period if the frequency is the known value. Note that if the

frequency is itself being derived from some other information (like MIDI note number), then the

232 CHAPTER 4. BANDLIMITED WAVEFORM SYNTHESIS

transformation to frequency can often be replaced by a transformation to period with no additional

cost. Still, if one is modulating the frequency (either at low rates as with an LFO or at audio rates),

one is typically expecting that the modulation be either to the linear frequency (or to the exponen-

tial frequency), not to the period. As such, the divide creeps in again. Small modulations may be

fine in the period domain, however.

Of course, one can keep the phase in radians (or scaled radians), such that the frequency input

is linear, in which case the divide gets moved to the calculation of the sub-sample impulse location:

The subsample offset x from sample n − 1 of the intersection of the phase line between pn−1 and pn

and the threshold phase p0 is given by:

x =
p0 − pn−1

pn − pn−1
(4.21)

Though this calculation is more complicated than if phase were in radians (in which case the calcu-

lation of the subsample offset is simply a subtraction), it need only be calculated once per period,

so it should happen much less frequently.

1

2
3

4
56

Number of Harmonics < fs / 2

1

2

3
45

6

7

8

Number of Required Pulse Generators

Figure 4.18: Comparing number of harmonics to number of overlapped pulse instances for a pulse
8 samples long.

Number of Harmonics vs. Sinc Overlap A further optimization comes from comparing the num-

ber of sincs that must be overlapped in the BLIT-SWS method to the number of harmonics of the

BLIT that land below fs/2. At very high frequencies, the number of bandlimited harmonics be-

comes quite small. Indeed, in the top octave, only the fundamental is in band. Thus for a large

percentage of the frequency range, it is quite likely that it may be more efficient to generate a BLIT

(or any other harmonic waveform) by simple summation of sines. At lower frequencies, we can

again revert to the BLIT-SWS method because it is obviously more efficient at low frequencies,

where the number of harmonics is very large. the author has not prototyped such a system, and it

is not known if this has been done by any one else.

Note that the variable cost puts this algorithm at a different point in the cost-vs-aliasing tradeoff

4.4. BANDLIMITED IMPULSE TRAIN (BLIT) GENERATION 233

curve than, say, the DPW algorithms. This algorithm attempts to strongly reduce aliasing at the cost

of a more expensive algorithm, which unfortunately can get quite expensive at very high pitches.

This fact can make this algorithm less attractive.

In [276], a variation on the BLIT algorithm was implemented which used a polyphase filter to

implement the BLIT. This makes the filter a constant-cost filter, though the constant cost is a mid-

range cost (higher than the low-frequency cost of the method described above, but lower than its

maximum cost). However, because the size and cost of a polyphase implementation increases with

the number of branches (equivalent to the number of samples per zero crossing in the sinc table

of the method described above), it is normally limited to a rather small number ([276] used 32,

whereas the author’s implementations of the variable-cost algorithm typically use the equivalent

of 256-1024), and as such the noise floor is raised significantly. This becomes a particular prob-

lem when these BLITs are integrated, as the raised noise floor is boosted even further at the low

frequencies by the integration. When using polyphase implementations, the arguments for BLEP

methods (see Section 4.5) become even stronger, as implied in [276].

Precisely where the tradeoff occurs depends on the system in which the algorithm is to be im-

plemented. For an extreme example, in an IFFT system the tradeoff frequency may move all the

way down to fs/(2N), because the system implements sums sines so efficiently. On the other

hand, in a system where sine generation is significantly more expensive (say in a system where

memory accesses are expensive enough to make even table lookup mildly expensive), the tradeoff

frequency can easily be on the order of fs/8. Of course, the amount of accuracy desired in the

BLIT-SWS algorithm also affects the tradeoff, because it will affect the choice of the window length,

thus affecting the number overlapping sincs at a given frequency.

Harmonic (Aliasing) Fall-Off Rate vs. Number of Zero Crossings Because the windowing im-

poses a finite fall-off rate in the harmonics, some aliasing is inevitable. We can, however, control

this by our choice of window, and by carefully choosing the corner frequency of the virtual sinc

function. We will see below the effect of choosing various window widths on the sharpness of the

filter rolloff.

But first, a side note on the birth and death of harmonics during frequency slews or modula-

tions.

In practice, the BLIT-SWS method has demonstrated another advantage over other, more exact

bandlimited BLIT algorithms. In cases where the frequency is sweeping, such as vibrato or porta-

mento, high harmonics of the signal will disappear or appear (depending on the direction of the

frequency sweep) during the sweep. In an exactly bandlimited system, the highest harmonic tran-

sitions between full amplitude and zero amplitude (or vice versa) in the period of one sample. This

causes an audible transient, especially at low sampling rates, where fs/2 is well within the audible

region. These transients are usually unwanted and distracting.

234 CHAPTER 4. BANDLIMITED WAVEFORM SYNTHESIS

Like additive synthesis and bandlimited wavetable synthesis, and unlike DSF, in BLIT-SWS

synthesis the highest harmonic need not audibly “pop” in or out as it comes down from or gets

up to half the sampling rate, since the window function can be chosen to exhibit any amount of

attenuation at fs/2.

This effect has not been a historical problem in recorded digital music because of the use of

non-ideal anti-aliasing filters. The finite fall-off rate of these filters allows harmonics to die out

more slowly in upward sweeps (and appear more slowly in downward sweep), which avoids the

above-mentioned transients. The BLIT-SWS method ends up implementing slower fall-off rates as

an artifact of the windowing, and therefore gets this effect for free.

Some of the above-mentioned BLIT generation methods cannot easily implement a slower rolloff.

SincM and DSF, for example, have control only over the existence (or lack thereof) of harmonics

via N, so can only implement abrupt transitions in the number of active harmonics. DSF can im-

plement a harmonic fall-off via the parameter a, but this fall-off must start at the first harmonic

and increase through all the harmonics, rather than beginning only near fs/2. A few hacks can be

used to overcome this. For example, a second DSF group of harmonics can be placed at the top few

harmonics with a small a to implement the fall-off rate. Another possibility is to calculate two os-

cillators with differing numbers of harmonics and interpolated between the oscillators to allow the

highest harmonics ramp to zero before they are removed. Another hack would place a post-filter

after the DSF to implement the high-frequency fall-off. This hack may have problems handling the

harmonics’ on-off transients, however.

Example Spectra Figure 4.19 shows the spectrum of a rounded-time impulse train and of a fre-

quency sweep up across the whole frequency range. In this algorithm, unit samples are put out at

the sample time nearest the ideal time, and there is massive aliasing.

Figure 4.20 shows the spectrum of a discrete-time impulse train using linear interpolation to

interpolate the unit sample pulse locations. The aliasing is reduced, but it is still very strong.

Figure 4.21 shows the spectrum of a bandlimited impulse train generated using the BLIT-SWS

method with 8 sinc zero-crossings under a Blackman window. While there is still considerable

aliasing at high frequencies, at low frequencies it is down 90 dB or so.

Figure 4.22 shows the same thing as Fig. 4.21 with the number of zero crossings raised from 8

to 16. This roughly halves the transition bandwidth of the window transform, and as a result, the

aliasing is down 90 dB over approximately 60% of the spectrum.

Figure 4.23 shows the same thing again with the number of zero crossings doubled again from

16 to 32. Again the transition width is halved, and now only the upper 20% of the spectrum is

heavily aliased.

Fig. 4.24 shows the previous case (32 zero crossings) with the cut-off frequency of the sinc func-

tion lowered below half the sampling rate. This means the transition band of the window transform

4.4. BANDLIMITED IMPULSE TRAIN (BLIT) GENERATION 235

0 0.1 0.2 0.3 0.4 0.5
−120

−90

−60

−30

0

normalized frequency

A
m

p
(d

B
)

Rounded−Time Impulse Train (NIIT)

Figure 4.19: Top: Spectrum of rounded-time impulse train with a line drawn connecting the peaks
of both the desired harmonics and the first string of aliased harmonics (“NIIT” stands for “Nearest-
Integer Impulse Train”). Bottom: Spectrogram of a logarithmic frequency sweep.

236 CHAPTER 4. BANDLIMITED WAVEFORM SYNTHESIS

0 0.1 0.2 0.3 0.4 0.5
−120

−90

−60

−30

0

normalized frequency

A
m

p
(d

B
)

Linear Interpolation

Figure 4.20: Top: Spectrum of linear-interpolation impulse train with a line drawn connecting the
peaks of both the desired harmonics and the first string of aliased harmonics. Bottom: Spectrogram
of a logarithmic frequency sweep.

4.4. BANDLIMITED IMPULSE TRAIN (BLIT) GENERATION 237

0 0.1 0.2 0.3 0.4 0.5
−120

−90

−60

−30

0

normalized frequency

A
m

p
(d

B
)

8 zero crossings within window (Blackman)

Figure 4.21: Top: Spectrum of windowed-sinc interpolated, window 8 sinc zero-crossings wide.
Bottom: Spectrogram of a logarithmic frequency sweep.

is folded in half as it falls into half the sampling rate and reflects. The result is another halving of

the aliased region to about 10% of the highest frequencies. If the limit of human hearing is 20 kHz,

this means we need a 2 kHz guard band, so the sampling rate should be at least 44 kHz.

Finally, Figure 4.25 Shows the behaviors for the SincM algorithm and for bank-of-wavetables

algorithm with 8 octave-spaced wavetables, and interpolation between adjacent tables as the fun-

damental frequency moves through the octaves.9

9In practice, the author has heard (in an octave-spaced impulse-train bank at 44.1 kHz) clear variations in brightness
across long-distance sweeps as the amount of energy in the top octave varied with the fundamental-frequency’s location
within each octave (see Figure 4.25 and note the variation). As such, finer spacings than octave spacing may be required in
some implementations. This of course would be most obvious in an impulse-train wave bank, and as such may be less of
an issue in general.

238 CHAPTER 4. BANDLIMITED WAVEFORM SYNTHESIS

0 0.1 0.2 0.3 0.4 0.5
−120

−90

−60

−30

0

normalized frequency

A
m

p
(d

B
)

16 zero crossings within window (Blackman)

Figure 4.22: Top: Spectrum of windowed-sinc interpolated, window 16 sinc zero-crossings wide.
Bottom: Spectrogram of a logarithmic frequency sweep.

4.4. BANDLIMITED IMPULSE TRAIN (BLIT) GENERATION 239

0 0.1 0.2 0.3 0.4 0.5
−120

−90

−60

−30

0

normalized frequency

A
m

p
(d

B
)

32 zero crossings within window (Blackman)

Figure 4.23: Top: Spectrum of windowed-sinc interpolated, window 32 sinc zero-crossings wide.
Bottom: Spectrogram of a logarithmic frequency sweep.

240 CHAPTER 4. BANDLIMITED WAVEFORM SYNTHESIS

0 0.1 0.2 0.3 0.4 0.5
−120

−90

−60

−30

0

normalized frequency

A
m

p
(d

B
)

Corner at 0.9*Fs/2, 32 ZC in window

Figure 4.24: Top: Spectrum of windowed-sinc interpolated, window 32 sinc zero-crossings wide,
sinc function dilated to lower cutoff frequency to 0.9fs/2. Bottom: Spectrogram of a logarithmic
frequency sweep.

4.4. BANDLIMITED IMPULSE TRAIN (BLIT) GENERATION 241

Figure 4.25: Spectrograms of logarithmic frequency sweeps. Top: SincM: Note clicks when har-
monics disappear. Bottom: Octave-spaced bank of wavetables, linear interpolation between tables
across top octave.

242 CHAPTER 4. BANDLIMITED WAVEFORM SYNTHESIS

4.4.4 Modulatability

As discussed in the introduction to “steady-state” algorithms (Section 4.2.5), such algorithms im-

plicitly assume that at any point in time, the current settings of the oscillator are constant, infinitely

forward and backward in time. For an impulse train, this means that such algorithms assume an

infinite number of impulses spaced at the current period with the current amplitude, on either side

of the current point in time. Since the ideal bandlimiting sinc which these methods assume is also

infinite in time, that means that the value of the oscillator at the current point in time is theoreti-

cally affected by the location and amplitude of each of the infinite number of impulses, even those

a large distance away. Now, in practice, the effect becomes negligible beyond some distance in time

(beyond some number of zero crossings of the bandlimiting sinc function), still in high-frequency

situations, where the period is short enough for there to be significant contributions from multiple

neighboring impulses, the implications of the steady-state assumption can effect the modulatability

of the oscillator.

Let’s consider for a moment a worst-case situation. Figure 4.26 shows a simulation of sudden

transition in a pulse train from a period of 9 to a period of 21. The top plot shows the “theoretically

correct” version of the transition, consisting of the sum of a very large number of sincs spaced by

9 on the left and spaced by 21 on the right. The middle plot shows the transition using SincM.

The problem is that the SincM wave was about to produce another pulse, and so was ramping

the “ringing” up for the pulse (this “predicting the future” is part of the behavior of a steady-state

waveform, since in steady state, the pulse will arrive). However, the system was changed, and the

pulse in fact did not happen, so that the steady-state method has errors around the transition. A

non-steady-state method is shown in the bottom plot (a BLIT-SWS-style algorithm using triangle-

windowed sincs with a window width of 20). The non-steady-state algorithm trades of inaccuracies

in the sinc shape (i.e., a finite rolloff rate for its harmonics) against placing pulses precisely and not

having “prediction errors”. Remember that a BLIT-SWS algorithm actually achieves causality by

operating at a delay of half the window width.10

A similar effect can be seen in the modulation of amplitude (Figure 4.27). Amplitude modu-

lation as a post-process can simply “clamp” off the ringing of an impulse. As a second example,

the sudden change in Figure 4.26 could easily have been an amplitude transition — the fact that

the steady-state method was ramping up to a pulse that will actually be different would still be a

source of artifacts.

Now consider that such changes are happening every sample due to audio-rate modulation. Of

10which may suggest an unexplored direction for a steady-state method: operate at a delay, and right after producing the
center of a pulse, check to see if the next pulse will arrive on time (or even early), and ramp the phase increment towards
the coming change. By placing the ramping right after pulses, the effect of misprediction might be minimized.

4.4. BANDLIMITED IMPULSE TRAIN (BLIT) GENERATION 243

−15 −10 −5 0 5 10 15 20 25 30
−0.5

0

0.5

1

1.5

−15 −10 −5 0 5 10 15 20 25 30
−0.5

0

0.5

1

1.5

−15 −10 −5 0 5 10 15 20 25 30
−0.5

0

0.5

1

1.5

Figure 4.26: A particularly bad modulation for a steady-state waveform: a sudden transition from
a period of 9 to 21. Top: Theoretical sum of actual sincs (approximated by 1000 sincs on each side
at the correct locations), Middle: SincM (thin line is the theoretical curve of the top graph), Bottom:
Sum of triangle-windowed sincs with a width of 20.

244 CHAPTER 4. BANDLIMITED WAVEFORM SYNTHESIS

−20 −15 −10 −5 0 5 10 15 20 25
−0.5

0

0.5

1

1.5

−20 −15 −10 −5 0 5 10 15 20 25
−0.5

0

0.5

1

1.5

−20 −15 −10 −5 0 5 10 15 20 25
−0.5

0

0.5

1

1.5

Figure 4.27: A sudden amplitude transition from 1 to 0. Top: Theoretical sum of actual sincs (ap-
proximated by 1000 sincs on each side at the correct amplitudes), Middle: SincM, post-modulated
(thin line is the theoretical curve of the top graph), Bottom: Sum of triangle-windowed sincs.

4.4. BANDLIMITED IMPULSE TRAIN (BLIT) GENERATION 245

course, the changes are likely to be much less drastic than these worst-case examples, but the prob-

lem remains: modulating a steady-state algorithm results in modulating the steady-state wave-

form’s bandlimited signal, whereas modulating a non-steady-state algorithm bandlimits the mod-

ulated ideal signal. In other words, the bandlimiting and modulation operations can be transposed

in a non-steady-state algorithm, whereas they cannot be with a steady-state algorithm.

Therefore, consider a case where a high-frequency impulse train is being synthesized (i.e., a

wide harmonic spacing), and the highest harmonic is very close to fs/2, and therefore the next

harmonic of the theoretical signal would be well beyond fs/2. Now we amplitude modulate this

situation with a sinusoidal modulator which sweeps upward in frequency. In the continuous-time

case, each harmonic would develop sidebands whose spacing was the pitch of the modulator. As

such, since the next higher harmonic is well beyond fs/2, we would expect that its lower sideband

would not extend below fs/2 until the modulator reached a particularly high frequency. The upper

sideband of the harmonic just below fs/2 would move up past fs/2 of course. An ideal bandlim-

iting of this modulated system would not reflect the upper sideband of the harmonic just below

fs/2, and would only exhibit frequencies coming downward through fs/2 when the modulation

frequency got high enough for the lower sidebands of the next harmonic to reach past fs/2.

However, a discrete-time post-modulation of a bandlimited oscillator (i.e. multiplication by

the output of the oscillator, which is also the only possible modulation in a steady-state method)

would result in the upper sidebands of the harmonic just below fs/2 reflecting off of fs/2, and thus

exhibiting an aliasing artifact, even if the original signal were bandlimited, since in discrete time,

the output of the oscillator will contain a mirror-image harmonic just above fs/2, whose lower

modulation sidebands will cross below fs/2 at a rather low modulation frequency.

On the other hand, a non-steady-state method can actually modulate the pulse heights be-

fore applying the bandlimiting, and hence produce a bandlimited version of the theoretical signal

(within the limits of the rolloff rates of the bandlimiting approximation used by the method).

There is a rather large caveat to this point for amplitude modulation: the modulating signal

must be calculated at the impulse locations rather than rounded to the sample in which the im-

pulses occur. Unfortunately, if the modulation is being calculated externally from the oscillator,

this means that the oscillator will have to perform some sort of interpolation on the modulating

signal to estimate its value at the calculated impulse instant. Such interpolations may have impre-

cisions which decrease the fidelity of the resulting signal (i.e., the noise floor can rise significantly

if the modulation signal is badly interpolated). Compare Figure 4.29 with the lower spectrum in

Figure 4.28, to see the effect of not interpolating the sinusoidal amplitude modulating signal. Note

that even the interpolated version does get some artifacting from the low order of the interpolation

(which would of course get worse at higher modulation signal frequencies).

In summary, since non-steady-state BLIT methods such as BLIT-SWS actually calculate using

estimates of the pulse heights and locations (at a higher precision than the nearest sample), they

246 CHAPTER 4. BANDLIMITED WAVEFORM SYNTHESIS

Figure 4.28: Spectrograms of amplitude modulation of a 6500 Hz impulse train with a sweeping
modulation frequency (fs = 44.1kHz). Comparing amplitude modulation as a post-process (i.e.,
what must be done with steady-state methods), top, versus modulating the individual pulse am-
plitudes in a BLIT-SWS method, bottom. Note how in the bottom spectrum the upper harmonic of
the top harmonic does not bounce off f2/2 with significant energy, but rather the lower sideband
of the next (out of band) harmonic comes into the band, whereas in the top spectrum the upper
sideband of the top harmonic bounces off fs/2 and no sidebands of out-of-band harmonics come
into band.

4.5. BEYOND BLIT 247

Figure 4.29: The effect of not interpolating the modulating signal to the subsample pulse locations.
Note the increased noise floor.

can theoretically bandlimit any modulation which simply moves the pulse locations or changes the

pulse heights, as the methods make no assumptions or predictions about the pulse locations (or

heights), simply taking them as they come and bandlimiting them.

As such, popular techniques such as hard sync (resetting the phase based on the reset of another

oscillator), which when applied to an impulse train simply move the pulse locations, can be syn-

thesized without aliasing [250]. However, when integrated, this method cannot trivially produce

exact sync for the other wave shapes, since in those situations sync implies resetting the integra-

tors, which can’t trivially be done in a bandlimited fashion.11 On the other hand, as was mentioned

in the discussion of leaky integrators, in many situations where a signal is in the audio range, the

exact waveform shape is not actually important, just the overall spectral shape. In such cases, it

may be sufficient to perform the sync on the the impulse train and feed that into the integration

system as normal.

On the other hand, there are extensions to the integrated-BLIT concept which have appeared

recently which can overcome a few of these shortcomings.

4.5 Beyond BLIT

It can be noted that one of the shortcomings of integrating BLITs to get sawtooths and rectangle

waves is that the noise floor near DC is boosted by the integration [276]. Further, multiple inte-

grations in series become increasingly sensitive to DC offsets. We have discussed the use of leaky

11Although it should be possible to calculate a good approximation of a negative pulse to feed into the integrator to very
nearly zero out the state, either based on information about the last reset time (trickier when leaky integrators are being
used, and even worse when time-varying leakiness is used), or based on the integrator state (though that would be a little
less accurate as the integrator state would also contain “ringing” from previous events which should not be zeroed out)

248 CHAPTER 4. BANDLIMITED WAVEFORM SYNTHESIS

integrations, and even time-varying leakiness, but in general, an argument can be made along the

lines of “the fewer integrations the better”. As such, a few authors have worked on directly synthe-

sizing the integrated bandlimited pulse rather than integrating it at runtime. Therefore, not only

can any noise-floor and DC-offset issues be reduced, but the wave-shape issues discussed above

for hard sync can be reduced.

4.5.1 BLEP, MinBLEP and PolyBLEP

The first work on bandlimited step synthesis (or integrated-pulse synthesis) was published by

Brandt in 2001 [27] ([276] describes the usage of the algorithm and some of its issues in more de-

tail). The primary concept, as noted, is to remove integrations in the algorithm by directly synthe-

sizing bandlimited steps rather than impulses. Whereas in BLIT, an oversampled and windowed

sinc function is precalculated, in BLEP, this function in integrated at the precalculation stage. This

is then subtracted from an ideal step to get a waveform that has a limited range in time (a step

is unlimited, since it never comes “back” to zero). Thus a bandlimited step can be generated by

adding appropriately-offset samples of the subtracted wave to a trivially-integrated step. In other

words: integrate as normal (in a time-rounded fashion), and add in the subsample-shifted “ring-

ing” function to fixup the time rounding in the step integration.

As noted in [276], this can reduce the noise-floor boost which occurs when integrating BLITs.

Further, as was the topic of Brandt’s paper, this method allows the direct implementation of hard

sync in sawtooth and rectangle oscillators while maintaining the correct waveform shape (whereas

BLIT, as mentioned above, can only implement sync with correct wave shape for impulse trains).

For some, the bulk delay of BLIT/BLEP methods is disturbing (they must delay the impulses

by half the window length in order to give the symmetric windows time to “ramp up”). As such,

Brandt also derives “minBLEP”, which is a minimum-phase version of the BLEP, which moves the

energy as far forward in time as possible. However, it is noted in [276] that this is not completely

successful, and that the calculation of the alignment of the minBLEP with the rounded-time step

can actually become more complex.

In [276], Välimäki and Huovilainen discuss replacing the bandlimiting filter used to bandlimit

the step function with a polynomial approximation. They start with the triangle window, which

when integrated and turned into BLEP form gives a system of two 2nd-order polynomials as op-

posed to the precalculated filter responses used earlier. They name this method “PolyBLEP”, and

note that for mid-quality work, it may be sufficient, and can be significantly cheaper.

4.6 Summary

In this chapter, we have explored methods of generating bandlimited (reduced aliasing) wave-

forms for use in virtual analog subtractive synthesis, concentrating on inexpensive, modulatable

4.6. SUMMARY 249

oscillators and trying to balance that against aliasing-reduction and other quality factors. We

described a method for deriving the standard virtual-analog waves by linear operations from

an impulse train, and explored methods for generating bandlimited impulse trains in particular,

including the BLIT-SWS technique, which the author described in [248]. We noted more recent

developments to these algorithms, particularly the BLEP, which reduces the number integrations

from the BLIT-based methods, and its recent variations. We also noted the usefulness of other al-

gorithms, including crossfading amongst pre-filtered wavetables (now being known by the term

“MIP-Mapping” in relation to the graphical algorithm of that name), and aliasing-reduction meth-

ods like the Differentiated Parabolic Wave method.

As in the exploration of filtering, several methods are of use, and each designer’s situation and

personal aesthetics will govern which methods they consider most applicable to their design.

Appendix A

Root Locus Review and Rendering

Methods

A.1 Introduction

As discussed in the introduction to Chapter 2, the root loci of a variable filter along its various

control axes can give insight into the behaviors of the filter’s variation. The concept of a root locus

is one we borrow from the field of classical control-systems design. Evans first described a method

for graphically analyzing [73] and designing [74] standard plant/controller/gain feedback loops

via a set of straightforward rules on how to sketch the trajectories of the total system poles as the

feedback gain varied between zero and (usually) some point where the system had gone unstable.

The primary goals at the time where (1) to find at what gain the system would go instable or would

pass through various contours describing desired behaviors (overshoot, reaction times, etc.), (2) to

give intuition on adding further controller dynamics to change the gain at instability and to shift

the dynamics (i.e., the dominant pole tracks) to more desirable behaviors.

Through the decades of its most prominent use, root-locus design was primarily a sketching

method (possibly with the assistance of a spirule, a device invented by Evans specifically for that

purpose [72]), though some analytic methods did crop up, as we will see later. As computing

power became more accessible, root loci could finally be drawn numerically and accurately, though

unfortunately, the world of control-systems was already starting to move away from root locus

towards newer methods which gave the designer even more power to generate more optimal con-

trollers. As such, root-locus became relegated to a teaching tool in introductory classes, though

some designers would fall back to it now and then for quick analyses.

During this time a number of algorithms for drawing root loci on a computer were developed,

from the most basic brute-force methods through more elegant techniques making use of various

250

A.1. INTRODUCTION 251

properties of the locus equations. From a graphical algorithms perspective, there is actually quite

an interesting variety among the possible ways that loci can be drawn. Different methods are based

on different combinations of the locus-equation properties, and so some can be more applicable

than others for drawing loci of systems that are slightly outside the traditional mould in some way

or another.

In this chapter we will first give an overview of the literature on root-locus, then review basic

concepts of the standard locus (first-order in k) and higher-order loci. We next will discuss a short

taxonomy of the types of systems we may try to draw loci of. That will be followed by some

explorations into directly deriving a few systems to have certain desired root-locus shapes. Finally,

we will look at the various ways one can draw root-loci, including several techniques which, while

not necessarily useful at the technical level, produce particularly interesting graphical results.

A.1.1 Root Locus Overview

Literature Review

Root-Locus literature can be considered to start with Evans’ two papers in 1948 and 1950 [73], [74].

The first introduced the concept for analysis of control-system behavior, and the second described

its uses in designing controllers. As noted in [72], Evans would eventually write a textbook on the

subject [75], but due to delays, several textbooks describing the method had already been written.

From there, it was mainly in the domain of textbooks to describe the method. These days, well-

known textbooks such as Franklin and Powell [88], Dorf and Bishop [66], or D’Azzo Et Al [59] are

the standard references for many students. These days, it is rare to see a book purely on root-locus,

but back in its hey-day such books could be found, such as Dransfield and Haber [67].

Not Algebraic Geometry Although on the forms of the root locus equation, such as

1 + kG(s)H(s) = 0

or

D(s) + kN(s) = 0,

are of the basic type explored in the field of Algebraic Geometry:

F(x, y, · · ·) = 0,

the two fields look at strongly different issues. Root-locus is a very practical, primarily numerical

area, whereas algebraic geometry is interested in much more abstract properties of such equations

and their solutions. An analogy may be to say that root locus is to algebraic geometry as the

quadratic equation is to modern algebra. Still, although we will not look into the area in this thesis,

252 APPENDIX A. ROOT LOCUS REVIEW AND RENDERING METHODS

algebraic geometry is quite an interesting field. Some classic texts are Griffiths and Harris [100],

Shafarevich [230] [231], Cox Little and O’Shea [51], and Harris [105]. Slightly closer to the interests

of this thesis are texts which concentrate more directly on the properties of curves and surfaces,

such as Kirwan [142], Bruce and Giblin [29], and McLeod and Baart [164]. Still, since the problem

of drawing root loci is primarily a numerical one, even these texts are a bit beyond the needs of this

discussion, though it is certain that one can glean applicable insights from them.

Teaching and Intuition-Building As root-locus is mostly a teaching technique these days, much

of the more interesting recent literature is aimed in that direction. Yang [296] [295] relates the

understanding of root locus to electric field potentials and flows, most interestingly describing the

addition of poles and zeros as putting forces on the locus. Loci in phases other than π and zero

are also discussed. Similarly, Cavicci [35] stresses the understanding of loci at phases other than

π , and discusses loci in phase directly (rather than gain) to help visualize phase margin. Further,

Lundberg [160] recommends the plotting of the vector field of the phase of the transfer function as

a way of building intuition on the root locus.

Tsiotras has a recent educational paper [271] giving a good overview of the geometry of the

locus in the plane, how the locus relates to the magnitude and phase of the open-loop transfer

function, and how the locus relates to a 3-D version of the Bode plot. Kurfess and Nagurka wrote a

similar earlier (and slightly less engaging) paper [148] , which also discusses 3-D Nyquist diagrams

as well as the root locus and 3-D Bode plots.

Basics and Locus Compendia In the early days of root locus as a technique, a few papers were

published simply exploring all the possible loci of a particular class of system. A good example is

Williams’ and Lovering’s 1968 paper [290], which is a comprehensive exploration of all four-pole

loci. More recently, D. Pierre [203] looked into dipole and doublet loci and robustness issues related

to them, and Charles Neuman [190] proved the locus for a particular class of 2-pole, 2-zero systems

is a circle and explored it’s stability.

Analytic Methods Although Evans proposed the technique as primarily a mixture of intuition

and sketching, some authors preferred a more analytic approach to the understanding and drawing

of loci. The first such paper was by Bendrikov and Teodorchik in 1959 [15], in which they arrive

at some equations which analytically describe the locus. A few later authors refer to their work,

and especially those equations ([83] and [207]). At about the same time (the early 1960s), Steiglitz

[244] Chang [38] and Krishnan [146] also worked on analytical methods for drawing loci. Later,

Spencer and Philipp [243] would apply the work of mathematician Dickson to the root locus and

end up with another similar analytic approach.

A.1. INTRODUCTION 253

Loci in Other Axes or Variables From time to time, papers appeared proposing drawing root loci

in other axes, such as log frequency [90], etc. Interestingly, Power [205] proposed using a bilinear

transform on s as a way of compressing the frequency range of s, as opposed to using log axes for

continuous-time RL. Some argue that the dependence of the roots on k is hidden by the locus, and

argue for plotting pole amplitude and/or phase vs. k in order to see the gain dependency explicitly

[147].

Complementary Loci Evans’ original rules only applied to plotting so-called “180-degree” loci

(loci in positive k with negative feedback, such that positive feedback occurs at frequencies where

the loop transfer function (not including k or the feedback sign) has a phase of 180 degrees). In

situations where the plant has a negative overall gain, it turns out that one ends up plotting a

zero-degree locus instead, and the rules must be modified a bit. Teixeiria et al [265] discussed how

the sketching rules change when attempting to draw a complementary root locus, and Eydgahi

[76] discussed certain findings about complementary loci of not-strictly-proper loop transfer func-

tions. Such issues mainly affected rule-based drawing methods, and most numerical and analytic

methods do not need changes to draw complementary loci.

Loci of Time-Delay/Continuous-State Systems Evans’ method is specifically for rational sys-

tems, but there are extensions to certain non-polynomial systems (such as time delays) that have

been discussed. Two of the earlier papers on the subject Yeung and Wong [297], and Suh and

Bien [255], both in 1982. Typically, analytic or purely numerical methods were employed, as the

plotting rules generally did not apply (though, luckily, much of the intuition still applied). Later,

Gribble [99] described a locus variation for time-delay systems: plotting various pole properties

vs time delay. In 1994 Byrnes, Gilliam and He worked on a rigorous extension of root-locus into

distributed-parameter systems [33] (most people up to then who looked into distributed-system

RL (like strings), including the author, hadn’t worried about being rigorous about this). This con-

tinued earlier work of theirs [32] on similar problems.

Other As an interesting side note, Vanecek and company [279] [280] applied root locus to create

a chaotic system by defining a linear system that is stable at low and high loop gain, but not in the

middle, in feedback with a memoryless nonlinearity whose dynamic gain covers the whole range

of stable-unstable-stable gains.

Root Locus Topics We Will Not Discuss

As the primary focus of the discussion is the rendering of root loci of certain single-input, single-

output audio filters, certain areas of root-locus research and usage are effectively ignored for this

discussion:

254 APPENDIX A. ROOT LOCUS REVIEW AND RENDERING METHODS

• Robust root locus or otherwise analyzing further parameter variations. This is actually a very

interesting area from a graphical-algorithms standpoint, but this thesis doesn’t look deeply

into it. Modern techniques involve using properties of polytopes of polynomials to find the

boundaries of regions that represent the robust locus. A particularly interesting paper graph-

ically is Tong and Sinha [269] which demonstrated a significantly better identification of a

robust locus using such methods than the typical techniques of randomly sampling the coef-

ficient space. Other literature on this subject includes ([12] [266] [208] [85] [40] [122] [123]).

• RLs directly in more than one control parameter. Even though most filters this thesis looks at

do have multiple parameters, they are currently only analyzed one parameter at a time or in

some sort of gridding (i.e., brute-force methods).

• Locus equivalents for MIMO (multiple-input-multiple-output) systems and/or loci of eigen-

values of convex combinations of matrices, though [218], which discusses a multivariable

extension of the root locus has quite visually-interesting figures.

• Loci at other angles than 0 and π .

• Root-locus issues specifically about control-system design (like k picking, controller synthe-

sis, phase margin, etc).

A.1.2 Review First-Order Locus

The standard root locus, as described by Evans and traditionally used, describes the motion of

poles of a system as in Figure A.1. The transfer function of the whole system is

G

H
k

Figure A.1: Linear feedback system drawn in Root-Locus form.

G(s)
1 + kG(s)H(s)

(A.1)

Hence the root-locus drawing problem is one of finding the roots of

1 + kG(s)H(s) = 0 (A.2)

A.1. INTRODUCTION 255

for all k of interest.1 Typically, this will be re-written as follows: assume that G(s)H(s) is a rational

function which can be written as N(s)/D(s), where N(s) and D(s) are polynomials. As such, the

root-locus equation becomes

D(s) + kN(s) = 0 (A.3)

Where the roots of D(s) are usually interpreted as the “open-loop poles”, i.e., the poles of the

transfer function of the loop from the output of the feedback sum around to the negative-feedback

input of the loop, but with the loop not closed (hence “open-loop”). Similarly, the roots of N(s) are

the “open-loop zeros.”

Some properties of the locus that are immediately clear are:

• If k = 0, the poles of the system are those of D(s), the open-loop poles.

• As k →∞, the poles of the system become the roots of N(s), the open-loop zeros.

Further, since k is assumed to be real, then if we solve for k:

k = −D(s)
N(s)

(A.4)

we can note that the imaginary part must be zero:

Im
(
D(s)
N(s)

)
= 0 (A.5)

This gives us an implicit equation independent of k, and hence the ability to draw the full locus

using implicit-function drawing methods and not have to explicitly sample at various values of k

(if we don’t want to).2 Note that the standard way of thinking about the locus is to only consider

k > 0 or k < 0, not the whole range of k. The above implicit equation describes curves for the whole

range of k, and so rendering methods often have to have special-case rules for not drawing part of

the implicit curves.

Equation A.5 is useful for a numerical algorithm, but let us first note properties and rules of the

root locus which are well suited for sketching.

First, note that Equation A.5 can also be interpreted [88] as: The root locus is the locus of all

points that satisfy:

∑
angles to roots of N(s) −

∑
angles to roots of D(s) = nπ, n odd (A.6)

Now let us review the set of rules which Evans and others have built up over the years for

1The rules for root locus in s apply exactly to the z plane, as the problem is still one of finding the roots of a combination
of two polynomials, only the interpretations of the root locations are different.

2Note that if we want to draw a locus in other angles, the above equations can simply be modified to put a phase rotation
inside the Im() function.

256 APPENDIX A. ROOT LOCUS REVIEW AND RENDERING METHODS

sketching root loci (assembled from Dorf and Bishop [66], Franklin and Powell, [88], Dransfield

and Haber [67], and Spencer, et al [243]):

1. A real-coefficient locus will be symmetrical about the real axis (a complex-coefficient locus

need not be, but the sketching rules were only for real-coefficient loci).

2. The number of root tracks (branches, curves) is the larger of the orders of N(s) and D(s).

Let n = ord(N) and m = ord(D). Historically, some sort of “properness” rule is added to

require that n ≤ m, and some sets of sketching rules may assume such a restriction. With

that restriction, all roots will be finite when k = 0 (i.e., no additional roots will “come in from

infinity” in the process of drawing the locus).

3. The tracks start at the roots of D(s) when k = 0 and end at the roots of N(s) as k →∞.

4. If m > n there will be m − n tracks which head to infinity as k → ∞, these will follow asymp-

totes on angles
lπ

m − n, l = ±1,±3, · · ·

and whose extensions come together on the real axis at∑
roots(D) −

∑
roots(N)

m − n

i.e., the asymptotes are equally distributed around (0, 2π). For example: if m − n = 2, the

asymptotes are ±π/2 (i.e., the two vertical angles), if m − n = 4, the asymptotes are the 45-

degree angles (±π/4 and ±3π/4), etc. If n > m, then n −m poles will “arrive from infinity”

on similar asymptotes.

5. The 0-degree locus version of the previous rule are:

lπ

m − n, l = ±0,±2,±4, · · ·

and ∑
roots(D) −

∑
roots(N)

m − n
These asymptotes are “halfway between” the 180-degree asymptotes.

6. The 180-degree root locus occupies the regions of the real axis which have an odd-number of

real open-loop poles and zeros to the right.

7. The 0-degree root locus occupies the regions of the real axis which have an even-number of

real open-loop poles and zeros to the right. Hence the real axis is completely covered by the

“full locus in k”.

A.1. INTRODUCTION 257

8. If there is a section of locus between consecutive open-loop poles (i.e., with no open-loop

zeros between them), then there will be a “breakaway” somewhere between them. A break-

away is where two real poles come together and split off to become a complex pole pair as k

increases.

9. If there is a section of locus between consecutive open-loop zeros, then there will be a “breakin”

somewhere between them (where a complex pole pair comes together at the real axis and

splits off to become two real poles as k increases).

10. The angle at which a pole leaves a complex open-loop pole of multiplicity one (the “departure

angle”) is determined by:

θ =
∑

(angles to open-loop zeros) −
∑

(angles to open-loop poles) − π

The angles at which poles of multiplicity l leave are given by

θ + nπ
l

, n = ±1,±3, · · ·

It is assumed that the graphical accounting of angles to poles and zeros was one of the tasks

which was assisted by the spirule.

11. As with asymptotes, the departure angles for a 0-degree locus are halfway between the de-

parture angles of the 180-degree locus (for multiplicity one, that would end up being the

opposite direction as the 180-degree departure angle).

12. The arrival angles at open-loop zeros are given by the negative of the same equation (evalu-

ated at the zero location, of course).

13. Locations for where the locus crosses the imaginary axis (of most interest for s-plane loci,

but possibly of use in drawing loci in z as well) can be found by the Routh-Hurwitz criterion

([226][112]).

14. The locus will have multiple roots at points on the locus where

d

ds
(G(s)H(s)) = 0

or equivalently

D(s)
dN(s)
ds

−N(s)
dD(s)
ds

= 0

This is often used primarily to locate breakaway/breakin points on the real axis, as at such

points the breaking poles are on top each other right at the break. It can also be used to analyze

other situations where poles come together off the real axis. As with open-loop poles or zeros

258 APPENDIX A. ROOT LOCUS REVIEW AND RENDERING METHODS

with multiplicity, the poles will approach equally-spaced around the angles according to the

number of approaching poles, and leave at angles halfway between.3 For example, two poles

which meet will approach each other at exactly opposite angles (“head-on”), and will depart

at opposite angles, rotated 90 degrees from the arrival angles.

15. The derivative of a pole’s location on the locus, with respect to k (i.e.,its local departure di-

rection) is:
ds

dk
=
− ∂
∂k (D(s) + kN(s))
∂
∂s (D(s) + kN(s))

=
−N(s)

D′(s) + kN ′(s)

The magnitude of this function is also known as the sensitivity function and describes how

sensitive the locus poles are to k, in other words, how fast the poles move as k changes. We

can also derived the sensitivity from 1 + kN/D rather than from D + kN and we get:

ds

dk
=
− ∂
∂k (1 + kN(s)/D(s))
∂
∂s (1 + kN(s)/D(s))

=
N(s)D(s)

k[N(s)D′(s) −D(s)N ′(s)]

These two functions, though they are different, have the same effective behavior (as can be

seen in Figure A.12). It is commonly known that pole sensitivity goes to infinity when mul-

tiple roots meet (for example at breakaways). Some drawing methods may use this function

to modulate the step size in k to not miss details at such points. Some methods might make

use of this function (or its denominator) to help pinpoint the k at the center of such a feature.

This list is more extensive than some, as some authors do not necessarily include all the latter

rules.

Some interesting notes:

2-pole breakouts are perpendicular to real axis. In keeping with the rules for arrival and depar-

ture angles for two-pole meetings, a two-pole breakout or breakin will always be perpendicular

to the real axis. A breakout or breakin on the real axis involving more than two poles will always

involve poles entering and leaving from both sides of the meeting point (i.e., if the meeting point

is on the stability boundary (z = 1 or s = 0), then at least one entering and departing pole must be

unstable.

Non-intersection. Pole tracks will not self-intersect, or intersect each other. They may touch at

points of multiplicity, but otherwise, if a point in the s plane is a member of the locus for for some

k0, it will not be a member of the locus for any other k0.

3This can be viewed in terms of earlier rules by offsetting k to the point where the poles meet, at which time this sec-
ondary locus can be considered to have “open-loop” poles of the current multiplicity at that point, with the “arriving” poles
coming in along the 0-degree locus and the “departing” poles leaving along the 180-degree locus [88].

A.1. INTRODUCTION 259

Swapping D and N. (i.e., swapping the open-loop poles and zeros) gives the same full locus

shape. This can be seen from a few angles. First, if Im(D/N) = 0, then Im(N/D) = 0 too. Second,

D(s) + kN(s) = 0⇒N(s) +
1
k
D(s) = 0

Thus, the k mapping is all that is different. For filter design, this can make for some possible

confusion about what should be poles and what should be zeros in the open-loop, as they can

effectively be swapped, though the direction that the poles move with k should be able to clear up

any such confusion.

Offsetting k. Offsetting the locus parameter keeps the same locus shape, simply moving the

open-loop poles:

D(s) + kN(s) = 0

k = k̂ + a

D(s) + (k̂ + a)N(s) = 0

(D(s) + aN(s)) + k̂N = 0

The new open-loop poles are at the location of k = a in the original locus. Similar analysis can be

done for any other mapping of k. For example, mapping k = k̂2 gives the same locus shape, but

only the k > 0 locus, since (for real k̂) k̂2 > 0.

Feedback around an FIR filter. This examines the question about whether an FIR filter has poles.

If take an FIR filter: H(z) = n0 + n1z
−1 + · · · + nNz−N and put negative feedback around it with a

loop gain of k, we get:

n0 + n1z
−1 + · · · + nNz−N

1 + k(n0 + n1z−1 + · · · + nNz−N)
=

n0z
N + n1z

N−1 + · · · + nN
zN + k(n0zN + n1zN−1 + · · · + nN)

(A.7)

As such, the closed-loop system acts as though it has N poles at z = 0, which can also be seen if we

write the FIR in terms of z rather than z−1:

nNz + n1z
N−1 + · · · + nN
zN

(A.8)

The locus of such a system starts with all poles at z = 0 with k = 0, and the system simply having

the FIR response. As k increases, the poles split out in the standard distribution out the angles (N

branches), depending on the sign of k, and eventually at high enough gain reach the open-loop

zeros. A typical example is shown in Figure A.2. A typical behavior is that one sign of k gives root

tracks which head nearly directly to the zeros, hence giving a filter with whose zeros get narrower

260 APPENDIX A. ROOT LOCUS REVIEW AND RENDERING METHODS

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

Figure A.2: Root Locus for a system consisting of feedback around an FIR filter whose taps are a
31-point Hann window.

and narrower, and whose transfer function otherwise ends up pretty flat (much like how a DC

blocker works, by putting a zero on the unit circle and bringing a pole up close to it at a slightly

lower radius). The other sign of k sends the poles outward at angles between the open-loop zeros,

which has the effect of making peaks between the notches of the zeros.

Karplus-Strong Filter and Flanger. These are degenerate cases of the FIR example, where the FIR

filter is just a delay, and hence has all infinite zeros (if the delay is an integer):

H(z) = z−N .

The locus is simply the N-way branching from z = 0 out to infinity (see Figure A.3). As one would

expect, the poles reach the unit circle when |k| = 1. The sign of k determines which rotation of the

branching the poles take. As is known in the use of Karplus-Strong models, one sign of k gives

an impulse response with all harmonics (pulse-like) (in this case k < 0, because of the assumed

negative feedback), and the other sign of k gives only odd-harmonics (pulses with alternating

sign). This behavior can be interpreted in terms of the different rotations of the locus branches.

What about delays of non-integer lengths? A common interpolation is linear. Figure A.4 shows

A.1. INTRODUCTION 261

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

Figure A.3: Root Locus for a system consisting of feedback around an integer-length delay of 30
samples (as in a Karplus-Strong string model or a Flanger.

the locus for a common situation, with linear interpolation for 1/2 sample:

H(z) = 0.5z−N + 0.5z−(N+1).

An open-loop zero is added due to the interpolation, which has the affect of decreasing the radius

of the higher “harmonics” for k = −1, and also slightly warping their frequencies.

Another common interpolation is allpass interpolation. Figure A.5 shows a 5-sample delay loop

with an additional one-pole allpass in the loop (such that when the allpass coefficient is 0, the total

loop delay is 6 samples):

H(z) = z−5 c + z
−1

1 + cz−1
(A.9)

The frequency-warping effect of strong allpass filtering is quite obvious for “strong” allpass coef-

ficients, and the effect is visible in these loci, as the allpass pulls the frequencies downward, and

in the extreme of c = −1 would have the effect of swapping the effective sign of k. Note how the

branches emanating from z = 0 change from 6-way branching to 5-way branching.

262 APPENDIX A. ROOT LOCUS REVIEW AND RENDERING METHODS

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

Figure A.4: Root Locus for a system consisting of feedback around an delay of 29.5 samples, imple-
mented using linear interpolation. Dots: k = −1 (which together with the negative feedback gives
a positive loop gain)

A.1. INTRODUCTION 263

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

Figure A.5: Root Loci for a system consisting of feedback around delays between 5 and 6 samples,
implemented using allpass interpolation. left-to-right, top-to-bottom: allpass coefficient = 0, -0.25,
-0.75, -0.95

264 APPENDIX A. ROOT LOCUS REVIEW AND RENDERING METHODS

A.1.3 Higher-Order Loci

In the analysis of the state-variable filter and Moog-style filters, locus equations that are higher-

order polynomials in the “gain” variable are often encountered. We will call these “higher-order”

loci. For example, a 2nd-order locus in k would be:

D(s) + kN1(s) + k2N2(s) = 0 (A.10)

We name the polynomials in this manner in comparison with the first-order locus. In the state-

variable filter, the root-locus is 2nd-order in the frequency coefficient (but only 1st-order in the Q

coefficient). In Moog-style filters, the locus is 4th-order in the tuning coefficient (and again 1st-order

in the Q coefficient). For higher orders, we continue the naming scheme:

D(s) + kN1(s) + k2N2(s) + · · · + kNNN(s) = 0 (A.11)

Not much literature can be found on higher-order root locus, though a book on the subject was

found, written in 1981 by Hauberk Kahn [102].

A Look at 2nd-Order Locus

What can we quickly say about a 2nd-order locus?

First, in comparison to a first-order locus, the roots start a those of D, and end at the roots of

N2. N1 has the effect of “pulling” on the locus in some way.

Next, we can think of it in terms of the 1st-order loci of its components. The 2nd-order locus lies

within the envelope of the first-order loci:

D(s) + kN1(s) = 0

D(s) + kN2(s) = 0

N1(s) + kN2(s) = 0

Figure A.6 shows the 2nd-order locus for the polynomials:

D(s) = s4 − s3 + 4

N1(s) = s4 + 2s2 + s − 2

N2(s) = 0.2 ∗ (2s4 − 4s2 + 3s)

The roots of D are shown by ’x’, the roots of N1 by squares, and the roots of N2 by ’o’. The roots

start at the roots of D when k = 0, and at low k, the roots head “towards” the roots of N1 near

the D + kN1 locus, then pull away and head towards the roots of N2, arriving at high k along the

A.1. INTRODUCTION 265

−2 −1.5 −1 −0.5 0 0.5 1 1.5 2
−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

Figure A.6: A 2nd-order locus lives within the envelope of three 1st-order loci.

N1 + kN2 locus.4 We will look into the strength of the pull of N1 later on in this section.

On first look, the method whereby we derived a 2D implicit equation for the full 1st-order lo-

cus which didn’t depend on k wouldn’t appear to have an extension to higher-order loci. This is

initially a worry, since some of the nicer rendering methods use the implicit function form of the

locus. However, it is still possible to use implicit-function methods. First, one could think of the lo-

cus equation as an implicit function in three dimensions (s plus k) and project 3D implicit-function

renderers down to the s plane (we will see some of that later on in this appendix). Alternatively,

we can solve the locus equation for k:

k =
−N1(s) ±

√
N2

1(s) − 4N2(s)D(s)

2N2(s)
(A.12)

and apply the same requirement that it be real:

Im

−N1(s) +
√
N2

1(s) − 4N2(s)D(s)

2N2(s)

 = 0 (A.13)

OR

4This behavior is reminiscent of spline curves (Breezier splines in particular)

266 APPENDIX A. ROOT LOCUS REVIEW AND RENDERING METHODS

Im

−N1(s) −
√
N2

1(s) − 4N2(s)D(s)

2N2(s)

 = 0 (A.14)

This system of two implicit equations defines the locus, which can also be interpreted as: “The

locus is the union of the solutions of the two implicit equations.” For example, let us look at the

polynomials:

N1(s) = 11s5 − 5s4 + 10s3 + 5s2 − 13s

N2(s) = s5 + 4s4 + 3s3 + 3s2 + s + 2

D(s) = 8s5 + 3s4 − s3 + 3s

The full 2nd-order locus is shown in Figure A.7, along with the solutions to the two sub-problems

shown separately.

This concept generalizes to loci of higher order in k:

P(k) = D(s) + kN1(s) + · · · + kNNN(s) = 0 (A.15)

Each root of P(k) in k generates an implicit equation in s, and the root locus in k is the union of the

solutions to those equations:

Im [rootkiP(k)] = 0, i ∈ (1, · · · ,N) (A.16)

where rootki denotes the ith root in k of P(k).

Scaling and Sign Issues In first-order root locus, the raw scaling of D and N do not affect the

shape of the locus:

aD(s) + kbN(s) = 0

D(s) + k(b/a)N(s) = 0

D(s) + k̂N(s) = 0

In other words, changing the scales simply results in a remapping of k (though if plotting only one

sign of k, the signs of the scalings can effect which half of the locus is implied).

However, if we do the same manipulation to a 2nd-order locus equation, we get the following:

aD(s) + kbN1(s) + k2cN2(s) = 0

D(s) + k(b/a)N1(s) + k2(c/a)N2(s) = 0

D(s) + k̂N1(s) + k̂2(ca/b2)N2(s) = 0

A.1. INTRODUCTION 267

−2 −1.5 −1 −0.5 0 0.5 1

−1.5

−1

−0.5

0

0.5

1

1.5

Figure A.7: Top: A 2nd-order locus, dark: k > 0, light: k < 0. Bottom Right: one of the solutions of
quadratic equation. Bottom Left, the other solution.

268 APPENDIX A. ROOT LOCUS REVIEW AND RENDERING METHODS

or, with slightly different algebra:

aD(s) + kbN1(s) + k2cN2(s) = 0

D(s) + k(b/a)N1(s) + k2(c/a)N2(s) = 0

D(s) + k̂
√
b2/acN1(s) + k̂2N2(s) = 0

such that we do not end up with a simple remapping of k. As such, there is an extra degree of

freedom in in the shape of a 2nd-order locus. By analogy, an Nth-order root locus has N − 1 further

degrees of freedom in the locus shape, related to the relative gains (and signs) of the polynomials.

Effect of the extra degree of freedom . To answer an earlier question: this degree of freedom

affects the pull that the roots of N1(s) have on the locus. Figure A.8 shows a set of loci for the

−2 −1.5 −1 −0.5 0 0.5 1 1.5 2

−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

Figure A.8: Locus of Figure A.6 with various scales on N2 between 10−6 and 106.

system of Figure A.6, where the scale on N2 varies over a range of 10−6 to 106. Therefore, not only

does the 2nd-order locus live within the envelope of the three first-order loci, depending on the

relative scale of N1 and N2, it can visit any point within that envelope.

A.1. INTRODUCTION 269

Let’s look again at the system of Figure A.7 with different scales on its N2. Looking at Fig-

ure A.9, we can see some trends:

−2 −1.5 −1 −0.5 0 0.5 1

−1.5

−1

−0.5

0

0.5

1

1.5
−2 −1.5 −1 −0.5 0 0.5 1

−1.5

−1

−0.5

0

0.5

1

1.5

−2 −1.5 −1 −0.5 0 0.5 1

−1.5

−1

−0.5

0

0.5

1

1.5
−2 −1.5 −1 −0.5 0 0.5 1

−1.5

−1

−0.5

0

0.5

1

1.5

Figure A.9: Locus of Figure A.7 with various scales on N2: Top Left: 10−5, Top Right: 10−1, Bottom
Left: 102, Bottom Right: 105.

• As the scale on N2 gets small, the “pull” from the zeros of N1 gets progressively stronger.

• As the scale approaches zero (but still nonzero), the locus approaches the union of the 1st-

order loci of D + kN1 = 0 and N1 + kN2 = 0. The low-|k| range traces the D + kN1 = 0 locus,

270 APPENDIX A. ROOT LOCUS REVIEW AND RENDERING METHODS

ending up at the roots of N1, and then the very high range of |k| traces theN1+kN2 = 0 locus,

eventually ending up at the roots of N2.

• A scale of zero is a degenerate system from the standpoint of the second-order locus, and

only represents the D + kN1 = 0 locus.

• As the scale gets large (and is positive), the positive-k and negative-k halves of the locus start

approaching each other, until they meet on the 1st-order locus D + kN2 = 0, but only tracing

the k > 0 side of it (regardless of the actual sign of k, because it is squared on the N2 term.)

• Similarly, as the scale gets large but negative, the halves approach the k < 0 side of the first-

order locus D + kN2 = 0. This case is not pictured in Figure A.9.

A dual set of rules can be described if N1 is getting scaled rather than N2.

Remember that the scaling is actually about the relative scales of N1 and N2. With a small bit of

algebra, one can show:

D + akN1 + k2N2⇒ D + k̂N1 + (1/a2)k̂2N2 (A.17)

Hence scaling N2 up can give the same shape as scaling N1 down an appropriate amount, though

the k mapping would be different. Remember that the signs of the polynomials are part of their

scales, and they affect how the sign of k traces out the various “sides” of the loci.

Some further ways in which higher-order loci can differ from first-order loci

• Whereas any particular first-order locus track cannot self-intersect, such intersection is possi-

ble with higher-order loci. Locus tracks can hit the same points in the s plane at different val-

ues of k (either the same track or a different track). See Figure A.7, for example. Backtracking

along the same track is also possible. This was seen in the analysis of the state-variable-like

derived filter in Section 3.2.2, where a real pole headed towards z = 1, but then reversed and

headed back towards z = −1, so that the locus appeared to “stop” at some point.

• As we will see in Section A.2, higher-order loci can be set up to exhibit breakaways which do

not have to be perpendicular to the real axis, and can, in fact, have controllable angle.

A.2 A Derivation of the “X” Locus

In an earlier chapter, we posed the question of how one might derive a locus with constant-Q lines.

We also saw in Section 2.4.4 that the continuous-time state-variable filter possess such a locus in the

s-plane. Here we present a derivation of such a system from the standpoint of desiring an X-shaped

locus with variable-slope lines.

A.2. A DERIVATION OF THE “X” LOCUS 271

Problem Statement: Derive the equation for a (real-coefficient polynomial) root locus whose

shape is a ray (and its complex conjugate) of controllable slope starting at s = b on the real axis

when k = 0, and heading “up and to the left” with a slope of a as k increases in the positive

direction.

The desired ray can be described by:

x(k) = (b − k)

y(k) = ak

Or, alternately, a point on the ray can be described in the s-plane by:

s0(k) = (b − k) + jak (A.18)

Thus, a polynomial system with roots on s0 and its conjugate, parameterized by k, would be:

(s − s0)(s − s∗0) = 0

(s − Re(s0))2 + Im(s0)2 = 0

(s − (b − k))2 + a2k2 = 0

((s − b) + k)2 + a2k2 = 0

(s − b)2 + 2(s − b)k + (1 + a2)k2 = 0 (A.19)

Or, if we wish to control slope by scaling N1 rather than N2, we can transform k (as described in a

previous section) and get:

(s − b)2 +
2√

1 + a2
(s − b)k + k2 = 0 (A.20)

As we have seen before, this locus is a 2nd-order locus in k, and it has both of its “open-loop poles”

(roots of D(s)) on s = b, and also one of the N1(s) roots on s = b as well, with both roots of N2(s)

and the other root of N1(s) at infinity.

As such, we have a plausible direction from which one might derive such a locus if one had not

already come across it through analysis of the continuous-time state-variable filter. It also presents

a method one might use when attempting to derive other root-locus-based constant-Q filters.

Note that if N1(s) has its finite root elsewhere on the real axis than s = b, then the locus is a hy-

perbola, with the above “X” lines being its asymptotes. The above “X” is the degenerate hyperbola

for when the two foci come together at the same point. Only in the degenerate case of the roots

on top of each other do the locus tracks actually leave the axis at an angle, otherwise they leave

perpendicularly.

272 APPENDIX A. ROOT LOCUS REVIEW AND RENDERING METHODS

A.2.1 Deriving a Moog-style constant-Q Locus

We can also apply the above derivation method to deriving a Moog-style locus in the s-plane. As

seen in Section 2.5, the locus in p for the ideal continuous-time Moog-style filter is a complex-

conjugate pair of rays at some angle to the left of the imaginary axis, together with a second pair at

an angle closer to the real axis, all originating at s = 0.

On first thought, one might use:

s0(p) = (b − p) + ja0p

s1(p) = (b − p) + ja1p

Where a0 and a1 are the desired slopes. However, since these ray equations are parameterized such

that the horizontal location along the ray is parameterized directly to p, that would cause s0 and

s1 for any particular p to be offset vertically from each other. However, we saw in Figure 2.29 that

the poles for a particular p are actually offset horizontally (which makes the dominant poles much

more dominant). Therefore we need to use a different line parameterization, such as:

s0(p) = c0(b − p) + jp

s1(p) = c1(b − p) + jp

Where c0 = 1/a0, and c1 = 1/a1. This parameterization will cause s0 and s1 to have the same

imaginary part for any particular p.

Following the above derivation, we get the 4th-order locus equation

D(s) +N1(s)p +N2(s)p2 +N3(s)p3 +N4(s)p4 = 0

where

D(s) = (s − c0b)2(s − c1b)2

N1(s) = 2(s − c0b)(s − c1b)((c0 + c1)s − 2c0c1b)

N2(s) = b2(c2
0 + c

2
1 + 6c2

0c
2
1) − 2b(c0 + c1 + 3c2

0c1 + 3c0c
2
1)s + (2 + 4c0c1 + c2

0 + c
2
1)s

2

N3(s) = −2b(c2
0 + c

2
1 + 2c2

0c
2
1) + 2(c0 + c1 + c2

0c1 + c0c
2
1)s

N4(s) = (1 + c2
0)(1 + c2

1)

Now the Moog filter rays start at the origin, so b = 0, and things simplify significantly:

D(s) = s4

N1(s) = 2(c0 + c1)s3

A.2. A DERIVATION OF THE “X” LOCUS 273

N2(s) = (2 + 4c0c1 + c2
0 + c

2
1)s

2

N3(s) = 2(c0 + c1 + c2
0c1 + c0c

2
1)s

N4(s) = (1 + c2
0)(1 + c2

1)

These equations allow us to specify the slopes of both rays.5 However, in the Moog-style filter, the

ray angles are constrained. If we refer again to Figure 2.29, we see that the poles for any particular

p form a square. Hence, if the dominant-pole ray slope is a0, then the non-dominant-pole ray slope

is restricted be a function of a0. With a bit of geometric construction, we can derive that if a0 = c/d,

then a1 = c/(d + 2c), or

a1 =
a0

1 + 2a0
(A.21)

Or, in terms of c0 and c1:

c1 = c0 + 2 (A.22)

And the 4th-order locus equations further simplify to:

D(s) = s4

N1(s) = 4(1 + c0)s3

N2(s) = 6(1 + c0)2s2

N3(s) = 4(1 + c0)3s

N4(s) = 4 + (1 + c0)4

Which compares well to Equation 2.66, and one can derive a relation between k and the dominant-

pole ray slope a0.

As noted elsewhere, and in comparison with the “X” locus, we have the interesting pattern that

the roots of each coefficient of p has one fewer root at s = 0 than the previous one (starting at D(s),

the zeroth-order coefficient of p)

A.2.2 An interesting extension of the “X” locus

It turns out that some of the properties of the “X” locus (in the locus domain, not necessarily in the

filter domain) extend to locus equations of the form:

(s − x)2n + αk(s − x)n + k2 = 0 (A.23)

where n is a positive integer.

5There may be some interesting further exploration into the filter-design implications of the ray angle of the non-
dominant poles. Also, of course, there is the research problem of inverting from these equations back to a similar filter
topology as the ideal Moog-style filter.

274 APPENDIX A. ROOT LOCUS REVIEW AND RENDERING METHODS

Remember that the “X” locus (Section A.2) (which corresponds to n = 1), when scaled on N1 as

in this equation, ranges between the trivial locus (s − x) + k = 0 when α → ∞ at one extreme, and

the other trivial locus (s − x)2 + |k| = 0 when α = 0 on the other extreme on the extremes of scaling

in a 2nd-order locus). The interesting thing was that between these extremes, the locus is always a

set of rays originating from the origin, their angles controllable by α.

Figure A.10: Loci of (s − 1)2 + αk(s − 1) + k2 = 0 for (left to right) α = 2, α = 1.98, α = 0.3, α = 0.
Range: −2 ≤ Re(s), Im(s) ≤ 2

Figure A.10 shows that as α ranges from 2 down to zero, the (s − x) + k = 0 locus (i.e., the

positive and negative real axis, depending on the sign of k) “splits” into pairs of rays, which rotate

as α decreases until meeting with one of the rays from the opposite sign of k at lines parallel to the

imaginary axis (forming the (s − x)2 + |k| = 0 locus).

Now for higher values of n, the same thing happens, just replicated n times around the angles

0 to 2π , as we will see below. If we let b = (s − x)n, then Equation A.23 becomes:

b2 + akb + k2 = 0 (A.24)

Solving for b:

b = k

(
−α

2
±
√(α

2

)2
− 1

)
(A.25)

Which, if α < 2, corresponds to:

b = k(− cos(φ) ± j sin(φ))

b = ke±j(φ+π) = −ke±jφ
(

0 ≤ φ ≤ π
2

)
Now substituting the definition for b:

(s − x)n = −ke±jφ

s = x +
n
√
−ke±jφ (A.26)

A.2. A DERIVATION OF THE “X” LOCUS 275

Remember that the nth roots of a complex number z are distributed in a circle at equally-spaced an-

gles away from 6 z (i.e., at [6 z/n, 6 z/n±2π/n, 6 z/n±4π/n, · · ·]), thus the n = 1 shape is replicated

n times at angles around s = x. See Figure A.11.

Figure A.11: Loci of (s − 1)2n + αk(s − 1)n + k2 = 0 for (left to right) α = 2, α = 1.98, α = 0.3, α = 0.
Top: n = 2, bottom: n = 3. Range of plots: −2 ≤ Re(s), Im(s) ≤ 2

276 APPENDIX A. ROOT LOCUS REVIEW AND RENDERING METHODS

A.3 Locus Drawing Methods

While researching the interpretation of variable filters via root locus concepts, it quickly became

necessary to be able to draw them. While MATLAB certainly contained a root locus renderer, the

version that existed at the time (early 1990s) was not perfect, particularly from the standpoint of

someone desiring to produce “neat pictures.” The loci were more than sufficient for use in control-

system design, but artifacts were common. As such, a secondary track of research was begun

exploring methods by which loci are drawn, from a graphics-algorithm perspective, with the basic

goal to come up with algorithms which could produce “clean pictures” of the loci.

At about the same time, attempts at fitting loci to desired tracks were going on, and one of

the major issues in that research was finding good-but-fast distance measures (i.e., how far is a

track from a set of points?). That research ended up dovetailing with the locus-rendering research,

particularly in the form of Taubin’s method (Section A.3.4 upcoming), which was originally en-

countered due to its good approximations of the distance form a point to the solution set of an

implicit function.

A Short History. The first root-locus drawing method was Evans’ own method, of course [73].

It was the primary method for most until computer-based methods became common. However,

various papers did propose other methods, mostly based on analytic approaches to the locus. One

method of particular interest, which the author only has anecdotal evidence of [54], was the use

of a rubber sheet and Tinker-Toys: Dowels of various heights (related to pole gains in a partial-

fraction expansion?) were anchored to a table top using various methods, and then a latex sheet

was lowered over them and anchored to the table top at some distance from the poles (one story

mentions the use of a large sewing hoop), and zero locations were pressed down to the table with

further dowels and/or weights. Since it was known that the locus followed steepest-descent paths

down the amplitude of the loop transfer function in the s plane, and it was also known that a rubber

sheet stretched in this way relaxed to a surface quite similar to that of the loop transfer function’s

amplitude, the rubber surface would be a good helper for visualizing a root locus. Apparently, this

view, together with the standard locus rules, helped visualize the locus (and probably encouraged

live experimentation with controller variations).

A.3.1 A Short Root-Locus-Variant Categorization

While root locus is normally discussed for rational-function systems, the algorithms we will look

at can often handle much more general situations. For this discussion, we will consider locus

equations in either the form 1 + kG(s) = 0 or D(s) + kN(s) = 0. Some possible categorizations:

Rational vs. Non-Rational — i.e., whether a finite number of discrete open-loop poles and zeros

can be determined. Non-rational systems typically encountered are continuous-time systems

A.3. LOCUS DRAWING METHODS 277

with time delay, such that there are an infinite number of poles and zeros. More theoretical

situations may be cases where some exponent is a function of k, such as in a variable discrete-

time delay, which may have a term zk or the like, in which case the number of poles might be

variable with k (a difficult situation for most algorithms).

Real-coefficient vs. Complex-coefficient The basic difference is whether the locus will be symmet-

ric about the real axis.

Locus Order This mainly determines how easily an implicit equation (or a set of equations) not

containing k can be derived.

A.3.2 A Short Taxonomy of Computer Locus Drawing Methods

Vector-Based The output is a set of points on the locus, and the associated k values at each point.

Such methods explicitly follow the path of the roots for various values of k, and must have

some algorithm for determining which k to evaluate at.

Root-Finder-Based The most common method. Use is made of a separate root finder (usu-

ally a polynomial solver). As such, usually restricted to systems where a simple polyno-

mial can be calculated for any value of k. Thus not typically applicable to continuous-

time time-delay systems, but maybe applicable to variations on the zk example like zbkc,

where there is still a simple polynomial for each k.

Predictor-Corrector Root finding is integrated into the path following. As such, can theo-

retically follow zeros of almost any kind of function as long as good starting points can

be determined. All that is necessary is the ability to evaluate the function whose roots

are being tracked (and possibly derivatives, though those can be derived numerically if

necessary). Thus theoretically not limited by non-rational, complex-coefficient, or high-

order loci. Might be limited by numerics on occasion, and would need special heuristics

to handle cases where tracks may start “out of nowhere” or similarly stop (as opposed

to appearing or dying by bifurcation or turning, as those are standard issues for these

algorithms).

Pixel-Based (the output is picture of the locus as a pixel array) Such methods assign a pixel color

to all pixels within some distance of the locus in the s plane. Such methods tend to work

best using an implicit function without k in it, as having to deal with k can increase sam-

pling difficulty for some brute-force methods. Antialiasing is usually possible, either as a

directly consequence of the algorithm (as in Taubin’s algorithm), or via (usually adaptive)

supersampling.

Brute Force Evaluate some algorithm at each pixel to determine its color. If an implicit func-

tion without k is not available, sample k to see if the locus gets close. This level of brute

278 APPENDIX A. ROOT LOCUS REVIEW AND RENDERING METHODS

force is rarely implemented. More typical is some sort of “Ray Tracing” whereby some

knowledge of the locus equation is used to simplify finding whether solutions are near

the pixel. Implementations discussed in this thesis are limited to situations where a real

polynomial in k can be calculated for any particular point in the plane, and are thus

limited to real-coefficient locus equations, but are not necessarily limited by locus order

or rationality of G. Some implementations may only implement low-order polynomial

solvers, however, and would thus be limited in locus order.

Space Subdivision Use some approximation of distance to the solution set to remove por-

tions of the plane from further consideration and hence accelerate the rendering. Taubin’s

method (Section A.3.4) is the best example of this type. Such methods work best when

an implicit equation can be derived which does not contain k, and hence are more com-

plex for higher-order loci. Otherwise, rationality should not be an issue, though imple-

mentations may only expect rational inputs.6

Hybrid Output is vector data, but it is derived via some sampling of the the space.

Contour Plotting Requires a real-valued implicit function (usually Im(1/G)). Evaluates the

function on a grid and uses standard contour-plotting methods to plot the contours for

the value of zero. Since an implicit function is required, higher-order loci are more dif-

ficult (though not impossible). Rationality is generally not required, nor are real coeffi-

cients.

Slicing Derives simple 1D equations indexed by either Re(s) or Im(s), and solves these to

find intersections of the locus along the slices. The slice is scanned across the region

of interest. Root locations are very accurate along the slices, though the slice locations

are usually quantized. Note that this thesis does not present any examples of such an

algorithm. The reader is referred to [39] for further information on such an algorithm.

Note that the concept of solving for solutions on a 1D scanned line is also the basis for the

pixel-based ray-tracing methods as well: the 1D slice is simply in a different direction,

and the slice intersections are treated a bit differently.

We will look at examples of these methods next.

A.3.3 Vector-Based Methods: Pole Tracking

Vector-based methods (as opposed to pixel-based, which we will look at in the next section) all

tend to be some sort of pole-tracking algorithm, though we will see some hybrid algorithms in a

later section that output vector data which are not pole-tracking algorithms.

6This is typical for any renderer which doesn’t have theoretical limitations on system type: any particular implementa-
tion may not accept general functions as input and may thus have additional restrictions which are not inherent limitations
of the algorithm.

A.3. LOCUS DRAWING METHODS 279

The basic algorithm in a pole-tracking method can be summarized as

• Choose a value of k

• Find the roots for that value of k

• Repeat until desired range of k is covered.

The two major steps listed above correspond to the two major issues for pole-tracking methods:

(1) how to choose k, and (2) how to find the poles. We will classify the algorithms based on how

they handle case (2), as methods for handling case (1) can often apply to any pole-tracking algo-

rithm. Note that how k is chosen can depend on various factors. Often graphical considerations

lead to a much finer k sampling than would otherwise be necessary, in order to generate smooth

locus curves.

The two pole-following types we will look at are:

• Using a numerical root finder. This is the most common method.

• Using a Predictor/Corrector method.

Root-Finder-Based Methods

These methods are the most common and straightforward root-locus calculation methods many

MATLAB implementations have been of this type (at least as of MATLAB 5). They have at their

heart the use of some root finder (usually a polynomial root finder), which is used to find all the

roots for each value of k. A typical algorithm looks something like:

1. Choose the next k value ki

2. Find the roots at ki : r0i, r1i, . . . rNi.

3. Assuming the root finder will not always return roots in the same order across every k tran-

sition, compare against the roots found on the previous iteration and match up the closest

ones to each other.7 This will keep the roots from ‘jumping’ between curves, and allows the

curves to be drawn with lines connecting the roots. It is necessary for almost all root finders,

since the roots will tend to move through various spatial configurations relative to each other

across the locus, and any particular root-ordering method is not likely to maintain the same

order for all such configurations.

4. Repeat back to Step 1 until end value of k is reached.

7Matlab’s vsort() function performs such a matching

280 APPENDIX A. ROOT LOCUS REVIEW AND RENDERING METHODS

Note that the third step is there specifically to allow the curves to be drawn with lines connecting

the roots (also, any bifurcation/ high-sensitivity-handling in the first step can also be considered

partly necessary to make the connecting lines look right). If connecting lines are not necessary, the

algorithm could actually reduce to iterating the first two steps, though later steps are still of interest

if one does not want to miss locus features.8

The first step is usually much more complicated than it appears. Due to the fact that the sen-

sitivity of the locus to k is related to the inverse of the distance of the poles from each other, an

“ideal” sampling of k depends on the locus itself, and thus cannot necessarily be predicted. Any

method which pre-defines the k locations must necessarily be conservative and grossly oversample

k in some areas. The most common “open-loop” choice of k is some sort of logarithmic spacing:

k = 10x, where x has equally-spaced values from some minimum (usually somewhere between

-5 and -2) to some maximum (usually the negative of the minimum). Again, this is usually only

useful for getting a gross view of the locus, and artifacts are common, if not missed features in the

worst cases.

The most common artifact is at a breakaway or a breakin, whereby the poles jump from the

incoming curve to the outgoing curve well before reaching the break point. Poles move extremely

fast in the vicinity of a breakaway, and unless the breakaway k value is determined by some other

means, it is essentially impossible to predict a sampling of k that will catch the breakaway in any

“nice-looking” way.

However, it is possible to calculate the sensitivity at a point on the locus:∣∣∣∣dsdk (D(s) + kN(s))
∣∣∣∣ = ∣∣∣∣ N(s)

D′(s) + kN ′(s)

∣∣∣∣ (A.27)

or ∣∣∣∣dsdk (1 + kN(s)/D(s))
∣∣∣∣ = ∣∣∣∣ D(s)N(s)

k[N(s)D′(s) −D(s)N ′(s)]

∣∣∣∣ (A.28)

Figure A.12 shows the sensitivity functions for an example first-order locus. Note that the two

derivations of sensitivity are effectively equivalent.

This equation (for first-order loci) is only accurate for a point that is known to be on the locus

(and for its corresponding k value), so again cannot be used to predict a sampling of k. However, it

can be used to adaptively vary the rate at which an algorithm moves along k. A possible stepping

algorithm may be based on the maximum sensitivity among the current pole tracks:

∆k =
α

max(ds/dk)β
(A.29)

8There are also philosophical arguments that could be made about whether a collection of points represents a “locus”
as well as line-connected points, and can degenerate into discussion about if straight-line connections might actually be
misleading in some cases. . .

A.3. LOCUS DRAWING METHODS 281

−2 0 2 4

−4

−3

−2

−1

0

1

2

3

4

10
−4

10
−2

10
0

10
2

10
−4

10
−2

10
0

10
2

10
4

k
se

ns
iti

vi
ty

10
−4

10
−2

10
0

10
2

10
−4

10
−2

10
0

10
2

10
4

k

se
ns

iti
vi

ty

Figure A.12: Root locus sensitivity in k. Left: a first-order locus, Middle and Right: two derivations
of the sensitivity functions, plotted for each of the tracks vs. k.

The choice of α and β would be made experimentally, trading off excessive oversampling of the

curve vs. the likelihood of missing features and breakaway artifacts. Another possibility is:

∆k =
α

(ε + max(ds/dk))β
(A.30)

Which puts a limit on the step sizes when the sensitivity gets very low.

A problem to worry about with this kind of step-size control is “hopping”, where when entering

a feature where more than three or four poles come together (thus the arrival and departure angles

are pretty close to each other), the poles will “hop” to the departing tracks rather than continue into

the middle of the singularity. When β is near 1.0, this tends to happen approximately where the

distance to the departing track is approximately the same as the current step distance in s. Thus,

by making β a bit larger, the step sizes can be made to get smaller faster, and thus get further in

towards the center of such singularities.

However, a problem that can crop up if β gets too high is “stopping”, whereby ∆k approaches

too close to zero when the sensitivity gets high, such that the algorithm appears to stop progressing

for a large number of iterations. ∆k might be limited to some minimum value, or equivalently the

sensitivity might be limited to some maximum value.

An alternative stepping algorithm, which the author is particularly happy with, is to use a

graphical measure for determining the sampling of k: sample k such that the curves are “smooth”.

This is usually implemented via adaptive subdivision of k:

1. Choose next k by some algorithm (sensitivity, etc), which does not need to be very fine, just

enough to not completely miss small features.

2. Find all roots at the new k, and sort them to line up with the previously-found roots.

282 APPENDIX A. ROOT LOCUS REVIEW AND RENDERING METHODS

3. For each curve, calculate the angle between the line segment consisting of the new point and

the previous point, and the segment consisting of the previous point and the one before.

4. If the angle is too far from 180 degrees (according to some threshold), assume that it will

be a visible “kink”, so recursively pull k back towards the previous value until the angle

(“curvature estimate”) is within the threshold, or if the line segment length falls below some

other threshold, or if some recursion depth is reached.

Not only will such an algorithm tend to produce only as many samples of k as are necessary to

achieve smooth curves, it will automatically recursively track down breakaways and the like (since

they are hard corners, the recursion will keep narrowing down to the exact location of the corner,

until interrupted by one of the other recursion-breaking limits), giving clean, artifact-free render-

ings of those difficult features.

−1 −0.5 0 0.5 1
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

−1 −0.5 0 0.5 1
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

−1 −0.5 0 0.5 1
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

Figure A.13: A 2nd-order locus rendered with a root-finder-based method using adaptive k subdi-
vision, with three different settings of the adaptation tolerance. Left: very loose, Middle: medium,
Right: very tight. Visited/rendered points are marked with dots.

Figure A.13 shows three settings of subdivision tolerance in a root-finder-based rendering method,

with the visited points marked to show the tradeoff in smoothness versus the number of points.

Note that the problem of parameter-stepping is also an issue in general predictor-corrector

path-following (homotopy and continuation, etc). As such, further discussion of step-adaption

algorithms can be found in much of the literature (see the intro to the predictor-corrector section,

next).

One potential drawback of root-finder-based methods would arise if the root finder had numer-

ical instabilities, due to extremely high-order polynomials or the like. Depending on the numerics

of the algorithm, a predictor-corrector-based algorithm, which is based purely on “forward evalua-

tions” of the polynomials rather than repeated polynomial divisions (as in some root-finders) may

have a higher probability of giving cleaner results.

A.3. LOCUS DRAWING METHODS 283

Predictor-Corrector Methods

Predictor-Corrector is the most common technique in a field called numerical continuation, which is

the problem of taking a solution for a simple problem and numerically evolving it to a solution to a

difficult problem through a number of steps. This can also describe in general the concept of homo-

topy, where the solutions (or roots) of a difficult system are to be found by creating a function (the

homotopy) which smoothly interpolates between a simple system and the complex system, and

then numerically following the solutions of the homotopy as the interpolation parameter moves

from describing the simple system to describing the complex system.

As the general problem is one of following solutions/roots of a system as a parameter changes,

these techniques apply directly to root-locus drawing. The primary difference being that whereas

the goal in homotopy continuation is the determination of the final roots, the goal in root-locus

rendering is the determination of the whole path. As such, whereas the algorithm may be able to

successfully track the solutions at rather large step sizes, we may intentionally want to pull back

the stepping to produce a clean rendering of the path (indeed, the curvature-based adaptive step

subdivision algorithm described in the previous section applies directly in predictor-corrector as

well).

Some good references on numerical path following can be found in the works of Allgower and

Georg ([7] [6] [8]). A typical paper on step control is Kearfott and Xing [139].

Some of the uses of continuation which end up somewhat similar to root locus are the solution

of nonlinear equations [136], and the solutions of systems of polynomial equations ([177] [179]

[178]).

An alternative method for continuation is called pivoting, whereby the solution space is tiled

by triangles, and the path following occurs by determining which vertices the solution crosses as

the continuation parameter increases, following the path around by tracking the triangles which

are visited. From the standpoint of the root-locus-method taxonomy, pivoting is more of a hybrid

technique, since the triangles are effectively a sampling of the space. Gunji et al ([101] [141]) apply

a pivoting method to the solution of polynomial systems.

Stonick and Alexander [253] have applied a homotopy continuation to the design of IIR filters

(there is some interest in the use of homotopy in non-convex optimization in general). In fact,

while we’re on the subject of optimization, interior-point methods in convex optimization are a

form of homotopy where a simple-to-minimize error surface is morphed into the desired error

surface while the minimum is tracked with predictor-corrector methods[25].

Use in root locus As mentioned, numerical continuation has an obvious application to root locus,

and several papers on the subject have been published.

In 1968 Ash [10] described an implementation of a rather successful predictor-corrector locus

renderer, and later O’Donell and Frederick [192], [193] described some extensions to the algorithm

284 APPENDIX A. ROOT LOCUS REVIEW AND RENDERING METHODS

and created a MATLAB port.

In 1970, Mitchel et al [169] described following the path of a locus, though it appears as though

the intent was more for control-system analysis than for drawing the locus.

In 1978 Pan and Chao [199] described a predictor-corrector root-locus renderer, but approached

from the concept of turning the locus into a differential equation and numerically integrating it

using a predictor-corrector method.

Nishiolka et al [191] described a pivoting-based path follower for root locus.

Alexander and Stonick [5] applied continuation to track the zeros of time-varying polynomials,

which is not far from tracking a root locus. In an earlier paper [252], the same authors relate an

RLS adaptive-filter update to a homotopy continuation.

Algorithm: The basic predictor-corrector algorithm is as such:

1. Assume we are on the path at the current k

2. Step k to the next value

3. Foreach active path: predict, from the previous samples along the path, an estimate of the

next sample location, and then correct it numerically, using a local zero/minimum finder

(Newton-Raphson is most common). The prediction step is used because Newton-type find-

ers are more accurate and converge faster the more accurate their starting points are: so a

good prediction will make the algorithm run faster and allow larger steps in k.

4. Add corrected points to the active paths and repeat until kmax is reached.

Since Predictor/Corrector is itself a root-finding method, one might ask why it is presented as

separate from the root-find-based methods. The main idea is that the methods from the previous

section start the root-finding from scratch for every k, so that the algorithm is purely one of choos-

ing the k and applying some heuristics to make sure we associate the correct roots to each other

from k to k. Predictor/corrector, however, uses the results of the previous k iteration explicitly to

assist in the finding of the roots for the next iteration. The algorithm makes use of the fact that

the roots move in a more or less continuous fashion with respect to k to follow them around as k

changes.

As such, the root-finding step in a predictor/corrector algorithm is generally much simpler than

in the general algorithm, as in a sense the whole algorithm is the root finder. On the other hand, if

properly initialized,9 a predictor/corrector can track roots of systems for which there may not be a

general root finder (many non-polynomial systems, for example).

9And if the number of roots stays constant, or new roots only appear via bifurcation of existing roots rather than appear-
ing arbitrarily in space

A.3. LOCUS DRAWING METHODS 285

One can think of a predictor/corrector method as “bringing the locus-tracking algorithm inside

the root finder,” whereas the root-finder-based methods have the locus-tracking algorithm outside

the root-finder.

A predictor/corrector can even be applied to systems with infinite numbers of (distinct) roots

(such as continuous-time delay systems), if the user is content with tracking a finite subset of the

roots (presumably this would work best when there is a finite number of roots within the region of

interest, as in the case of continuous-time delay systems, where the infinite number of roots exist as

series of distinct roots heading out to infinity, so that there are a finite number of roots within any

finite region of the s plane.).

The choice of k is integral to a predictor/corrector method: it must step roughly monotonically

through space, and it must not step too far so as to cause problems with the corrector. Thus the

visiting of k values cannot be completely random, as it theoretically could be in a generic root-

finder-based method. However, as mentioned earlier, there may be graphically-influenced situ-

ations where k may be required to be sampled even finer than the predictor/corrector needs to

maintain its tracks. Such situations may even require backtracking of k (as might occur with an

adaptive-subdivision curve-smoothness algorithm). If the algorithm remembers root and k values,

it could be temporarily restarted at some other point in “spacetime” to refine the locus there, or

backtrack the history of some newly-fond root track, etc.

Another interesting feature that can be implemented in predictor/corrector methods (though

not all methods do this) is that the k values do not have to be locked together for all the tracks,

since the root-finding is actually happening independently at each root. A common annoyance for

implementors of root-finder-based algorithms is when a ‘boring’ track gets a bunch of extra roots on

it because another root was dong something interesting at the time (such as encountering a split, or

even heading out to infinity). A predictor/corrector can theoretically independently adapt k along

each track. It becomes tricky, however, when tracks meet, if they are on different k schedules. Such

an algorithm would need some good computational geometry algorithms to identify meetings in

such situations. More likely, an algorithm will tend to step all tracks together, but then possibly do

any adaptive subdivisions or backtrackings locally to specific tracks.

An implementation for root-locus rendering can easily become “a stack of heuristics”, though

how far that goes is up to the implementor. Some possible added heuristics:

• The previously-mentioned adaptive subdivision of k for curve smoothness can be considered

a heuristic.

• Handling of bifurcations (breakaways, breakins, other multiplicity situations). Ash [10] de-

tects them by catching sudden changes in the motion angle of a track, then applies a special

newton search for the exact break value of k. Other more heuristic methods may simply

note that multiple tracks have corrected to the same point (which typically happens around

multiplicities) and take some corrective action (such as placing prospective starting points at

286 APPENDIX A. ROOT LOCUS REVIEW AND RENDERING METHODS

perpendiculars and re-trying the corrections). It has already been noted that as long as the

roots can stay on the tracks, a smoothness-based k subdivision algorithm will do the rest of

the work in tracking down to the center of a multiplicity.

• Simple bifurcation tests such as checking a circle of prediction points around a test point to

see if all correct to the same location or not.

• Letting tracks which leave some expansion of the area of interest die rather than continuing

to track them. The intent of such a heuristic is to not have to track asymptotes out to infinity.

A downside is that a track may leave the ares of interest but later come back, which makes

the next heuristic necessary.

• Periodically testing for “new” tracks which aren’t currently being tracked. A typical method

would be to randomly seed predictor points in space and see if any correct to locations that

are not on currently active tracks. Such a technique may be of use in tracking systems where

the number of active poles may vary with k, or in tracking infinite-root non-rational systems,

where additional roots might come in from outside the region of interest. Since k can be

unlinked from tracks, a newly-recognized track can be traced backward to narrow down its

point of arrival or to see if it joins up with any previously-killed tracks (or any active tracks).

This, however, presents a tricky problem if the k values don’t line up exactly: how to decide if

two sets of points are members of the same curve or not. . . (this will not be discussed in detail

in this thesis).

• A “reality check” heuristic that checks to see if corrected points lie abnormally far from the

predicted point and the current track. This can help catch potential problems with the unpre-

dictability of Newton’s method when starting points are “between” roots.

Newton’s method is the typical corrector in such algorithms. However, there can be one situa-

tion where it can pose problems: breakaways from the real axis. Let’s say two roots at step n − 1

were real, but at the next step they are complex. The predicted values for the roots are likely to still

be on the real axis (or very near it). However, in such situations, the Newton steps for those loca-

tions with the new coefficients can very easily lead to a completely different area of the space. This

can be illustrated with a Newton Fractal of such a situation (i.e., a map of which roots a newton it-

eration ends up at), as in Figure A.14: The image color-codes (or in gray) the roots at which various

starting-points in the plane end up after a number of iterations of Newton’s method. Very little of

the area on or the real axis actually ends up either of the two complex poles (at the top center and

bottom center of the image. The most likely ending point is denoted by the medium-sized area in

the middle of the image, which corresponds to a root that is neither of the two roots that “should”

be corrected to.

This can be understood also from the fact that in the Newton’s method iteration, if the polyno-

mial coefficients are real, and if the starting point is real, then the iteration is going to stay real: there

A.3. LOCUS DRAWING METHODS 287

Figure A.14: Detail on the Newton-fractal of a situation where two complex poles have just split
off the real axis. The previous locations (and hence their predicted locations) are still on the real
axis. This image color-codes the roots at which various starting-points in the plane end up after a
number of iterations of Newton’s method. Very little of the area on or the real axis actually ends
up either of the two complex poles (at the top center and bottom center of the image).

is no way to get off the real axis! if there is any other root on the real axis, it will be the most likely

one found. Only some heuristic which specifically moves the starting point off the real axis can

ever find the roots which just broke away. Such heuristics may be the bifurcation-test noted above,

or some heuristic that recognizes that two poles are on a head-on path, and hence determines that

a breakaway must happen, and creates predicted points off the axis (probably at perpendiculars)

in order to look for the breakaway points. Such a heuristic can be aided by the tendency of the

velocities of the departing poles to be similar to the velocities of the arriving poles, as a function of

their distance from the breakaway point, so by looking at the trends in the points leading up to the

breakaway, prospective breakaway points can be predicted sufficiently far from the real axis as to

give a high probability of correcting to the desired roots.

Note that there is no such difficulty with breakins to the real axis, only with breakouts from the

axis.

288 APPENDIX A. ROOT LOCUS REVIEW AND RENDERING METHODS

A.3.4 Pixel-Based Methods

Whereas pole-tracking methods find actual pole locations and plot them, pixel-based methods di-

rectly calculate an image of the root-locus, not necessarily determining actual root locations at any

point in the rendering. This drawback is often offset by desirable features such as fast or consistent-

time rendering, simpler algorithms, or attractive results.

Chen and Chen [39] introduce a method for rendering loci by scanning a line across the region

of interest and finding the intersections of the locus with the line as a one-dimensional real root-

finding problem. However, since the intersections can be considered exact, their method is more

correctly placed in the Hybrid methods category.

Many methods can be considered to be some form of implicit-curve or implicit-curve render-

ing algorithm. This topic (especially that of rendering implicit surfaces) has received quite a bit of

attention in the computer-graphics field. An introduction to the field can be found in Jules Bloo-

menthal’s book Introduction to Implicit Surfaces [20]. The most common areas of application are the

rendering of level sets in measured or computed volumetric data, such as medical CAT scans, PET

scans, MRI’s etc., or the results of large-scale fluid dynamics simulations.

On a related note, Tupper applied interval math to the problem of rendering implicit curves and

areas (defined implicitly by inequalities rather than equalities) in his Master’s thesis [272].

Taubin’s Method

In 1994, Gabriel Taubin, who had been working on the problem of fitting implicit curves and sur-

faces to point data [261] [258] [259]), derived a set of approximations of the distance from a point

to the curve/surface which worked quite well and were not terribly expensive. As such, he real-

ized that these approximations could be used in an adaptive space-subdivision rendering method

for drawing the curves.

In [260] and [262], Taubin presented a fast algorithm for rendering an image of an implicit

function in the plane. This method turns out to be very efficient for rendering root loci, especially

when arriving at an image of the locus is more important than calculating the exact locus values.

Implementations of this algorithm have proved fast enough to animate in real-time, and to use

as the basis for an interactive root-locus explorer that the author has written, whereby users can

drag open-loop poles and zeros about the plane and see the effect of the changes live as the root is

dragged, along with other live exploration capabilities.

Taubin’s method is applied to first-order root locus rendering by using it to render the implicit

function Im(D/N) = 0. Or if explicit numerator and denominator polynomials are not available,

Im(GH) = 0, where GH is the total loop transfer function (not including k), from the basic loop

shown in FigureA.1, which has H in the feedforward path, and G in the feedback path. As such,

the method can be directly used to compute any locus that is first-order in k, and for which GH or

D/N can be calculated. Therefore they do not necessarily have to be polynomial.

A.3. LOCUS DRAWING METHODS 289

Taubin’s method is to recursively subdivide the plane, using an approximation of the distance

to the solution curve to decide when to stop subdividing a particular region. Then to paint a pixel

as being on the curve when the recursion gets down to the individual pixels and the distance from

the center of the pixel is within half the desired line width (note that since the distance (estimate) is

known at the pixel level, antialiased images are extremely easy to create, simply by painting gray

scales which ramp down from “full-on” to “zero” over about one pixel at the edge of the linewidth.

In [260], Taubin derives 1st-order, 2nd-order, and nth-order approximations of the distance, and

discusses the vailidity of the approximations by deriving bounds, etc. Practically, it is demonstrated

that using the 2nd-order approximation works very well in practice, is not terribly expensive to

calculate, and only badly overestimates quite rarely (overestimation of the distance could cause

a subset of the space to be incorrectly discarded from consideration in the recursive subdivision,

and thus possibly cause missing pieces in the rendering of the implicit curve). In the author’s own

implementations of the algorithm, such gaps when they occur are not considered to be fatal.

The 1stand 2nd-order distance approximations [260] are:

δ1(p,Z(f)) =
|f(p)|
‖∇f(p)‖ (A.31)

δ2(p,Z(f)) =

√
‖F1‖2

4‖F2‖2 +
|F0|
‖F2‖

− ‖F1‖
2‖F2‖

(A.32)

Where p is the point in question, f is the implicit function, Z(f) is the zero-set of f (i.e., the solution

of f(p) = 0). F0, F1, and F2 are the vectors of nth-order partial derivatives of f . If p = (x, y), then:

F0 = f(x, y)

F1 = ∇f(x, y)

F2 =

[
∂2f(x, y)
∂x2 ,

∂2f(x, y)
∂y2 ,

∂2f(x, y)
∂x∂y

,
∂2f(x, y)
∂y∂x

]

(See [260] for discussion of higher-order distance estimates).

Now, instead of symbolically working out these partial derivatives for Im(D/N), we estimate

them numerically using finite differences. Further, we use non-symmetric differences to reduce the

number of function evaluations, both of which work fine in practice (when using double-precision

floating-point math):

v = f(x, y)

vx = f(x + δ, y)

vxx = f(x + 2δ, y)

vy = f(x, y + δ)

290 APPENDIX A. ROOT LOCUS REVIEW AND RENDERING METHODS

vyy = f(x, y + 2δ)

vxy = f(x + δ, y + δ)

∂f

∂x
≈ (vx − v)/δ

∂f

∂y
≈ (vy − v)/δ

∂2f

∂x2 ≈ (vxx − 2vx + v)/(4δ2)

∂2f

∂y2 ≈ (vyy − 2vy + v)/(4δ2)

∂2f

∂x∂y
≈ (vxy − vx − vy + v)/(4δ2)

The use of numerical estimates for the partial derivatives allows the algorithm to be quickly

and easily applied to a variety of functions without requiring the implementor to work out all the

derivatives symbolically.

Further, in order to have a less expensive f(x, y), we use in the first-order locus case just the

numerator of the expansion of Im(D(s)/N(s)), which is:

f(x, y)→ f(s) = D(s)N(s∗) −D(s∗)N(s) = 2Im(D(s)N(s∗)) (A.33)

Where the star denotes the conjugate operation.

The algorithm thus as shown in Algorithm 4. In practice, there are a number of places the

algorithm can be tweaked. For example, the factor x used in the recursion decision can be varied

to make the decision more conservative and lower the probability of holes in the image. Since the

approximate distance to the curve is directly available, and it is usually quite accurate once we get

down to the pixel level, we can use the distance to antialias the image, simply by calculating some

ramp of pixel intensities between full-on at some distance to full-off approximately half a pixel

further away. Pixels on the edge thus get “feathered” pixel values which give a nice smoothing of

the curve.

This algorithm is particularly nice in comparison to the vector algorithms due to the fact that

it automatically renders locus features that the other algorithms have difficulty with (like break-

aways, multiplicities, and smooth curves) without requiring any special heuristics (aside for any

added to reduce gap probability). As such it is a very “elegant” algorithm, and the output tends to

look very clean.

The algorithm is also of interest because the algorithm is very fast. As Taubin notes in [260],

the number of visited point approaches O(n) in the horizonal (or vertical) resolution, rather than

O(n2). Further, this cost is relatively unaffected by the complexity of the locus being rendered.

A.3. LOCUS DRAWING METHODS 291

Algorithm 4: Taubin’s Method Root Locus Renderer
Data: Polynomials num, den, rendering range [xminxmaxyminymax], image width N (in

pixels), line width δ (in pixels)
Result: Image of the rendered locus

function recursiveDraw (cx,cy,width)
begin

d = estDistance (cx,cy,num,den);
if d < x width then

if width ≤ pixelwidth then
drawPixel (toPixelCoords (cx,cy));

else
recursiveDraw (cx −width/4,cy −width/4,width/2);
recursiveDraw (cx −width/4,cy +width/4,width/2);
recursiveDraw (cx +width/4,cy −width/4,width/2);
recursiveDraw (cx +width/4,cy +width/4,width/2);

end
end
// else recurse no further in this quadrant

end

In particular, areas of high curvature or root-crossings, which take longer to handle in the vector

algorithms due to the need to supersample k, are rendered at the same cost as more mundane

loci. While it is true that higher-order polynomials take a little longer to evaluate than low-order

polynomials, the difference in rendering time is often unnoticeable between low-order and high-

order polynomials.

In [260], Taubin discussed extensions to the algorithm, mainly to further reduce the proba-

bility of gaps in the curves. The locus renderers used in this thesis based on Taubin’s method

have not kept pace with his extensions, mainly because the extensions cannot be implemented in

a depth-first recursion (they require breadth-first implementation, because they use information

from neighboring regions for the decision to recurse, which can only exist at the correct time in a

breadth-first algorithm). Since the author’s implementations used a depth-first implementation,

and occasional gaps were not considered to be a terrible problem, the root-locus renders have not

made use of Taubin’s later algorithm extensions.

Extending Taubin’s Method to Higher-Order Loci On first look, it would appear that this method

can only be used for loci which are first-order in k. As such, the author did some exploration into in-

terpreting the locus in three-dimensional space (Re(s), Im(s), k), which produced some interesting

results, which we will look at shortly, but not great “working” locus plots. However, as discussed

in Section A.1.3, the locus is also the union of the solutions of ri(s) = 0, where ri are the individ-

ual roots of the higher-order locus equation in k. We will follow that up after first looking at the

292 APPENDIX A. ROOT LOCUS REVIEW AND RENDERING METHODS

Figure A.15: First-order locus (s4 − s/10) + k(s3 + 1) = 0 rendered using Taubin’s-method renderer
(−2 < Im(s),Re(s) < 2). Top Left: Full locus (both signs of k). Top Right: 180◦ locus. Bottom Left:
positive and negative k denoted by gray levels. Bottom Right: debugging plot showing visited
points in the recursion (note that this particular renderer is conservative about discarding space, so
it visits more points than might be necessary).

A.3. LOCUS DRAWING METHODS 293

Figure A.16: Taubin’s Method: various resolutions. Top Left: 16x16. Top Right: 32x32. Bottom Left:
128x128. Bottom Right: 512x512. Note how distance approximation start breaking down at lower
resolutions (especially noticeable is the antialiasing spreading out beyond one pixel’s width).

294 APPENDIX A. ROOT LOCUS REVIEW AND RENDERING METHODS

Figure A.17: Taubin’s Method: various line thicknesses (256x256). Top Left: 0.1 pixels, Top Right:
5 pixels. Bottom Left: 20 pixels. Bottom Right: 30 pixels. The previous two figures used the
default linewidth of 2. Note how distance approximation also breaks down as the thickness gets
larger (especially noticeable: antialiasing spreading out). Also note that the algorithm does not
render extremely thin lines as disappearing, due to the particulars of the implementation of the
antialiasing algorithm.

A.3. LOCUS DRAWING METHODS 295

three-dimensional explorations.

Taubin’s Method in 3D A root locus of any order in k can be considered an implicit function

in three dimensions, simply by making k the third dimension. Taubin’s method easily extends to

three dimensions [262], by subdividing the space in “oct-tree” fashion [84].

Unfortunately, the method works best when dealing with a region in space which covers nearly

the same range in each dimension, and when rendering a function which does not get extremely

sensitive to one of the dimensions. Unfortunately, root-loci break both of these: k theoretically

ranges between ±∞, and even in a more practical range, it tends to cover a significantly larger

range than the range of the s plane we tend to be looking in. As such, it is hard to define a visually

correct “pixel” in (s, k) space (in other words, when subdividing the space, when do we decide

that we have a “small enough” range of k). Further, due to the binary subdivision of the space,

we would prefer that we reach our minimum k at the same recursion depth as we reach the pixel

size in the s axes. The result of breaking this is that the distance to the center of a “pixel” becomes

increasingly inaccurate (or at least unusable) as the “depth” of the pixel (in the k dimension) gets

much larger than the width of the pixel in the s plane, and so the decision on when to end the

recursion becomes inaccurate.

Further, in high-sensitivity regions (like where roots come near each other), we know that the

roots move very quickly with k, hence the implicit curves become nearly perpendicular to the k

axis in these regions. The outcome of which is that the distance approximations (or the ways that

they are interpreted) start to break down, regardless of the issues in the previous paragraph. The

resulting renderings no longer resemble a family of curves, but rather a family of (sometimes very

large) “blobs”, and the algorithm turns out to not be particularly useful as a locus plotter for these

situations. However, the images that are produced are extremely interesting visually (Figures A.18

and A.19). In the process of exploring this rendering method, the rendering was tweaked to treat

each “blob” as though it were an approximation to a sphere or ellipsoid, and to shade it as though

illuminated with a light source (using the gradient of the distance approximation as the surface

normal), then draw it transparently, which led to the most interesting images (also see the Gallery

at the end of this thesis).

296 APPENDIX A. ROOT LOCUS REVIEW AND RENDERING METHODS

Figure A.18: Attempting Taubin’s method in 3D on the 2nd-order locus (s3 −s2/2+1)+k(s3 −s2/2−
1) + k2(s4 + 2) = 0. Various tradeoffs on scaling the k range versus the s range and resolution.

A.3. LOCUS DRAWING METHODS 297

Figure A.19: Attempting Taubin’s method in 3D on the 2nd-order locus, D,N1,N2 set to a particular
random 15th-order locus. Note how the “blobs” can end up filling the plane.

298 APPENDIX A. ROOT LOCUS REVIEW AND RENDERING METHODS

Back to 2D However, it is not necessary to try to render in 3D at all. As noted in Section A.1.3,

a 2nd-order locus can be defined as the union of the solutions to two 2D implicit equations. As

such, Taubin’s method need only take the minimum of the distance approximations for the two

implicit equations Eq. A.13 and Eq. A.14, and it will render the union of their solutions. In fact,

most the locus renderings in that discussion were done using Taubin’s method modified in just

this way. A 2nd-order version of the Root-locus explorer has been implemented, which was quite

handy in developing intuition on the different behaviors of 2nd-order loci, and directly helped in

the understanding of the way the Chamberlin state-variable filter varies its Q.

As discussed later in Section A.1.3, this concept extends to higher-order loci as well. A fourth-

order renderer using this method has been implemented and it’s output is as expected (for example,

Figure G.9 in the Gallery). However, due to the necessity of including calls to a general polynomial

root finder (ass opposed to using the closed-form versions of the quadratic roots as for the 2nd-

order locus rendering), it runs significantly slower (as much as a factor of 10x), and hence could

not be used to make a 4th-order root-locus explorer (instead a version based on root-finder-based

path follower with adaptive subdivision of k was used, with a bit less success).

Note that when using numerically-calculated estimates of the derivatives, the 2nd-order version

of Taubin’s method evaluates N1(s),N2(s), and D(s) for each test point, such that all that is left

algebraically is the 2nd-order equation in k which is solved using the quadratic formula. Thus, the

orders of N1,N2, D have a rather small effect on the algorithm, as they are merely numerically

evaluated rather than solved. Similarly, when going to higher order loci in k, such as 4th-order,

D(s) and N1(s) through N4(s) are merely evaluated at the test points, and the implicit functions

are based purely on the roots of the 4th-order polynomial in k, which now need only be numerically

solved.

Examples of where the method breaks down. There are systems where Taubin’s method

breaks down. For example, the 2nd-order locus:

D(s) = s2

N1(s) = s

N2(s) = 1/2

One may recognize this as an “X” locus from earlier in this appendix. Taubin’s method can render

this locus as in Figure A.20 Often, just a slight modification of the system removes the problem,

as seen in the Figure. The theory for this behavior is that in this case, the denominator terms of

the 2nd-order distance approximation that is being used in the rendering are all nearly zero (actu-

ally theoretically they are zero, but the numerical approximations to the derivatives give numbers

that are slightly nonzero), such that theoretically, the distance approximation is zero everywhere

A.3. LOCUS DRAWING METHODS 299

Figure A.20: Problems with certain loci in Taubin’s method. Left: D(s) = s2,N1(s) = s,N2(s) = 0.5.
Right: N2(s) changed to .001s + 0.5.

(in which case the whole plane should be painted). Slightly shifting the polynomials breaks up

the symmetry that caused the problem and hence the result is much cleaner. It is also noted that

performing a change of variables on k (as in k ← k + a) can also clear up the drawing in some

cases).

Rendering Warped Loci Using Taubin’s Method Since our implementations are using numerically-

approximated derivatives in the distance approximations, we are free to implement variations

which would otherwise be quite difficult. For example, we can draw loci with warped axes. Rather

than rendering

f(x, y) = 0 (A.34)

We can render

f(g(x, y), h(x, y)) = 0 (A.35)

All the chaining of the partial derivatives can be taken care of by the numerical approximations.10

As such, we can render a locus with (log10(f), log10(Q)) axes, as opposed to (Re(z), Im(z)) axes:

θ =
2π10f

fs

r = e−θ tan(sin−1(10−Q/2))

10although a numerical analyst would surely protest.

300 APPENDIX A. ROOT LOCUS REVIEW AND RENDERING METHODS

z = rejθ

where the derived z is used to in the locus distance test rather than f and Q. Examples of such

transformed loci are shown in Figure A.21 and Figure A.22. Of course, numerical problems can be

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1 log
10

(freq in Hz)

lo
g 10

(Q
)

2 2.5 3 3.5 4

−0.2

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

Figure A.21: Left: a random 2nd-order root locus. Right: the same locus rendered using warped
axes (freq, Q) (assuming fs = 48kHz).

exacerbated by such mapping. Figure A.23 shows an example of a locus that has problems in the

distance approximation, together with the (freq,Q) rendering of the same locus. As one can see,

the numerical problems near z = 1 (i.e., the whole left-hand side of the (freq,Q) graph), which are

not particularly visible in the s-plane locus, (which has its obvious problems elsewhere), are quite

visible in the warped locus.

Ray Tracing Distance Approximations

These are more brute-force methods, but for a while it seemed like they would be necessary (until

it was realized how to handle higher-order loci in 2D with Taubin’s method). These methods work

by casting rays parallel to the k axis for each pixel and looking for intersections with the locus (or

more correctly, intersections with an implicit surface defined by some measure being equal to some

value, thus some surface surrounding the locus, hopefully closely and accurately).

Ray tracing is a well-known graphical rendering technique, and an interested reader can find

good introductions in books such as Glassner [91], Foley and van Dam [84], or Watt and Watt

[287]. The basic concept is to trace light backward from the eye until it intersects with some object,

A.3. LOCUS DRAWING METHODS 301

Figure A.22: Screenshot of second-order root-locus explorer with additional live (freq,Q) display,
rendered using Taubin’s method.

Figure A.23: Fourth-order locus with numerical problems in rendering. Left: z plane, Right:
(freq,Q) plane. Note how issues near z = 1 are magnified, as z → 1 occupies the whole left edge of
the (freq,Q) plane.

302 APPENDIX A. ROOT LOCUS REVIEW AND RENDERING METHODS

and then figure out the color of the object at that point, possibly recursively spawning other rays

to determine lighting, shadowing, reflections, transmissions, etc. For objects that have implicit

algebraic description, the intersection test is done simply by substituting the ray equation into the

implicit equation and solving for the distance along the ray. Any real positive solutions represent

ray/object intersections. For other types of objects, there are methods which step along the ray,

testing for intersection using other methods such as distance approximations or inside/outside

tests.

Since the locus is an implicit function in a three-dimensional space (For example, the 2nd-order

locusD+kN1+k2 = 0), then there is also an isosurface in the space based on some distance estimate

to the locus: δest = ε. If we could get a good distance approximation, we might be able to render

this isosurface as a set of “tubes” which follow the locus and thus make a rendering of the locus if

viewed parallel to the k axis.

Now within the field of computer graphics, there are also other methods for rendering implicit

surfaces (see Bloomenthal [20] for an introduction). It should be noted, that the contour-plotting

method described later has a 3D equivalent in an implicit-surface rendering, known as “Marching

Cubes” [158]. Research for this thesis did not look much further beyond ray casting methods,

except for an initial experiment or two. Most interesting was the idea of applying methods for

ray-tracing implicit surfaces.

Ray Stepping Theoretically, we could directly ray-trace the implicit function, “simply” solving

δest(p0 + tpdir) = ε for t (where δest(p) is the distance approximation at some point p, p0 is the start

of the ray, pdir is the direction of the ray, and t is the distance along the ray). Any real solutions

define the ray intersections. However, in general this function is as much as 2x to 8x the order of

the polynomials involved in the root locus (i.e., the orders of D(s) and Ni(s)). As such, this was

not considered a direction to follow.

A well-known method of tracing generic implicit surfaces [20], which does not need to directly

solve the above function is: Foreach ray: step along the ray using an approximation/bound of the

distance to the surface to modulate the step length, declaring an intersection whenever the distance

falls below some threshold.

Since we already have a good distance approximation in Taubin’s 2nd-order approximation

(which extends to three dimensions in the obvious manner), we can trace a locus rather straight-

forwardly (Figure A.24). As with all the previous algorithms, the distance approximation (and

gradient) were calculated using numerical approximations to the partial derivatives.

This method has a large drawback: it is still terribly slow. There are a huge number of function

evaluations due to stepping along the ray. However, it was quickly realized that if we wanted to

restrict the rays to be parallel to the k axis (which we have been doing anyways), we could make a

much simpler problem.

A.3. LOCUS DRAWING METHODS 303

Figure A.24: Ray tracing implicit function δ2 = ε for 2nd-order locus (s4 + 2) + k(s3 − s2/2 + 1) +
k2(s3 − s2/2 − 1) = 0, using Taubin’s 2nd-order distance approximation and a k range −10 < k < 10

Ray Tracing Parallel to k axis Whereas it would be numerical tricky and rather expensive to try to

calculate intersections of general rays with such surfaces (as the order of polynomial which would

need to be solves would be based on the orders of N1, N2 and D as well as on the order of the

distance measure), it turns out that if we keep the rays parallel to the k axis (i.e., implement an

orthographic projection along the k axis), then the polynomials to be solved become much simpler,

as the contributions of N1, N2 and D reduce simply to being evaluated at the current point s,

and the solution is only in a polynomial in k (usually only 2x or 4x the order of the locus, and

independent of the orders of N1(s), etc.).

Deriving the |D + kN1 + k2N2|∞ case: In this situation, we desire to ray-trace the surface

‖f‖∞ = ‖D(s) + kN1(s) + k2N2(s)‖∞ = ε (A.36)

Now, ‖f‖∞ = ε turns into a logical combination of a set of separate inequalities:

Re(f) = ε AND |Im(f)| ≤ ε

OR

Re(f) = −ε AND |Im(f)| ≤ ε

OR

304 APPENDIX A. ROOT LOCUS REVIEW AND RENDERING METHODS

Im(f) = ε AND |Re(f)| ≤ ε

OR

Im(f) = −ε AND |Re(f)| ≤ ε

The inequalities can be further written as:

|Re(f)| ≤ ε = Re(f) ≤ ε AND − Re(f) ≤ ε

|Im(f)| ≤ ε = Im(f) ≤ ε AND − Im(f) ≤ ε

and each of these as:

Re(f) ≤ ε ⇒ (Re(D) − ε) + kRe(N1) + k2Re(N2) ≤ 0

−Re(f) ≤ ε ⇒ (−Re(D) − ε) + kRe(N1) + k2Re(N2) ≤ 0

Im(f) ≤ ε ⇒ (Im(D) − ε) + kIm(N1) + k2Im(N2) ≤ 0

−Im(f) ≤ ε ⇒ (−Im(D) − ε) + kIm(N1) + k2Im(N2) ≤ 0

These can be combined through the previously-mentioned logic to create a set of quadratic equa-

tions to find intersections along k. Note that this case doesn’t involve solving any equations of

order higher than the order of the locus in k. Renderings of loci using this technique are shown in

Figures A.25 and A.26. While not too useful as loci, they are interesting as abstract 3D shapes.

The above equations simplify in a straightforward manner for a first-order locus.

As a side note: with a bit of algebra, one can derive that the projections of the hard edges of

these 3D shapes (the corners of the L∞ norm) are actually complex-coefficient root-loci in their

own right. For first-order loci they are:

D(s) + kN(s) = ε(±1 ± i)⇒ (D(s) ± (1 ± i)) + kN(s) = 0 (A.37)

And similarly for second-order loci, the constant term of D(s) is simply offset by the corners of the

L∞ unit ball. This is demonstrated in Figure A.25.

A.3. LOCUS DRAWING METHODS 305

An L∞ Surface of a |D + k N| == ε Surface with Edge Loci Superimposed

Figure A.25: The “hard edges” of the L∞-norm surface project down to certain complex-coefficient
root loci.

306 APPENDIX A. ROOT LOCUS REVIEW AND RENDERING METHODS

Figure A.26: Ray Tracing zeroth-order distance approximation (|D + kN1 + k2N2|∞ = ε) using rays
parallel to k axis: Top: First-Order in k (Left: Surface normal estimate based on L2 norm, Right:
Surface normal based on L∞ norm). Middle: Second-order in k. Bottom: larger value of ε. (same
loci as previous examples).

A.3. LOCUS DRAWING METHODS 307

Deriving the first-order Taubin’s approximation case: In this case, we want to find intersec-

tions with the surface

δ1 =
|f |
‖∇f‖ = ε (A.38)

where f = D(s) +kN1(s) +k2N2(s). This is most easily accomplished by multiplying both sides by

their complex conjugate and noting the following:

∂f

∂s
= D′(s) + kN ′

1(s) + k
2N ′

2(s)

∂f

∂k
= N1(s) + 2kN2(s)

‖∇f‖2
2 =

∣∣∣∣∂f∂s
∣∣∣∣2 + ∣∣∣∣∂f∂k

∣∣∣∣2
Thus δ2

1 = ε2 becomes:

|D + kN1 + k2N2|2 − ε2
[
|D′ + kN ′

1 + k
2N ′

2|2 + |N1 + 2kN2|2
]
= 0 (A.39)

For rays parallel to the k axis, we therefore solve this for k and find all real solutions. With some

algebra, this turns into solving for k in the polynomial

A + Bk + Ck2 +Dk3 + Ek4 = 0 (A.40)

where

A = |D|2 − ε2(|D′|2 + |N1|2)

B = 2Re(DN∗
1) − 2ε2Re(D′N ′∗

1 + 2N1N
∗
2)

C = |N1|2 + 2Re(DN∗
2) − ε2

(
|N ′

1|2 + 4|N2|2 + 2Re(D′N ′∗
2)
)

D = 2Re(N1N
∗
2) − 2ε2Re(N ′

1N
′∗
2)

E = |N2|2 − ε2|N ′
2|2 (A.41)

evaluated at the current point in s (remember that the star denotes conjugation).

For a first-order locus, this turns into solving for k in the polynomial

A + Bk + Ck2 = 0 (A.42)

where

A = |D|2 − ε2(|D′|2 + |N1|2)

B = 2Re(DN∗
1) − ε2Re(D′N ′∗

1)

308 APPENDIX A. ROOT LOCUS REVIEW AND RENDERING METHODS

C = |N1|2 − ε2|N ′
1|2

evaluated at the current point in s.

Renderings of loci using this technique are shown in Figure A.27. These are a bit more useful as

loci compared to the previous case, but probably still overkill as locus renderings.

Figure A.27: Ray Tracing Taubin’s distance approximation using rays parallel to k axis: Top: First-
Order in k, different ε. Bottom: Second-order in k, different ε. (same loci as previous examples).

A.3. LOCUS DRAWING METHODS 309

A.3.5 Hybrids

Grid and Contour

This is a very straightforward algorithm (on the surface): evaluate y = Im(D/N) or y = Im(GH)

on a grid in the plane, and use standard contour-plot methods to plot the contour y = 0. As this only

involves ‘forward evaluation’ (i.e., no root-finding), it can be used to render loci of non-polynomial

systems, since a root finder for the system is not required. the author used it to render some of the

string loci in Appendix B, for example.

This method is an implicit-function renderer, except that instead of giving an pixel image as

output (as in the renders of the previous section), it gives vector output. Of course, there are still

sampling issues associated with the calculation of the grid, which is why this algorithm is called a

‘hybrid’ algorithm, as it has both vector and pixel properties.

Being an implicit-function renderer, this method can effectively apply to the same classes of loci

as, say, Taubin’s method: loci whereby we can find an implicit function for the locus (i.e., which no

longer has k in it). Thus it trivially applies to first-order loci, with no restrictions on D and N being

polynomial or not. This method can also use the same extensions as described for Taubin’s method

to render 2nd-order and higher-order loci in k.

There are two complications to the simplicity implied above: (1) as with the pixel-based meth-

ods, the method inherently finds both the 0◦ and 180◦ loci, as both satisfy Im(D/N) = 0; and (2) the

In the case of the pixel-based renderers, one could simply check the sign of Re(N/D) and choose

not to render if the sign was not the required one. This option is available in the case that one

has the ability to modify the contour-calculation algorithm. However, if one is using a ‘black-box’

contour plotter, things get tricky. the author is not familiar with a general solution to this problem,

but Matlab’s contour plotter has a feature which allows us to solve this problem: like other Matlab

plotting functions, array elements containing NaNs (special “Not A Number” values in the IEEE

floating-point number system, normally used to flag the results of undefined operations, like∞/∞,

∞−∞, 0/0, etc.) are not plotted at all (as opposed to plotting some fallback value). Therefore, one

can plot just one side of the locus by taking the array containing Im(D/N), and setting all elements

for which Re(D/N) < 0 to NaN (or > 0, depending on which locus you want to plot). Doing a

contour plot on this array will cause the contour calculator to only calculate contours of the desired

locus.

Here is an example of rendering the full locus (both positive and negative k) of (s4 − s/10) +

k(s3 + 1) = 0 in the range −2 < Re(s) < 2, −2 < Im(s) < 2 in Matlab:

xax=linspace(-2,2,200);

yax=linspace(-2,2,200);

[xx,yy]=meshgrid(xax,yax);

zz = xx+i*yy;

310 APPENDIX A. ROOT LOCUS REVIEW AND RENDERING METHODS

y = polyval([1 0 0 -.1 0],zz)./polyval([1 0 0 1],zz);

contour(xax,yax,imag(y),[0 0]);

And to plot just the 180◦ locus:

y1 = imag(y);

y1(find(real(y)>0))= NaN*ones(size(find(real(y)>0)));

contour(xax,yax,y1,[0 0])

The resulting plots are shown in Figure A.28

−2 −1 0 1 2
−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

−2 −1 0 1 2
−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

Figure A.28: Root Loci rendered using Matlab’s contour function. Left: full locus. Right: 180◦

locus.

This method does not work with all contour plotters. For example, the one in Mathematica

requires that all contour traces exist on parts of a surface with defined values, and since the loci for

either angle “butt up” against each other, all the contours will run up against NaN values in the

course of tracing the contours. As such, the algorithm removes them from the list of valid contours,

and one ends up with no contours at all.

Path Following via Pivoting

Within the field of homotopy continuation this method is commonly discussed aside from predictor-

corrector. It is based on the concept of being able to easily figure out which vertex of a triangle the

path crosses as it exits out of the triangle. By tiling the plane with sufficiently small triangles, the

A.3. LOCUS DRAWING METHODS 311

path can be followed by keeping track of which triangles are visited (the movement from one tri-

angle to the next is called “pivoting” in this technique). As such, space is sampled in a way, which

puts this in Hybrid class of techniques.

We do not give examples of this technique in this thesis, but interested readers are referred to

the numerical continuation literature listed in the introduction to predictor-corrector algorithms,

and to papers such as [191].

Appendix B

Root Locus Interpretation of

Piano-String Linear Mode Coupling

This research was originally presented at the 1996 Acoustical Society of America Conference, and

later as a poster at the 1997 International Computer Music Conference [247].

B.1 Introduction

Previous work in the study of coupled piano string behaviors, in particular that of Weinreich, Naka-

mura, and Hundley ([288] [187] [109]) has either focused analytically on the interaction of a pair

of coupled modes, noting that the rest of the string modes couple similarly, or has studied the

coupling experimentally. The equations describing three-string coupling (along the lines of [187])

become extremely complex and one can easily become lost in interpreting them. In this paper, we

will show how one can interpret the coupling behavior in terms of the Root Locus analysis method,

which analyzes the location of the poles of a closed-loop linear system according to the pole and

zeros of the open-loop system and under variation of the feedback gain. Root Loci were for decades

drawn by hand, so that a lore was developed about patterns that appear in root loci; this lore rep-

resents an intuition that can be acquired and applied to get a feel for the behaviors of closed-loop

systems — coupled strings, in this case.

In this appendix, the coupling of two and three modes, as occurs in sets of unison piano strings,

is studied, along with the coupling behavior of multiple groups of modes, such as the multiple har-

monics of the strings. Many effects, for example, beating and two-stage decay, can be understood

in terms of the system pole locations (since for impulsively driven systems such as pianos, the

normal behavior of the system is dominated by the impulse response of the system), which makes

the root-loci directly interpretable. Furthermore, rather complex, frequency-dependent coupling

312

B.2. PIANO STRINGS 313

impedances can easily be included in the analysis, allowing an understanding of the variation in

coupling behavior at different string harmonics.

Note that most of the behaviors that we note in this appendix have already been discovered

and explained in the acoustics literature (in Weinreich, etc., and by others). What is new to this

research is the application of Root-Locus ideas to the understanding of the physical phenomena,

and in helping build up intuition about the physics.

B.2 Piano Strings

The coupling that is of interest comes about due to the fact that modern pianos have sets of strings

in three groups:

• The Bass Strings: Heavily wound single strings.

• The Midrange Strings: Lighter wound strings in pairs.

• The Treble Strings: Even lighter wound strings in triples.

For the notes which have multiple strings, the string are tuned to near unison. This implies that the

dynamical system representing the vibrating strings for a particular note will have multiple poles

in close proximity at each of the harmonics of the note. Because the strings are not tuned exactly

equal, their corresponding harmonic frequencies will presumably get further apart (in raw Hz) at

higher harmonics. However, the strings do not ring completely independently, instead, they affect

each other (they are “coupled”). As such, the behavior of the total system is different than that

of the independent strings. In particular, there is an effect called “two-stage decay”, which is in

fact very important to the sound of the piano, and the piano tuner specifically tunes the strings to

optimize this effect. In two-stage decay, the string does not sound like two detuned strings beating

against each other, but instead sounds like a single string with a two-part decay.1

It is believed (through anecdotal evidence) that the discovery of this behavior was integral to

the development of the piano. It allowed note to sound loudly (i.e., lose energy to the air quickly),

yet still have a long late decay. A single-string in the midrange which sounds loudly would decay

too quickly, whereas one a single string with a long decay would not sound sufficiently loudly.

Further, the slow decay achieved in the two-stage decay can be even slower than the decay of the

individual strings, allowing the piano to have a longer ring-out than previous stringed keyboard

instruments. The two-stage decay gives a loud initial ring during the fast stage, and then settles

into a pleasingly long decay. Piano tuners tweak the detuning of the strings so as to balance the

amount of energy lost in the initial decay stage versus the loudness of the second decay stage.

The piano-string dynamical system is a bit more complex than described, as one might expect.

As such, the coupling behavior may not be the same across all the string’s harmonics. We will see at
1In three-string notes, this all gets even more complicated, of course.

314 APPENDIX B. ROOT LOCUS AND PIANO STRINGS

the end of this discussion an analysis of how the coupling may be different between low harmonics

and high harmonics due to detuning effects and loss effects.

B.3 Root Locus Analysis

This technique, which originated in the analysis of linear feedback control systems, analyzed the

poles of a closed-loop feedback system in terms of the open-loop transfer function and the (vari-

able) loop gain. In general, root locus interprets a linear system with feedback as though it were

in the form in Figure B.1, a feedback loop, split up with a feedforward part (G), and a feedback

part (H), with a variable loop gain k. Traditionally, the feedback is summed with a negative sign.

Positive feedback (poles) occurs at frequencies (or s or z locations) where the phase angle of the

feedback loop is some multiple of 2π , thus, taking the negative feedback sign into account, tradi-

tional root locus looks for phase angles in the rest of the feedback loop of π ± n(2π), and is called

the “180◦ root locus”.

G

H
k

Figure B.1: Linear feedback system drawn in Root-Locus Form

As a review (This partially duplicates discussion in Appendix A), the transfer function from

input to output of this system is
G

1 + kGH

Now, if we assume the G and H have rational transfer functions (in s for now, though root locus

analysis works exactly the same way in the z plane), then we can define two polynomials D(s) and

N(s) as such:
N(s)
D(s)

= G(s)H(s)

In particular, N(s) is the numerator of GH, and D(s) is the denominator. This will allow us to

work on the root locus with simple polynomials rather than having to deal with rational functions

all the time. Thus the denominator of the transfer function is 1+kN(s)/D(s), or is we multiply the

transfer function through by D(s), we get

G(s)
1 + kG(s)H(s)

=
G(s)Hden(s)
D(s) + kN(s)

B.4. COUPLED MODES 315

Now in Root locus analysis, we are only worried about the location of the roots, so we only look at

the denominator, and get our primary equation:

D(s) + kN(s) = 0 (B.1)

The roots of this equation are the poles of the system. Solving for k we get:

k = −D(s)
N(s)

(B.2)

Now we define that k is real, which thus constrains the fraction:

Im(−D(s)/N(s)) = 0, or 6 (D(s)/N(s)) = π ⇒ 6 D(s) − 6 N(s) = π (B.3)

And gives us an implicit equation in s for the locus. Any point s0 which satisfies this is a point

on the locus, and the k value for that point is given by Equation B.2, which we know will be

real. Traditionally, root locus analysis only looks at k ≥ 0, though there are many situations where

looking at k < 0 (the “zero-degree locus”) is also of use. As such, the above implicit equation in s

is usually augmented as:

6 (D(s)/N(s)) = π, Re(−D(s)/N(s)) > 0 (B.4)

Textbooks on classical control systems, such as [88], provide rules on drawing root-loci, and Ap-

pendix A gives a short introduction to the topic. The most important rule to note at the moment

is that the closed-loop poles coincide with the open-loop poles (roots of D(s)) when k = 0, and

move to coincide with the open-loop zeros (roots of N(s) as k → ∞. Thus we gather quite a bit of

information simply by plotting the open loop poles and zeros. Another rule is that the paths of the

poles are given by the equation 6 (GH) = π . We can use this rule to draw root-loci of non-rational

linear systems, which show up in the analysis of continuous-time string coupling (for example, the

“Grid-and-Contour” method See Section A.3.5 in Appendix A, which was used to render many of

the string-coupling loci later on in this discussion).

B.4 Coupled Modes

We will be analyzing the piano string dynamics by starting from existing models, rather than de-

riving all the way from the physics, as the models we will use have been well-derived and allow

us to work with simpler equations. Our model is the waveguide model of N strings coupled at

a junction [237], [239] (Figure B.15). As such, this analysis assumes rather ideal strings, though

features such as dispersion, frequency-dependent losses, and harmonic stretching, can be included

316 APPENDIX B. ROOT LOCUS AND PIANO STRINGS

in the loop and load filters if desired.

G1

G2

kejφ

Figure B.2: Simple Coupling of Two Systems

But first, let us step back and look at a much simpler system: two complex poles coupled

through a coupling phase (Figure B.2): Let G1(s) = 1
s−p1

and G2(s) = 1
s−p2

. We can interpret k

as the magnitude of the coupling between the two open-loop modes p1 and p2. For simplicity, we

will not make this a real-coefficient system (as such, the locus will not necessarily be symmetric

about the real axis).

Thus, our system transfer function is:(
1

s−p1
+ 1

s−p2

)
1 + kejφ

(
1

s−p1
+ 1

s−p2

) =
2s − (p1 + p2)

(s − p1)(s − p2) + kejφ(2s − (p1 + p2)
) (B.5)

And our root-locus equation is:

(s − p1)(s − p2) + kejφ(2s − (p1 + p2) = 0 (B.6)

Thus the locus starts at s = p1 and s = p2, leaving at angles influenced by φ, and ends at s→∞ and

s = (p1 + p2)/2. Representative loci are shown in Figure B.3. The locus shapes for φ near zero are

what we will be most interested in in this discussion, as they directly describe the basics of mode

coupling.

Let’s look closer at such a locus (Figure B.4), and representative impulse responses at selected

gains along the locus (Figure B.5). In this case, p1 = 50j (rad/sec), p2 = 60j (rad/sec), and φ =

π/1000.

Note that with no coupling, the poles would be on the imaginary axis and not decay (this is an

ideal example, of course), and that there would be some beating between the two pole frequencies.

As k starts increasing, the poles pull away from the imaginary axis and thus start to have some

decay, whose rate is initially proportional to k (see the ‘+’ case). As k continues to increase, the

poles curve towards each other, making the beat frequency get slower (this can be seen comparing

k = 2 and k = 7 in Figure B.5). Note that both poles have the same decay rate in this range of k.

B.4. COUPLED MODES 317

Real

Im
ag

φ = 0°

Real

Im
ag

φ = 15°

Real

Im
ag

φ = 45°

Real

Im
ag

φ = 90°

Figure B.3: Sample 2-Coupled-Mode Loci

−15 −10 −5 0 5

45

50

55

60

65

Figure B.4: Pole locations at various gains along a locus, for the system of Equation B.5. plus: k =
2, dot: k=7, star: k=10, diamond: k=20 (p1 = 50j, p2 = 60j, φ = π/1000)

318 APPENDIX B. ROOT LOCUS AND PIANO STRINGS

0 100 200 300 400 500

10
−4

10
−2

10
0

time

|y
(t

)|
 (

dB
)

k=2

0 100 200 300 400 500

10
−4

10
−2

10
0

time

|y
(t

)|
 (

dB
)

k=7

0 100 200 300 400 500

10
−4

10
−2

10
0

time

|y
(t

)|
 (

dB
)

k=10

0 100 200 300 400 500

10
−4

10
−2

10
0

time

|y
(t

)|
 (

dB
)

k=20

Figure B.5: Impulse responses for the pole sets in Figure B.4.

At some value of k, the pole get as close as they will get (the starred pole locations in Figure B.4).

They can become co-located if φ is exactly zero in this example. At this point, the total impulse

response is at its fastest decay rate. From here on, one pole starts moving back towards the open-

loop zero (halfway between the open-loop poles) and a slower decay, and the other heads away

towards ∞ and a faster decay. As such, the poles no longer have the same decay rate, and the

resulting impulse response has the "two-stage decay" that is associated with mode coupling. Both

move asymptotically onto a line passing through the open-loop pole location, at an angle based on

φ. When φ is small, this causes both to be essentially on the same frequency, and the poles appear

to have “locked” frequency. Further increase in k simply increases the decay rate of the fast pole

and decreases the decay rate of the slow pole. A rule of thumb that has been developed to describe

this type of 2-mode coupling is that before locking, there is beating and a single decay rate, and

that after locking there is a single frequency and a two-stage decay.

Later, we will revisit this coupling and see how it acts as a function of the detuning amount of

the open-loop poles, and compare with Weinreich’s well-known coupling and locking diagrams.

Now, looking back at loci for different coupling angles (Figure B.3), we see that the phase an-

gle at the coupling frequency has the effect of “rotating” the locus. An alternative interpretation,

based on looking back at Equation B.6 and noting that the phase in this case can be interpreted as

modifying k, and thus essentially giving a root locus in some angle other than 180◦. An effect of

this rotation at small rotations is to detune the two poles at strong coupling, so that the 2ndstage of

B.4. COUPLED MODES 319

-2 -1 0
-1

0

1

0 5 10 15
10

-1

10
0

10
1

10
2

-2 -1 0
8

10

12

0 5 10 15
10

-2

10
-1

10
0

10
1

-2 -1 0
7

8

9

10

0 5 10 15
10

-2

10
-1

10
0

10
1

-2 -1 0
8

10

12

0 5 10 15
10

-2

10
-1

10
0

10
1

Figure B.6: Rectified impulse responses for various two-stage closed-loop pole configurations. Top:
poles on real axis, two stage exponential decay; Upper Middle: poles off real axis (with a comple-
mentary pair assumed), two stage decay at the pole frequencies; Lower Middle: one pole offset
in frequency, some cancellation as the decay amplitudes cross; Bottom: Three poles, one fast, two
slow, note beating in 2ndstage.

decay rings out at a slightly different frequency than the first stage. At strong rotation, the poles

become so far removed that there is little noticeable difference between weak and strong coupling

frequency-wise. The poles still start at slow (no) decay, and increase their decay rate with coupling,

then at some point one pole heads back to slow decay and the other heads to faster and faster de-

cay. However, as the rotation approaches 90◦ (reactive impedance), the poles are no longer pulled

towards faster decay, and the coupling simply moves the pole frequencies around. The rotation

of the locus also explains the “mode repulsion” effect which Weinreich noticed when moving the

open loop poles with reactive impedances [288] (lower-right plot: the 90-degree coupling case), as

the pole never come together like they do with the lesser rotations. More on this later in Section B.5.

It is important to note that the shapes of the loci are relatively independent of the actual mis-

tuning of the modes (Figure B.7). These loci will look the same for any vertical spacing of the two

modes. However, the distance between the open-loop poles does affect the range of k over which

different behaviors will occur.

The closed loop poles land at the intersections of the 6 (GH) = π and |GH| = 1/k contours

320 APPENDIX B. ROOT LOCUS AND PIANO STRINGS

−15 −10 −5 0 5
45

50

55

60

65

−15 −10 −5 0 5
45

50

55

60

65

−15 −10 −5 0 5
45

50

55

60

65

−15 −10 −5 0 5
45

50

55

60

65

Figure B.7: The shape of the coupling locus is essentially independent of the mistuning, but the
coupling strength is not. All the above cases have the same coupling gain k = 7. The coupled poles
lie at the intersection of the root locus and the magnitude contour |GH| = 1/k (or |D(s)/N(s)| = k).

B.5. COMPARING WITH WEINREICH’S DIAGRAMS 321

(see Figure B.7). When the poles are closer together, the magnitude of GH is larger in the root-

locus “circle” region, and so the closed-loop poles for a particular k are further along the coupling

behavior. This can also be seen quite well in Figure B.25, where the open-loop poles of higher string

harmonics are further apart, and so the same coupling gain results in a “weaker” coupling. The

main result of this is that one can also move the system between beating and two-stage decay by

fixing k and adjusting the mistuning of the modes (which is how Weinreich did it in [288], and

what we will explore in the next section).

B.5 Comparing with Weinreich’s Diagrams

In [288] Weinreich plotted the closed-loop pole frequencies versus the mistuning (in this case, fixing

one open-loop pole and moving the other past it). As we have seen above, the behaviors noted

there can be interpreted in terms of the behaviors of root loci. In Figure B.8, we look at the loci for

a couple of mistunings, and note how the coupled poles trace a locus in the mistuning variable. At

the start, the moving pole is well below the fixed pole, and the coupled poles are quite detuned. As

the moving pole gets closer to the fixed pole, the k-locus circle gets smaller (as noted in the previous

section). Interestingly, although the coupling gets stronger relative to the shape of the locus, the

couple-pole decay rates (their real parts) stay relatively constant. When the mistuning gets small

enough, the coupled poles move into two-stage decay, or are “locked”. Again, it is interesting to

note that the poles stay symmetric about their “unlocked” decay rate. As has been noted several

times elsewhere in this thesis, the circle is a common shape in root loci, and here again we see a

circle show up in the shape traced by the locked poles (we will see later that as the coupling angle

increases, this circle becomes more distorted). Finally, as the moving pole moves past the fixed

pole, the process repeats in reverse (i.e., the behavior is symmetric about the fixed pole when there

are no other influences on the system).

In this case, the locus in mistuning is a 2nd-order root locus when the conjugate poles are put

into the system to make it real:

Let the open-loop pole locations be p1 = −a + jb and p2 = −a + j(b + δ), and the coupling phase

be provided by a zero at s = 0 so that

N(s)
D(s)

=
s
(
2(s + a)2 + b2 + (b + δ)2)

((s + a)2 + b2)((s + a)2 + (b + δ)2)
(B.7)

and the root locus equation in k is:

((s + a)2 + b2)((s + a)2 + (b + δ)2) + ks
(

2(s + a)2 + b2 + (b + δ)2
)
= 0 (B.8)

322 APPENDIX B. ROOT LOCUS AND PIANO STRINGS

−0.2 −0.18 −0.16 −0.14 −0.12 −0.1
9.95

9.96

9.97

9.98

9.99

10

10.01

10.02

10.03

10.04

10.05

−0.2 −0.18 −0.16 −0.14 −0.12 −0.1
9.95

9.96

9.97

9.98

9.99

10

10.01

10.02

10.03

10.04

10.05

−0.2 −0.18 −0.16 −0.14 −0.12 −0.1
9.95

9.96

9.97

9.98

9.99

10

10.01

10.02

10.03

10.04

10.05

−0.2 −0.18 −0.16 −0.14 −0.12 −0.1
9.95

9.96

9.97

9.98

9.99

10

10.01

10.02

10.03

10.04

10.05

Figure B.8: k-Loci as mistuning changes, in the style of Weinreich’s mistuning experiments. The
roots for this particular value of k trace a 2nd-order root locus in the mistuning amount.

B.5. COMPARING WITH WEINREICH’S DIAGRAMS 323

But the root locus equation in δ is:

[((s + a)2 + b2)((s + a)2 + b2 + 2ks)] + δ[2b((s + a)2 + b2 + ks)] + δ2[(s + a)2 + b2 + ks] = 0 (B.9)

We can simplify this a bit by defining C(s) = (s + a)2 + b2 = (s − (−a − jb))(s − (−a + jb)) (i.e., the

polynomial for the fixed pole pair):

[C(s)(C(s) + 2ks)] + δ[2b(C(s) + ks)] + δ2[C(s) + ks] = 0 (B.10)

A plot of this locus with representative a,b, and k is shown in Figure B.9. Compare it with the

−0.4 −0.35 −0.3 −0.25 −0.2 −0.15 −0.1 −0.05 0
9.8

9.85

9.9

9.95

10

10.05

10.1

10.15

Figure B.9: A 2nd-order Root Locus in mistuning (Equation B.10). ’x’: roots of [C(s)(C(s) + 2ks)],
squares: roots of [2b(C(s) + ks)], ’o’: roots of [C(s) + ks]. Black: δ > 0, Gray: δ < 0

locus in Figure B.8. Note that the δ-coefficient polynomial and the δ2-coefficient polynomial have

the same roots. Also note that one of the root pairs of the “denominator” coefficient polynomial is

the fixed pole pair. In this case, we can also note that the other pole pair in that polynomial will be

at approximately (−a + jb) − k, by looking at the first two terms of the series approximation in k

about k = 0 of that root location:

−a − k −
√
−b2 + 2ak + k2 ≈ (−a + jb) − (1 +

ja

b
)k +O(k2) ≈ (−a + jb) − k (B.11)

since we are assuming that our open-loop poles are very close the imaginary axis, so that a/b will

be very small.

324 APPENDIX B. ROOT LOCUS AND PIANO STRINGS

Figures B.10 through B.14 show Weinreich-style tuning-vs-mistuning diagrams for various open-

loop configurations, number of poles and strengths of tuning, including loci in mistuning for com-

parison. In these diagrams, another axis of information is shown on the diagrams as the grayscale

color of the frequency track. White represents very fast decay, and black represents very slow de-

cay. As such, the two stage decay can be seen in the fact that one of the locked poles gets a slow

decay (“goes black”), whereas the other one gets a fast decay (“goes white”).

B.6 Coupled Strings

Referencing Figure B.15, we can set up the root-locus for a system of coupled strings by letting:

GForward =
N∑
i=1

−Gloopi e
−s Ti

1 −Gloopi e
−s Ti

(B.12)

Where the Ti are the round-trip delays of each string, and Gloopi are the lumped round-trip loss

of the strings. For now, let Gloopi = −ai. The effect of a filter for Gloop would be mainly to give

a frequency-dependent damping (i.e., ai(ω)), and to add some frequency-dependent phase. The

poles of each string are thus:

s =
1
Ti
(lnai + jmπ) for m = 0,±2,±4, . . . (B.13)

We can draw the root locus vs. k of the coupled system by evaluating the contour 6 (GForward(s)Gload(s)) =

0 in the s-plane.2 We can determine the closed-loop pole locations for a given k by evaluating the

contour |GForward(s)Gload(s)| = 1/k and locating its intersections with the root locus.

Note that this system is drawn without input or output, as we are only dealing with the system

poles. The ‘zeros’ we will talk about are the zeros of the loop transfer function.

B.6.1 Diversion: Where are the zeros?

Since the coupling we are dealing with involves summing systems together, we expect that sum-

mation to create a set of zeros in the loop transfer function. Those seeking to build intuition on

coupling might then ask “Where do the zeros land?”

The quick answer, based on what we saw in the two-pole coupling earlier, is “Between the

poles.” However, that is only partially true, and only really appears that way in certain circum-

stances, like there being only two poles, or the poles lying in certain patterns (like in a line), and

with no extra phase involved. Further the gain of the poles affects how close the zeros are to the

respective poles.

2We evaluate at 6 (•) = 0 instead of 6 (•) = π because the system is missing the extra sign inversion in the loop that the
system in Figure B.1 has due to the subtraction in the loop.

B.6. COUPLED STRINGS 325

}
–.15 –.1 9.9 10 10.1

9.9

10

10.1

 Moving Pole Frequency

0–degree coupling

–.15 –.1 9.9 10 10.1

9.9

10

10.1

11–degree coupling

 Moving Pole Frequency

–.15 –.1 9.9 10 10.1

9.9

10

10.1

45–degree coupling

 Moving Pole Frequency
–.15 –.1 9.9 10 10.1

9.5

9.6

9.7

9.8

9.9

10

90–degree coupling

 Moving Pole Frequency

}
Actual coupled-
pole locations
(in s-plane) as

mistuning varies.

Weinreich-stylefreq-vs-
mistuning diagram,

with decay rate indicated by
gray level (white: fast)

jω

(fixed)

(moving)

Two open-loop poles,
one fixed at ω=10,
one moving from ω=9.9 to 10.1

More
Damping

Higher
Frequency

These diagrams (the ones on the left of each plot) correspond exactly to root-loci with mistuning
as the free variable rather than coupling magnitude. In these root-loci, the coefficients of the
closed-loop transfer function are not affine in the variable (as they are in k), so we will tend to
see different patterns than in the ‘standard’ root loci.

It is interesting to note that the range of decay rates is independant of the coupling angle. The
angle merely changes the relative freqencies of the poles at ‘full coupling’, keeping their rates the
same. In terms of two-stage decay, this keeps the envelope of the two stage decay the same, but

effects the beating pattern under the envelope.

Next: we will look at 3-pole coupling. Unlike the two-pole case, where changing the distance between the poles has the same
effect as changing the coupling magnitude, the presence of a third pole complicates the situation. Now, there will be more cases
to look at. We will look at the following cases: (1) we will compare weak and strong coupling, and (2) we will compare the
mistuning of just one pole and mistuning two poles at once. This gives us four combinations on the next four pages.

Two-Stage
Decay

These lines connect poles
of same open-loop mistun-
ing. The closer to horizon-
tal, the closer to black (the
closer to standard “two-
stage” decay).

Figure B.10: Comparison with Weinreich’s Frequency vs. Mistuning Diagrams. Two poles, one
moving.

326 APPENDIX B. ROOT LOCUS AND PIANO STRINGS

9.95 10 10.05
Moving Pole Frequency

9.95

10

10.05
0-degree coupling

9.95 10 10.05
Moving Pole Frequency

9.95

10

10.05
11-degree coupling

9.95 10 10.05
Moving Pole Frequency

9.95

10

10.05
45-degree coupling

9.95 10 10.05
Moving Pole Frequency

9.95

10

10.05

90-degree coupling

jω

(fixed)

(moving)

Three open-loop poles,
two fixed at ω=10 ± 0.03
one moving from ω=9.95 to 10.05

Weak Coupling

Here, the coupling is weak enough for the system to essentially act like two separate two-pole couplings
as the mistuned pole moves through the fixed poles. If the fixed poles were closer, we would get a more
interesting coupling, which would be the same effect as having a stronger coupling, which is the case in
the next figure.

Figure B.11: Comparison with Weinreich’s Frequency vs. Mistuning Diagrams. Three poles, one
moving, weak coupling.

B.6. COUPLED STRINGS 327

9.9 10 10.1
Moving Pole Frequency

9.9

10

10.1
0-degree coupling

9.9 10 10.1
Moving Pole Frequency

9.9

10

10.1
11-degree coupling

9.9 10 10.1
Moving Pole Frequency

9.9

10

10.1
45-degree coupling

9.9 10 10.1
Moving Pole Frequency

9.9

10

10.1
90-degree coupling

jω

(fixed)

(moving)

Three open-loop poles,
two fixed at ω=10 ± 0.03
one moving from ω=9.9 to 10.1

Strong Coupling

Here, the stronger coupling causes all three of the poles to affect each other, which gives a more
complicated coupling behavior. An important thing to notice is that we have, in most cases, two poles
at slow decay and the other at fast decay. This has two implications for the decay: there are still usually
only two stages of decay: the first stage is determined by the fast decaying pole, and the two other poles,
with similar decay rates, will constitute the second stage, but will beat against each other during the
decay. This effect was noted in the papers by Nakamura and Hundley.

Figure B.12: Comparison with Weinreich’s Frequency vs. Mistuning Diagrams. Three poles, one
moving, strong coupling.

328 APPENDIX B. ROOT LOCUS AND PIANO STRINGS

9.95 10 10.05
Upper Moving Pole Frequency

9.95

10

10.05
0-degree coupling

9.95 10 10.05
Upper Moving Pole Frequency

9.95

10

10.05
45-degree coupling

9.95 10 10.05
Upper Moving Pole Frequency

9.95

10

10.05

90-degree coupling

Three open-loop poles,
one fixed at ω=10
two moving from ω=9.95 & 9.92 to 10.05 & 10.02

Weak Coupling
jω

(fixed)

(moving)

9.95 10 10.05
Upper Moving Pole Frequency

9.95

10

10.05
11-degree coupling

Here we get essintially the same effects as in the previous weak-coupling figure (2 pages back), but the
two-pole couplings occur in the same frequency ranges, making the s-plane figures more complicated.
We can see in the Weinreich diagrams, though, that the couplings are still mostly unaffected by each
other.

Figure B.13: Comparison with Weinreich’s Frequency vs. Mistuning Diagrams. Three poles, two
moving, weak coupling.

B.6. COUPLED STRINGS 329

9.9 10 10.1
Upper Moving Pole Frequency

9.9

10

10.1

0-degree coupling

9.9 10 10.1
Upper Moving Pole Frequency

9.9

10

10.1

11-degree coupling

9.9 10 10.1
Upper Moving Pole Frequency

9.9

10

10.1

45-degree coupling

9.9 10 10.1
Upper Moving Pole Frequency

9.9

10

10.1
90-degree coupling

Three open-loop poles,
one fixed at ω=10
two moving from ω=9.9 & 9.87 to 10.1 & 10.07

Strong Coupling
jω

(fixed)

(moving)

If we compare this case to the previous strong-coupling case (two pages back), the major difference is
that the poles are much closer to each other at their closest approach, which has the effect of making
the coupling even stronger. Thus the fast-decay pole is further out to the left than before, and in this
case the two moving poles have partially coupled together, so that even when they are far from the fixed
pole, the fast pole stays at a quick decay.

The
“Fast Pole”

These two poles would couple anyway, so are
moving to a two-stage position as they move
away from the fixed pole. The fixed pole still
affects the angle of their coupling, though.

Figure B.14: Comparison with Weinreich’s Frequency vs. Mistuning Diagrams. Three poles, two
moving, strong coupling.

330 APPENDIX B. ROOT LOCUS AND PIANO STRINGS

delay

delay

delay

delay

GloopGloadGloop

delay1 Gloop

delay2 Gloop

Gload

GForward

k

Figure B.15: Waveguide representation of N coupled strings, and rearranged into Root-Locus form

−1.5 −1 −0.5 0 0.5 1
−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

Figure B.16: Zero locations resulting from the sum of 6 random complex poles.

B.6. COUPLED STRINGS 331

Let’s look at the zeros of summing 6 random poles:

G(s) =
6∑
i=1

1
s − pi

As we see in Figure B.16, the zeros are indeed somewhere between the poles, though because there

are several poles, the zeros are in some sort of “average” locations.

−1.5 −1 −0.5 0 0.5 1
−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

Figure B.17: Zero locations resulting from the sum of 6 complex poles, one of the poles varying
phase.

Now as noted above, pole phase affects where the zeros land. Let’s now look at:

G(s) =
ejφ

s − p1

6∑
i=2

1
s − pi

And let φ vary between 0 and 2π (Figure B.17). Note that the zeros can move around with extra

phase on just one of the poles.

If we let another pole’s phase vary, then we get an interesting space (Figure B.18) over which

the zeros may vary. (Varying more phases than two at a time is not easily visualizable).

Now one thing to note is that as set up, there are always one fewer zeros than poles, as a

consequence of summing one-pole sections which do not have finite zeros of their own. As such,

when we couple the poles together, there will be one extra pole. Most of the poles will head towards

the generated zeros, but one will head away to ∞ in the direction of the overall extra phase (this

can be seen in Figure B.19).

332 APPENDIX B. ROOT LOCUS AND PIANO STRINGS

Figure B.18: Zero locations resulting from the sum of 6 complex poles, two of the poles varying
phase. Left: random values. Right: gridded

−3 −2.5 −2 −1.5 −1 −0.5 0 0.5 1
−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

Figure B.19: Coupling root locus for a sum of poles with no extra phase, and the coupled pole
locations for a particular coupling gain.

B.6. COUPLED STRINGS 333

Coupled-String zeros

Now, if we again refer back to the coupled-string model (Figure B.15 and Equation B.12), we ask

where the zeros will land for this situation. Now the case we are interested in consists of two (or

three) strings of nearly the same tuning. As such, we would expect a series of pole pairs (or triples)

at the string harmonics.3

Where do zeros land for a simple sum of harmonics?, like:

∑
i

1
s − pi

+
∑
i

1
s − qi

Where the pi are the harmonic poles of one string, and the qi are the poles of the other string. This

case, shown in Figure B.20, has zeros interleaved between all the poles.

Figure B.20: Zero locations for a sum of a series of discrete poles, on the locations of harmonics of
two detuned strings. (The axes are rotated so that the positive imaginary axis points to the right)

However, a string feedback section as drawn in Figure B.15 acts more like the product of its

poles rather than the sum (this is verified in Figure B.23), so:

1
1 − e−sT1

+
1

1 − e−sT2
≈
∏
i

1
s − pi

+
∏
i

1
s − qi

In which case, the zeros only show up between the pairs for each harmonic. None appear between

the harmonics (Figure B.21).

Now, as drawn, the string delays are in their feedforward paths, so each string as an additional

phase term:
−e−sT1

1 − e−sT1
+
−e−sT2

1 − e−sT2

The effect of these is to rotate the zeros to be on a different line than the poles (Figure B.22). Given

that the axes are rotated with the positive imaginary axis pointing right, this means that the zeros

are rotated in the positive real direction. Now if the poles themselves are offset from the axis (due

3Whether the harmonics are stretched or not is not an issue at the moment. We do assume, though, that if they are
stretched, they are stretched more or less the same in each string, as they are made from the same material, have the same
length, and nearly the same tension. As such, we would not expect stretching to have a significant effect on the relative
locations of the poles within each pole pair (or triple).

334 APPENDIX B. ROOT LOCUS AND PIANO STRINGS

Figure B.21: Zero locations for a sum of two products of poles, on the locations of harmonics of two
detuned strings.

Figure B.22: String feedforward phase delays taken into account.

to damping) or rotated (due to higher damping at higher frequency), then this means that the zeros

correspond to less damped locations than the poles. Therefore, with strong two-stage coupling, one

of the coupled poles could end up at a slower decay than the open-loop poles. As mentioned in

the introduction to this chapter, this behavior is integral to the character of the piano, because the

piano sound is based partially on the “even slower” 2nd-stage decay. Otherwise, if the zeros stayed

exactly between the poles, the slowest possible coupled decays would be exactly as slow as the

individual strings.

imaginary axis (j ω)

re
al

 a
xi

s

4 5 6 7 8 9 10 11

−1.5

−1

−0.5

0

0.5

1

1.5

Figure B.23: Numerical experiment showing poles and zeros of summed string-like transfer func-
tions.

As a verification of the above, Figure B.23 is a height-field image (white is more positive, black

is more negative) of log |Hsum| from the following calculation:

Hdel1(s) = e(−3.3+0.1j)s

B.6. COUPLED STRINGS 335

Hdel2(s) = e(−3.5+0.1j)s

Hloop1(s) =
−Hdel1(s)

1 −Hdel1(s)

Hloop2(s) =
−Hdel2(s)

1 −Hdel2(s)
Hsum(s) = Hloop1(s) +Hloop2(s)

B.6.2 Loci

Harmonic #1

Harmonic #4

Harmonic #7

Harmonic #1

Harmonic #4

Harmonic #7

Harmonic #1

Harmonic #4

Harmonic #7

Figure B.24: String Loci, left: two strings, real coupling, middle: two strings, one-pole Gload, right:
three strings, one-pole Gload.

In Figure B.24, we have plotted select sections of the root loci for three different systems. In

the left system, we see three harmonics for the case of two-string coupling with a real scalar Gload.

This case shows the fact that the distance between the poles will change the ‘effective’ coupling

strength: the low harmonics, being closer, are strongly into two-stage decay, with the fast mode

out of the picture to the left; whereas at the higher harmonics, the detuned open-loop poles end

up further apart, so that at the seventh harmonic, the poles are still in a beating configuration.

This emphasizes that different harmonics will couple differently with the same coupling constant,

simply due to their pole spacing.

The middle case hasGload set to a onepole lowpass filter a
s+a . This coupling is now frequency de-

pendant, so that each harmonic will see a different coupling factor. Since the phase of the onepole

filter approaches −90 degrees at high frequencies, we would expect that higher harmonics will dis-

play coupling patterns that are more and more rotated, along with the distance-induced reduction

336 APPENDIX B. ROOT LOCUS AND PIANO STRINGS

in coupling, which can be seen in the figure.

The right-hand case has three strings, along with the one-pole frequency dependent coupling.

An important effect can be seen at the first harmonic, where the coupling is nearly real: the sum of

the three modes has two zeros “in-between” the poles, this causes two of the poles to stay at slow

decay when the system is strongly coupled, so that only the third pole goes into fast decay. Thus,

during the second stage of decay, the two slow modes will beat with each other, an effect that is

seen in ([109] and [187]).

Figures B.25 through B.28 examine several harmonics and comment on various behaviors for a

couple example systems.

B.6. COUPLED STRINGS 337

Harmonic #1

Harmonic #4

Harmonic #7

Two-Strings, Real Coupling

Note: All have the
same shape (because
the coupling is a real
scalar), but different
sizes. This is because
the higher harmon-
ics are further apart,
thus the higher har-

monics will couple
less strongly.

Solid: ∠(GH) = 0
Dotted: |GH| = 1/k (k=0.2)

At high harmonics:
 weak coupling
⇒ not in 2-stage decay.

At mid harmonics:
 moderate coupling
⇒ barely 2-stage decay.

At low harmonics:
 strongest coupling
⇒ well into 2-stage decay.

delayi = e−sTi

GForward =
−e−sTi

1 − e−sTiΣ

GH = GForwardGload

T1 = 1.00
T2 = 1.02

Real Coupling:
Gload = 1

Root Loci of a system as on P. 4, looking at the first 10 harmonic pairs.
In this case, Gload is a real scalar. Note how at higher harmonics, the effects
of coupling are “weaker”.

i

For a given value of
coupling (k), the
poles land at the
intersections of the
solid and dotted lines.

(remember, for string
coupling, we use the 0°
root-locus)

Figure B.25: Coupling Loci of two coupled strings, real coupling, no damping. Note how the low
harmonics are strongly coupled, but high harmonics are not.

338 APPENDIX B. ROOT LOCUS AND PIANO STRINGS

Harmonic #1

Harmonic #4

Harmonic #7

Two-Strings, 1-Pole Coupling

At low frequencies, the
coupling filter has a

phase of essentially 0°
(i.e. real). The coupling
phase approaches 90° at

high harmonics, with
correspondingly different

coupling behaviors.
Solid: ∠(GH) = 0

Dotted: |GH| = 1/k (k=0.2)

In this case, Gload is a one-pole filter. This causes the coupling to be frequency
dependant. i.e., each harmonic has a different coupling behavior.

For a given value of
coupling (k), the
poles land at the
intersections of the
solid and dotted lines.

(remember, for string
coupling, we use the 0°
root-locus)

One-Pole Coupling:

Gload =
100

s+100

Figure B.26: Two strings, frequency-dependent coupling phase and gain.

B.6. COUPLED STRINGS 339

Harmonic #1

Harmonic #4

Harmonic #7

Three-Strings, 1-Pole Coupling

At low frequencies, the
coupling filter has a

phase of essentially 0°
(i.e. real). The coupling
phase approaches 90° at

high harmonics, with
correspondingly different

coupling behaviors.
Solid: ∠(GH) = 0

Dotted: |GH| = 1/k (k=0.2)

In this case, Gload is a one-pole filter. This causes the coupling to be frequency
dependant. i.e., each harmonic has a different coupling behavior.

For a given value of
coupling (k), the
poles land at the
intersections of the
solid and dotted lines.

(remember, for string
coupling, we use the 0°
root-locus)

One-Pole Coupling:

Gload =
100

s+100

Figure B.27: Three strings, frequency-dependent coupling phase and gain.

340 APPENDIX B. ROOT LOCUS AND PIANO STRINGS

Harmonic #1

Harmonic #4

Harmonic #7

Three-Strings, 1-Pole Coupling, with Damping

Solid: ∠(GH) = 0
Dotted: |GH| = 1/k (k=0.2)

In this case,The strings also have damping, which moves their poles off the jω axis.
This case also has a different detuning configuration than the previous figure.

For a given value of
coupling (k), the
poles land at the
intersections of the
solid and dotted lines.

(remember, for string
coupling, we use the 0°
root-locus)

One-Pole Coupling:

Gload =
100

s+100

Figure B.28: Three strings, frequency-dependent coupling phase and gain, and more complicated
damping.

B.7. CONCLUSIONS 341

B.7 Conclusions

The Root Locus visualizes the process of mode coupling in systems, and can provide intuition on

the coupling behavior. Some important facts about multi-string coupling are deduced from the root

loci:

• In 3-mode coupling, two modes stay at slow decays, this gives the beating in the second stage

that has been noticed.

• Different string harmonics couple differently:

– Higher harmonics are more detuned (absolute detuning, not relative), this makes the

higher harmonics “less coupled”. This can be another explanation for late-decay beating,

as high harmonics may not have locked.

– Frequency-dependent coupling causes each harmonic to couple differently. For example,

each harmonic couples with a different coupling phase angle, which affects the nature

of the coupling differently at each harmonic.

– The phase of the strings causes the open-loop zeros due to the parallel combination of

the string systems to be closer to imaginary axis than the open-loop poles. This allows

the coupled poles in two-stage decay to have slower decay rates than the open-loop

poles (i.e., than the strings individually).

Appendix C

Amplitude Control Systems in

Physical Modeling and Virtual

Analog

The following paper, co-authored with Harvey Thornburg, was presented as a poster at the Inter-

national Computer Music Conference, Ann Arbor, Michigan, 1998.

C.1 Examples of Using Amplitude Control Systems in Music Syn-

thesis

Feedback control systems have been used in the past to keep physical models in tune;

similarly, other variables can be controlled, such as amplitude, which is explored in

this paper. There can be various interesting behaviors; affecting, for example, stabil-

ity and attack transient characteristics. Examples are shown for a simple waveguide

model. The nonlinearity introduced by amplitude control can also approximate various

characteristics of popular nonlinearities, such as saturation. In one example, a control

system is applied to a linear Moog-style filter to emulate some saturation effects of the

analog filter under high-amplitude conditions.

C.1.1 Introduction

Certain parameters in physical models can be difficult to control, as they are in the physical instru-

ments they are intended to model. Such parameters can be tuning, loudness, timbre, etc. In tra-

ditional music performance, the performer must often be continually adjusting their performance

342

C.1. AMPLITUDE CONTROL IN MUSIC SYNTHESIS 343

to overcome variations in the instrument over time, temperature, and various playing ranges. In

trying to model these instruments for simple controls, such as MIDI, the algorithm designer must

either try to remove these variations by adjusting the model according to a priori knowledge of how

the instrument will deviate from desired performance (via derived formulae for varying certain pa-

rameters across the problematic variations, or by experimental tweaking, placed in a multitude of

lookup tables), or they may try to build a dynamic system designed to react to the variations in

a way similar to an actual performer. These systems are feedback control systems, and share much

in common with more traditional control systems, such as flight control systems, and temperature

control systems.

The use of a feedback control system to improve a physical model’s performance with respect

to difficult-to control parameters has been done previously by Perry Cook to control the intonation

(among other parameters) in a brass physical model [50]. In this paper, we will explore the control

of a model’s amplitude. This idea can be traced at least back to Michael McNabb, in an unpublished

clarinet model [165]. The control of amplitude can help simplify the algorithm designer’s job,

because not only can it reduce stability problems inherent in cost-reduced models, but it can assist

in the implementation of a more realistic attack phase of the instrument’s notes.

The amplitude control system is also explored in conjunction with a digital VCF model. Adding

correct nonlinear behaviors to a digital VCF is difficult without resorting to gross oversampling.

This paper describes some experiments done in an attempt to add some effects observed in over-

driven analog filters to linear filters, without the bandwidth expansion (and thus aliasing) typically

associated with saturation. Possible behaviors that can be modeled include stable self-oscillation

and reduced effective gain at resonance, which in analog filters are by-products of a saturation

nonlinearity.

Since the measurement of a signal’s amplitude is a nonlinear operation, the complete system

will be nonlinear, even if the underlying controlled system is linear. Furthermore, amplitude con-

trol is implemented by varying some coefficient in the controlled system (typically a simple gain),

rather than by summing a control signal into the input, which would also make the complete sys-

tem nonlinear. However, since amplitude measurement is usually a slow process (occurring over

at least one period of oscillation), the control signal moves slowly, thereby allowing the system to

be loosely thought of as locally linear. This allows the system to be understood a little more easily

than most nonlinear systems.

C.1.2 Waveguide Systems

Amplitude control is of particular interest when one tries to produce extremely efficient nonlinear

physical models, where absolute physical accuracy has been sacrificed in favor of cheaper compu-

tation. A typical problem encountered in working with these models is instability. The mechanisms

344 APPENDIX C. AMPLITUDE CONTROL SYSTEMS

that self-regulated a model’s amplitude can be easily broken while reducing the model’s complex-

ity. Additionally, the models were often intentionally made temporarily unstable in attempts to

speed up the attacks of the notes, but the instability was not well controlled.

Early models often used simple numerical saturation to limit the effects of instability. This

worked acceptably only in models which already produced a waveform that was harmonically

similar to a clipped signal, such as the clarinet. A side effect was that many models ended up

sounding like clarinets after simplification. The work presented here is intended to remove the

need for numerical saturation in the handling of unstable models, which should better preserve

the timbre of the model.

The basic implementation [246] is to set up a servo system whereby the amplitude of the system

is servoed to a desired amplitude level. The control was chosen to be the loop gain (see figure),

with which the controller could affect the system’s amplitude via control of its stability.

zero,
dither,
Init Cond

z−l

Gloop

NL

Env Follow

ControllerDesired
Amplitude

Desired

Measured

Actuatorz−1
z

Kp

Ki

Figure C.1: Diagram of amplitude control of a typical model, along with a typical controller.

The controller shown is based on the standard PI (Proportional + Integral) controller [Franklin

1994]. The pole a is typically at 1.0, though using smaller values is sometimes useful. This controller

has worked in practice, though it is not exactly suited for this system. See [Stilson 1996] for a short

discussion of an alternative controller.

As with all control-system design, care must be taken with the controller gain. Setting the gain

too high will cause the whole system to become unstable (though often still bounded). This usually

manifests as a violent amplitude modulation. Thus in the design, one must trade off response speed

against amplitude instability. Also note that the regions near instability are sonically interesting, as

the amplitude response will ‘ring’ a bit before settling down, which gives the envelope a brass-like

‘blip’.

C.1. AMPLITUDE CONTROL IN MUSIC SYNTHESIS 345

−1

−0.5

0

0.5

1

Figure C.2: Example envelopes from an amplitude-controlled waveguide model.

C.1.3 Pseudo-Nonlinear VCF

One of the more audible effects of saturation in resonant filters is the reduction of the effective

resonant peak gain during resonance, due to the limited range of the filter states; therefore, a

frequency-swept harmonically rich signal will pass through the filter with significantly reduced

amplitude variations.

We can set about to recreate this particular effect by implementing some sort of automatic gain

control. In one method, we may take the amplitude of the filter and run it through a compressor.

In another method, we may use an amplitude control system. There are two choices of control

variable: filter gain and filter Q. If we choose filter gain, we have simply implemented a type of

compressor, but if we choose the Q control, we get a more interesting system.

VCF

Controller

Follower

Des

Q

Qlimit

VCF

Controller
Follower

Des

Figure C.3: Various amplitude controls applied to a linear VCF.

These amplitude-controlled filters reduce the extreme amplitude variations of the linear filter,

while retaining the long impulse response of the filter for impulsive inputs, as happens in some

nonlinear filters. In a linear filter, it is not possible to have both a long impulse response and a “non-

peaky” frequency response in the same filter. Furthermore, a nonlinear filter can self-oscillate, due

to state saturation. The amplitude control system, when using Q control, can easily cause a linear

system to stably self-oscillate, and to do so without significantly adding harmonics to the signal,

thereby reducing the chance of aliasing.

In Figure 4, the gain-controlled and Q-controlled systems look rather similar, but if we study

Figure 5, we see that the gain control acts by attenuating the whole signal (visible in the figure by

the high frequencies disappearing), whereas the Q control just reduces the peak gain, leaving the

346 APPENDIX C. AMPLITUDE CONTROL SYSTEMS

−1

−0.5

0

0.5

1
Amplitude of frequency sweep, high−Q VCF, no amplitude control

−1

−0.5

0

0.5

1
Amplitude of frequency sweep, high−Q VCF, gain amplitude control

−1

−0.5

0

0.5

1
Amplitude of frequency sweep, high−Q VCF, Q−based amplitude control

Figure C.4: Sawtooth frequency sweeps through (top to bottom): VCF, gain-controlled VCF, Q-
controlled VCF.

rest of the filter relatively untouched, so that the spectral variations are less visible in the figure.

C.1.4 Summary

Amplitude control systems are an interesting addition to the palette of tools with which algorithm

designers can create instruments. They can be used to bridge the gap between purely linear systems

and strongly nonlinear systems, by creating a “slowly nonlinear” system, which can be easier to

understand in some cases. They can also be used to help bridge between physically correct physical

models and cheap, Machiavellian models. Finally, these systems open up a range of new directions

for exploration in synthesis algorithms.

C.1. AMPLITUDE CONTROL IN MUSIC SYNTHESIS 347

Time

F
re

qu
en

cy

Spectrum and amplitude of frequency sweep, high−Q VCF, gain−based amplitude control

0

1000

2000

3000

4000

5000

Time

F
re

qu
en

cy

Spectrum and amplitude of frequency sweep, high−Q VCF, Q−based amplitude control

0

1000

2000

3000

4000

5000

Figure C.5: Comparison of spectral effects of Q control vs. gain control.

Appendix D

Local Cosine-Coefficient Modulation

The following paper, co-authored with Scott Van Duyne, was presented as a poster at the Interna-

tional Computer Music Conference, Ann Arbor, Michigan, 1998.

D.1 Implementing Efficient Frequency Variation in Coupled-Mode

Synthesis and Other Cosine-Frequency Systems

Many oscillator and filter algorithms are tuned via coefficients that are of the form cos(2π f/fs).

This can make implementing frequency modulation, and pitch-bend expensive, at least one table

lookup per frequency modification. In this paper, an approximation to the cosine is explored which

allows for direct modulation without cosine re-computation or table lookup. With this ability, fast

and/or smooth time-variation of mode frequencies is possible without significant increase in ex-

pense, while retaining good low-deviation tuning accuracy.

D.1.1 Introduction

Quite a few oscillator and filter algorithms, including the direct-form second- order filter, the

second-order digital waveguide oscillator [241] and, more recently, the coupled-mode synthesis

filter [71], are tuned via coefficients that are related to frequency by a cosine operation. This can

make implementing frequency variation, such as FM, vibrato, and pitch-bend expensive, requiring

at least a good table lookup per frequency modification. In this paper, approximations to the cosine

are explored, which allow for direct modification of the coefficients without cosine re-computation

or table lookup.

With this ability, fast and/or smooth time-variation of mode frequencies in Coupled-Mode Syn-

thesis is possible, allowing for some interesting effects, both physical and non- physical. The range

348

D.1. EFFICIENT COSINE-COEF MODULATION 349

of non-physical effects is quite wide, while possible physical effects may include: simulating am-

plitude dependent modal frequencies in drums; simulating the pitch sliding effects of moving the

pedal on a kettle drum; and simulating the sounds of water-filled shells, whose modal frequencies

change as the water moves about.

In Section 2, the approximation will be derived. In Section 3, its frequency-deviation character-

istics will be explored. In Section 4, more trivial deviations will be compared.

D.1.2 Derivation

Our goal is to implement the cosine coefficient in such a way as to be able to modify the coefficient

to implement frequency variations in as cheap a way as possible while still keeping as much useful

control over the exact variation as possible (i.e., the cosine approximation should be good). In

keeping with the cheapness goal, it will be assumed that the frequency variation is based on a

signal input to the system, so that is changes as fast as once per sample (this creates a context for

the definition of “cheap”). It is also assumed that a table lookup is too expensive (either due to

interpolation computation or memory access), so as to motivate a search for another method.

First we will define the frequency variation. We have chosen a multiplicative deviation, as it

fits musical requirements: new freq = α f , where f is the base frequency at which the original

coefficients are computed (f is assumed to be change “rarely”, so that exact cosine computation

can be done when it changes), and α is the frequency deviation ratio. Thus our base coefficient

c is defined as c = cos(2π f/fs), and our deviated coefficient c̃ should approximate the value

cos(α 2π f/fs). For simplicity, let θ = 2π f/fs, so that c = cos(θ). θ varies by the same ratios as f ,

so that αf corresponds to αθ (i.e., c̃ must approximate cos(αθ)).

First, we look at the polynomial expansion of cosine ([2] for example):

c = cos(θ) = 1 − θ
2

2!
+
θ4

4!
− θ

6

6!
+
θ8

8!
− . . .

The deviated true coefficient is:

cos(αθ) = 1 − α
2 θ2

2!
+
α4 θ4

4!
− α

6 θ6

6!
+
α8 θ8

8!
− . . .

Define a new coefficient d = c − 1, so that c = 1 + d, thus:

d = −θ
2

2!
+
θ4

4!
− θ

6

6!
+
θ8

8!
− . . .

We now introduce our approximation:

c̃ = 1 + α2 d = 1 − α
2 θ2

2!
+
α2 θ4

4!
− α

2 θ6

6!
+
α2 θ8

8!
− . . .

350 APPENDIX D. LOCAL COSINE-COEFFICIENT MODULATION

This approximation deviates first all the way at the fourth order, and if α is near 1.0 (i.e., small devi-

ations), an ≈ a2 for small n, thus increasing the accuracy of the approximation a further. Also, this

approximation is better for small θ, which works well because most useful frequencies correspond

to rather small θ at fs = 44100Hz.

We can use this approximation by updating c via 1 + α2 d, or if updating coefficients is difficult

(as it can be in some situations), by replacing all multiplications by c with an add and another

multiply (see Figure D.1). Note that if α is updated every sample, there is no reason to use the

former method over the latter, since in the former case, the coefficients would have to be stored

to memory. This storage is a useless operation since the new value is useful only in the current

sample, because it will be recomputed in next sample anyways.

In multi-mode systems, like coupled-mode synthesis, the same value of α is likely to be used

for all modes, which means α2 need only be computed once per sample rather than once per mode

per sample.

c

α θ

cos d

α2

Figure D.1: Modulating c, l to r: no modulation, exact modulation, 1 + α2 d approximation.

When used to modulate high-Q filters, care must be taken in the modulation, because the time-

varying filter could become unstable (even if all intermediate states are stable in steady state). If

this is likely to be a problem, the filter should have safeguards implemented, such as state clipping.

Also, when performing large deviations near c = 1 or c = −1, |c̃| may get larger than 1.0. In many

systems, this will represent an unstable system, so coefficient clipping may also be necessary in

certain situations.

D.1.3 Evaluating the Approximation

The accuracy of the approximation depends mainly on two parameters: θ and α. At low base

frequencies (small θ), and/or at low frequency deviations (α near 1.0), the approximation will

be very good, getting progressively worse as the base frequency increases and the modulation

deviation increases.

In Figure D.2, we compare the approximation to the desired values for α in the range [0,2],

corresponding to the range from DC to up one octave. Since the approximation also depends on θ,

we show the approximations at various base frequencies. The first set of graphs show compare c

and c̃, the next compare actual tuning based on c̃ against desired tuning, and the third set shows

D.1. EFFICIENT COSINE-COEF MODULATION 351

the deviation in the actual tuning from the desired tuning, in cents.

0 0.5 1 1.5 2

0.994

0.996

0.998

1

θ = 0.0626894
0 0.5 1 1.5 2

0.85

0.9

0.95

1
c and c~ vs. α for various θ

θ = π/10
0 0.5 1 1.5 2

−0.5

0

0.5

1

θ = π/3

0 0.5 1 1.5 2
0

200

400

600

800

base freq = 440
0 0.5 1 1.5 2

0

1000

2000

3000

4000

Desired and Actual freq vs. α for various base freqs (θ) (f
s
: 44kHz)

base freq = 2205
0 0.5 1 1.5 2

 0

 5000

10000

15000

20000

base freq = 7350

0 0.5 1 1.5 2

−0.2

0

0.2

0.4

0.6

0.8

base freq = 440
0 0.5 1 1.5 2

0

10

20

Pitch deviation from desired (in cents) vs. α for various base freqs (f
s
: 44kHz)

base freq = 2205
0 0.5 1 1.5 2

0

200

400

600

base freq = 7350

Figure D.2: Evaluating the approximation across frequency ratios (α) from 0 to 2 (up one octave)

The figure shows that for musically useful fundamental frequencies, the approximation works

well, especially for frequency deviations of less than an octave. If, however, we are using this

approximation to deviate a harmonic of a musical signal, the approximation may be less useful.

As an example, if we take a set of partials that are harmonically related at the base frequency, and

deviate them, they could end up significantly inharmonic at the extremes of the deviation.

D.1.4 Other Methods

In most of the algorithms mentioned at the top of the paper, the tuning coefficient enters into the

system in such a way that any value of −1 ≤ c ≤ 1 will represent a valid frequency. Therefore, even

more trivial ways of varying c will produce frequency deviation, such as c̃ = c + α or c̃ = α c (with

appropriate clipping to [-1,1]). These variations will be much more approximate than the above

352 APPENDIX D. LOCAL COSINE-COEFFICIENT MODULATION

0.9 1 1.1
0

1000

2000

3000

base freq = 440
0.9 1 1.1
0

1000

2000

3000

4000

Pitch variation (in Hz) vs. α, c = c
base

+(α−1)

base freq = 2205
0.9 1 1.1

7300

7350

7400

base freq = 7350

0.9 1 1.1
0

1000

2000

3000

base freq = 440
0.9 1 1.1
0

1000

2000

3000

4000

Pitch variation (in Hz) vs. α, c = α c
base

base freq = 2205
0.9 1 1.1

7200

7300

7400

7500

7600

base freq = 7350

Figure D.3: Frequency deviation characteristics for more trivial coefficient variations.

approximation, as shown in Figure 3. Note, in particular, that the range of useful α now becomes

a function of the base frequency, which makes the use of these variations more tricky. Certain

applications don’t require accurate tuning, though, so these trivial variations need not be rejected

offhand.

D.1.5 Summary

An approximation of cosine, useful for small-ratio deviations from precomputed values, was pre-

sented. The approximation is intended for use in implementing inexpensive frequency modula-

tions in cosine-tuned oscillators and filters. Numerical evaluation of the approximation shows its

usefulness for most musically useful frequencies and variations (such as vibrato).

Appendix E

On The Classic Allpass Filter Forms

E.1 Relating Standard AP Forms and IIR Direct Forms

It is well known ([195], [170], [238]) that there are four standard "Direct Form" implementations

of IIR filters: DFI, which corresponds directly to the simplest way of writing the transfer function,

DFII which uses the minimum number of delays, and their transposes (Figure E.1). What is less

TDF2

TDF1
“Poles First”

DF1
“Zeroes First”

DF2
“Poles First”

a1b1

b0

a2b2

a1

a2

b1

b0

b2

a1 b1

b0

a2 b2

a1

a2

b1

b0

b2

Figure E.1: The Standard Direct Form Biquad Implementations

353

354 APPENDIX E. ON THE CLASSIC ALLPASS FILTER FORMS

well-known is that there are also four ways of drawing a basic allpass filter (among others, like

the various lattice forms, though those forms often correspond to these forms as well), as seen in

Figure E.2.1 These are essentially the four combinations of the two following choices:

• What goes on the center line, a single scale or a single delay? If a scale is on the center line,

there will be delays in the feedforward and feedback. If a delay is on the center line, there

will be scales in the feedforward and feedback.

• Do we pick off the feedforward and feedback from inside the sums or outside the sums?

c

c

c

c

cc

Pick Off Inside the Sums Pick Off Outside the Sums

O
ne

 D
el

ay
O

ne
 S

ca
le

Figure E.2: Four Standard ways of Implementing a “First-Order” Allpass Filter.

These allpass forms can be related to the IIR direct forms, though only two of them are exactly

equivalent. We will note the equivalence by taking each of the direct form implementations of an

allpass filter, and by block-diagram algebra, turning it into one of the allpass forms.

E.1.1 DF1

First-order DF1 corresponds to putting the scale on the midline and picking off outside the sums.

(Remember, for an allpass filter, we flip the denominator around to get the numerator. Hence,

N1 = 1, D1 =N0 = c.)

1There are also one-multiply versions for all four of these [Ref Mitra textbook 3rd ed, sec 8.6.1]

E.1. RELATING STANDARD AP FORMS AND IIR DIRECT FORMS 355

c

c

c c

c

c c

c

These two steps make the allpass
form not exactly the same operations
as the DF1 filter we started with.

Note that there are two algebraic steps which make the allpass form a slightly different imple-

mentation than the DF1 filter, though the ‘zeros first’ property still holds. The difference is basically

the difference between w = x + cy − cz and w = x + c(y − z) (i.e.,two sides of the distributive prop-

erty).

E.1.2 DF2

First-order DF2 corresponds to putting the delay on the midline and picking off inside the sums.

Note that The DF2 allpass form is exactly equivalent to the DF2 IIR form, there are no algebraic

differences:

c

cc

c

356 APPENDIX E. ON THE CLASSIC ALLPASS FILTER FORMS

E.1.3 TDF1

First-order TDF1 corresponds to putting the scale on the midline and picking off inside the sums.

Like the DF1 case, there is a algebraic small difference, though in this case, it is extremely minor.

c

c

c

c

c

c

This step makes the allpass form
not exactly the same operations
as the TDF1 filter we started with

The difference here is between w = x + cy and v = cy,w = x + v. That may only show up in

architectures which have accumulators:

acc = x; // acc has extended precision compared to the variables

acc += c*y;

w = acc;

versus:

v = c*y; // v, not an accumulator, may lose precision in the product

w = x + v;

Of course, one could always reorder the operations as such:

acc = c*y;

acc += x;

w = acc;

Which reinforces that the difference between the TDF1 IIR form and its corresponding allpass form

is very small.

E.2. ALLPASS INTERNAL GAINS 357

E.1.4 TDF2

First-order TDF2 corresponds to putting the delay on the midline and picking off outside the sums.

As with the DF2 allpass form, the TDF2 IIR and allpass forms are equivalent:

c

c

c

c

Reviewing, we get some rules of thumb for the first-order allpass forms:

• Transposing is effectively the same as switching between picking off inside and outside the

sums.

• If we pick off inside the sums, we get “poles first”, if we pick off outside the sums, we get

“zeros first”.

• DF1/TDF1 have the scale on the midline, DF2/TDF2 have the delay on the midline.

E.2 Allpass Internal Gains

It is well-discussed that the “zeros-first” direct-form filters (DF1 and TDF2) have less probability of

internal overflow relative to the output level in fixed-point implementation than the “poles-first”

forms (DF2 and TDF1) ([56][238]). This applies to allpass filters as well, though it does not appear

to have been discussed as much (Dattorro does discuss it in [57]).

Remember that when analyzing filters for overflow, the L1 norm of the filter is the norm of

choice, as it measures the worst-case instantaneous gain of the filter, over all possible inputs. On

the other hand, the L2 norm (which is the peak of the frequency response) only gives us the maxi-

mum gain for sinusoidal inputs. It can be shown that the signal which will produce the maximum

instantaneous gain

xn, |xn| ≤ 1 s.t. max
n

(|yn|) is maximized. (E.1)

is the impulse response of the filter, time-reversed, and run through a sgn() function (assuming the

signals and coefs are real, otherwise the inputs would be unit-amplitude phase rotations e−j 6 hi). At

the end of this signal being played into the filter, the output of the filter will become for one sample:

yn =
N∑
i=0

|hi| (E.2)

Which is the definition of the L1 norm of filter’s impulse response (where N in this case is the

length of the impulse response hn).

358 APPENDIX E. ON THE CLASSIC ALLPASS FILTER FORMS

E.2.1 Allpass I/O Gain (first-order)

Let us now look at the L1 gain from the input to the output of a first-order allpass filter (we will be

assuming real signals and coefficients for the rest of this section):

hi =

0 : i < 0

c : i = 0

(1 − c2)(−c)i−1 : i ≥ 1

(E.3)

Thus:

∞∑
i=0

|hi| = |c| + (1 − c2)
∞∑
i=1

|c|i−1

= |c| + 1 − c2

1 − |c|
= 1 + 2|c| (E.4)

Thus, the maximum instantaneous gain from input to output of a first-order allpass filter start

at 1 for c = 0, and grows to 3 as |c| → 1. This, by itself, can have implications on fixed-point

implementation, if one desires absolute absence of overflow.

Now let’s look at the internal gains for the DF2 and TDF2 allpass filters. The internal gain will

be defined as the gain from the input to the input of the delay.

E.2.2 DF2 internal gain (first-order)

Let un be the input to the delay, then:

un = xn − cun−1

yn = cun + un−1 (E.5)

Hence,
U

X
=

1
1 + cz−1

(E.6)

Which has the simple impulse response:

hi =

{
0 : i < 0

(−c)i : i ≥ 0
∞∑
i=0

|hi| =
∞∑
i=0

|c|i = 1
1 − |c| (E.7)

This gain goes to infinity as |c| → 1 (see Figure E.3). In other words, as well discussed: internal

E.2. ALLPASS INTERNAL GAINS 359

saturation can happen easily in DF2 for “strong” poles.

Of course it is an accepted rule of thumb that designing for such worst-case gains often results

in filters whose gains are reduced so far as to have significantly reduced SNR as well. Even so, if

one designs their filter to handle lower gains than the L1 worst-case, the use of a “zeros-first” form

like TDF2 will reduce the probability of overflow. As usual, in these cases, one should implement

with saturating arithmetic (as opposed to letting wraparound happen), so that if overflow does

occur, it will be handled with much less annoying artifacts.

E.2.3 TDF2 internal gain (first-order)

un = xn − cyn
yn = cxn + un−1 (E.8)

Hence,
U

X
=

1 − c2

1 + cz−1
(E.9)

Which has the impulse response:

hi =

{
0 : i < 0

(1 − c2)(−c)i : i ≥ 0

∞∑
i=0

|hi| = (1 − c2)
∞∑
i=0

|c|i = 1 − c2

1 − |c| =
(1 − |c|)(1 + |c|)

1 − |c| = 1 + |c| (E.10)

Thus, the worst-case internal gain of a first-order TDF2 allpass starts from 1 at c = 0, and goes

up to 2 at |c| → 1. Note that this is actually less than the worst-case external gain of the filter

(Figure E.3). As such, this allpass form is particularly well suited for fixed-point implementations.

If implementing hierarchical allpass filters (allpass inside another allpass, etc.), one may still want

to take this gain into account, as the internal gains of the inner filters should grow as (1 + |c|)depth (if

they all have the same coefficient, or (1 + |c1|)(1 + |c2|)

This analysis also directly applies to ‘first-order’ allpass filters which have the unit delay re-

placed by longer delays (as commonly used in some reverberation algorithms), as their responses

are the same as first-order responses, but with runs of zeros between each sample. As such, the

infinite sums of their responses (i.e.,their norms) are identical.

360 APPENDIX E. ON THE CLASSIC ALLPASS FILTER FORMS

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
0

2

4

6

8

10

Allpass Coefficient c

L 1 n
or

m

Allpass in−>out Gain

TDF2 Allpass In−>State Gain

DF2 Allpass In−>State Gain

Figure E.3: Worst-case gains vs. allpass coefficient, first-order DF2 and TDF2 forms.

E.3 TDF2 Lattice Form

The result of the previous section has application in the field of Lattice Filters,2 as it turns out

that the most common lattice form is very closely related to the DF2 IIR form. In particular, a

terminating stage is exactly a DF2 first-order allpass filter (see Figure E.4).

Note that the middle filter in Figure E.5 is no longer in direct form; rather, it is a different form

made up of direct-form parts.

Given that the lattice stages are DF2, there is a chance of a very large gain to the delay when the

ki get “close” to 1.0.3 In fact, the gain calculated in the previous section is the gain from the system

input to the input of the delay, which in a lattice, is the input to the next stage. Thus, this gain is

presented directly to the next stage, and its gain will be compounded upon the first stage’s internal

gain, and so forth for all the stages. Internal overflow can thus be expected to be a significant issue

in fixed-point lattice-filter design using the standard lattice form, and it is indeed known to be

[152].

By analogy to the previous section, we can imagine a lattice section based on the TDF2 allpass.

Such a form is presented in Figure E.6. The most obvious change in the Lattice form is that the

feedforward and feedback are “flipped” to the other side of the sums.

Lattice filters implemented in this form would be significantly more resistant to internal over-

flow than the standard DF2 form, as discussed previously. Note that this form was also derived

by Jean Laroche [152], though apparently not by analogy to the direct forms. When used to make

2This section derives in part from discussions of reverb implementation with Sean Costello.
3How close is considered a problem depends on the situation and the requirements.

E.3. TDF2 LATTICE FORM 361

y

x
k1

k1

z-1

u

yx
k1

k1

z-1

u

yx

k1

k1

z-1u

Figure E.4: These three forms are ex-
actly equivalent. Top: The standard IIR
lattice section, Middle: DF2 IIR allpass
filter, Bottom: Drawn in a common all-
pass style.

y

x
k1

k1

z-1z-1

k2

k2

u

yx

k2

k2

z-1u

k1

k1

z-1

yx
k2

k2

z-1

u

k1

k1

z-1

u

Figure E.5: Second-order Lattice,
drawn in the same forms. Note where
“inner” sections are placed in the IIR
and allpass forms.

362 APPENDIX E. ON THE CLASSIC ALLPASS FILTER FORMS

y

x
k1

k1

z-1

u

yx

k1

k1

z-1u

yx
k1

k1

z-1

u

Figure E.6: These three forms are ex-
actly equivalent. Top: TDF2 IIR lattice
section, Middle: TDF2 IIR allpass filter,
Bottom: Drawn in a common allpass
style.

y

x
k1

k1

z-1z-1

k2

k2

u

yx

k2

k2

z-1u

k1

k1

z-1

k1

k1

z-1

u

yx
k2

k2

z-1

Figure E.7: Second-order Lattice,
drawn in the TDF2 forms.

higher-order allpass filters (i.e.,if the only output used is the left-hand output), then the TDF2 lat-

tice acts equivalently to the DF2 form, but with reduced internal signal levels. However, if used

as a lattice filter with taps taken from the internal stages, then the fact that the TDF2 has a lower

internal gain will cause all the internal taps to be scaled relative to the DF2 versions. Laroche

showed that the internal states are scaled relative to the DF2 forms by
∏

(1 − k2
i), for all the stages

to the left of (and including) the stage in question. This can also be seen by comparing the gains of

Equations E.6 and E.9.

Appendix F

Fitting Parametric EQs

This appendix describes research the author did as part of a project at Staccato Systems in 1999,

and which was independently derived by Jonathan Abel and Dave Berners [1].

F.1 Problem Statement

Problem: Find the parameters for a bank of parametric EQ sections in order to fit the

total magnitude response to a desired shape.

This problem arises in many situations. One case has been in the design of filters to flatten

speaker-enclosure frequency responses. These problems have been tackled extensively with algo-

rithms which automatically and/or adaptively design correction filters ([182], [138]). Such filters

tend to be “black boxes” from the user’s standpoint, and there may be cases where user would like

to tweak the design beyond that which the algorithm designed. The use of parametric EQs as the

basic sections gives a final design that the user can understand and easily modify as desired.

A sub-problem, which we will solve on the way to tackling the first problem is as such:

Sub-Problem: Find the gains for a bank of fixed EQ sections (i.e., a Graphic EQ) in order

to fit the total magnitude to a desired shape. In particular, the curve represented by the

knobs of a Graphic EQ.

This problem arises due to the fact that in order to create Graphic EQs to have the ability to

smoothly shape a range of the frequencies (i.e., not have “holes” in the response whereby the EQ

would have no (or limited) effect), the sections must be designed to have overlapping frequency

ranges (see Figure F.1). As such, when adjacent sections are set to boost or cut all in the same di-

rection, their responses will add up to a stronger effect than expected (Figure F.2). In fact, if the

designer wants to reduce wiggles in the total response, they must make the sections have wider

363

364 APPENDIX F. FITTING PARAMETRIC EQS

10
1

10
2

10
3

10
4

0

2

4

6

8

log freq

ga
in

 (
dB

)

Figure F.1: Stage frequency-response overlap in typical Graphic EQ

10
1

10
2

10
3

10
4

0

2

4

6

8

10

log freq

ga
in

 (
dB

)

Figure F.2: Total response, showing the over-gain effect of overlap.

bandwidths However, that causes the effect of combined response to get even worse. (Figure F.3).

Therefore, the designer historically must make a tradeoff decision between this effect and ripple.

One can argue that most users simply adjust a Graphic EQ by ear anyway, so the actual shape of

the curve represented by the knobs doesn’t matter. That is probably true in most cases (as long as

the Qs aren’t too extreme in either direction), but it turns out that this problem can be resolved so

that no such arguments are necessary.

The idea is to interpret the knob values as samples of a desired response, and put some com-

putation between the knobs and the EQ sections which computes the actual stage gains to make

the total response have the same shape as the knobs (or even pass through those gains). With such

computation in place, tweaking by ear is still a valid way to use the EQ, but the shape of the curve

“displayed” on the front sliders would be “more correct”.

This sub-problem is simpler than the main problem. This is because the sub-problem is re-

stricted by the EQ sections having fixed center frequency and bandwidth, and so the problem is

F.1. PROBLEM STATEMENT 365

10
1

10
2

10
3

10
4

0

2

4

6

8

10

log freq

ga
in

 (
dB

)

10
1

10
2

10
3

10
4

0

5

10

15

20

log freq

ga
in

 (
dB

)

Figure F.3: Tradeoff in stage Q between “wiggle” and how far the overlap extends the total gain.

simply a problem of fitting the gains, (which ends up having a straightforward least-squares solu-

tion in certain circumstances) whereas in the main problem, the center frequencies and bandwidths

are also optimization parameters and present therefore a much larger optimization space (i.e. more

possible choices) and a more difficult design.1 It will turn out, in fact, that solution of the subprob-

lem is used as a step in the proposed solutions to the main problem.

F.1.1 Assumptions

We will take as the filter architecture for our system a set of N digital 2nd-order filter sections in

series, each implementing a peaking EQ stage [28], with one or two stages optionally implementing

first-order shelf filters.

This discussion will only use these shapes, but we note that adding other stages with other

shapes to this technique is straightforward, as long as the shapes meet a certain requirement. The main

concepts of this method apply to any filter shape which meets this requirement.

This discussion will use peaking EQ shapes which have gains of 0 dB at both DC and fs/2.

1Solutions to the sub-problem, however, should not be expected to produce as close fits as good solutions to the main
problem.

366 APPENDIX F. FITTING PARAMETRIC EQS

There are well-known techniques [198] for creating discrete-time EQ sections which are not re-

quired to have a gain of 0 dB at fs/2, approximating the shapes of continuous-time peaking EQ

sections whose skirts cross past fs/2, and Abel and Berners use such shapes in their discussion [1].

As noted above, these differences can be considered to be implementation details relative to the

algorithm itself.

F.2 Derivation

The response of each EQ stage will be called Hi(z, gi, fci, Qi). gi is the peaking gain, fci is the center

frequency, and Qi is the Q of the peak. When it is clear by the context, we will often refer to the

response as just a function of z: Hi(z), or just certain controls: Hi(z, gi). The total response of

the system will be called Htot(z). Sometimes we will refer to the whole set of stage controls: g =

{g1, g2, . . . gN}, fc = {fc1, fc2, . . . fcN}, Q = {Q1, Q2, . . . QN}. As such, we may sometimes note the

total response for a particular set of controls asHtot(z, g, fc,Q), or justHtot(z, g) in Graphic EQ case,

where the stages have fixed fc and Q, which can be assumed to be known. The desired shape will

be Hdes(z), and will assumed to only be defined at a set of frequencies zi ∈ zdes = ejωi , ωi ∈ ωdes.

The number of EQ stages is N. The number of points in Hdes is M. ω = 2πf/fs is a normalized

frequency in radians (i.e., an angle along the unit circle).

F.2.1 The Gain-Shape Requirement

The total response of the system is:

Htot(z) =
N∏
i=1

Hi(z) (F.1)

where the Hi(z) are the transfer functions for each stage (as yet unspecified). Converting the

amplitudes to decibels, this becomes:

20 log10 |Htot(z)|dB =
N∑
i=1

20 log10 |Hi(z)|dB (F.2)

For simplicity in the representation, let us define the amplitude of a transfer function H(z), in

decibels, as G(z):

G(z) = 20 log10 |H(z)| (F.3)

So that:

Gtot(z) =
N∑
i=1

Gi(z) (F.4)

F.2. DERIVATION 367

Thus we see that Gtot is a linear combination of the stage responses, in log space (with the

combination scales being unity).

Let us look at graphic EQ example (i.e., the subproblem), where the stage center frequencies

and Qs are fixed. As such, the problem of fitting the total response to a desired shape is one of

choosing the correct stage gains g. The particular problem to be solved is chosen to be:

min
g
‖Gtot(zdes,g) −Gdes(zdes)‖ (F.5)

for some distance measure (L1, L2, L∞, etc.).

Now, as we noted above, Gtot is a linear combination of responses. We know that the pseudo-

inverse solution (ATA)−1ATb of the over-determined system Ax = b gives an Ax, a linear combi-

nation of the rows of A, which fits b in a least-squares sense [254]. As such, we know that there a

least-squares fit to Gdes using a linear combination of the Gi:

∃{x1, x2, . . . xN} s.t.
∥∥∥∥∥Gdes(zdes) −

∑
i

xiGi(zdes)

∥∥∥∥∥
2

is minimized. (F.6)

for any particular g, fc, and Q.

However, the above does not have a straightforward interpretation in terms of designing filters,

as xG(z) corresponds to |H(z)|x, which is not a scaling that can easily be done on a filter in general,

especially if x is not an integer (as it surely will not be).

One may ask: “Yes, xG(z) may not have a straightforward interpretation, but xH(z) does. Why

not just fit in linear space?”

First, fitting in linear space implies a parallel architecture for the 2nd-order sections rather than

a series architecture. A parallel combination of filters will have zeros in locations that are not

necessarily intuitive, and hence the output of a design algorithm using a parallel architecture may

not be as “user tweakable” as a series architecture. For example, in a series EQ, one can attenuate

a frequency range by adding a stage that has a cut in that range, but in a parallel EQ, one must

attenuate by adding a stage that “subtracts” in that region (hence interacting with the combined

phase of the other stages, and probably needing to be re-tweaked if another stage is added or

removed). Second, the generally-understood shape of an EQ stage is understood in the log-log

domain, not the linear domain. Again, this means that the design is more tweakable in the log-log

domain, hence G(z) is a likely choice for the working representation.

Now although xG(z) is not easy to implement directly, let’s look at its effect on the response of

an peak or shelf filter. Remember: an ideal peaking filter has a response of “nearly” 0 dB for all

frequencies but a range around fc. Similarly, a high- or low-shelf filter has a response of nearly 0

dB for all frequencies below or above some frequency, respectively. As such, scaling of the response

in dB space will not affect the 0 dB regions. Further, the basic shape will be a scaling of the original

368 APPENDIX F. FITTING PARAMETRIC EQS

shape. Together, these imply that the resulting shape is of the same type as the original shape: a

log freq

ga
in

 (
dB

)

Figure F.4: Scaling an EQ section up, resulting in what looks like another EQ section (maybe differ-
ent Q).

scaled peak EQ still looks like a peak EQ (See Figure F.4), maybe of another formulation and of

different parameters, but still a peak-EQ shape. Similarly, a scaled shelf still looks like another

shelf. Hence, one may expect that

xG(z, g, fc, Q) = Ḡ(z, ḡ, f̄c, Q̄) (F.7)

Where Ḡ is some other EQ filter, maybe with some other formulation and other parameters. One

may thus theorize that although xG(z) does not have a simple implementation in general, there

might exist some EQ-filter formulation for which it does. Further, the peak gain of xG(z) will be the

peak gain of G(z) scaled by x, and the peak frequency will not be changed, since the scaling would

not change the shape of the response curve.2 So, we expect that

xG(z, g, fc, Q) = Ḡ(z, xg, fc, Q̄) (F.8)

Now, since the intent is to use the gi as the fitting parameters, and in order to not have to deal

with changing filter types and Q’s in the course of the optimization, we decide to fix Q and the EQ

formulation, then ask if an EQ formulation can be found for which the following is true:

xG(z, g) = G(z, xg) (F.9)

2The peak will not change in a peak filter. However, it might shift in a shelf filter, depending on how corner frequency is
defined

F.2. DERIVATION 369

Let’s name the above "The Gain-Shape Requirement". In words, the requirement is that the

shape of the EQ peak does not change with gain: for all gain parameters, the response for a scaled

version of the gain is the same as scaling the response for that gain.

The result of this requirement is that if we have a total system made up of filters that satisfy

the requirement, we can exactly solve (in one step) for the gains required to get a least-squares fit

to a desired response by measuring the individual filter responses (at any known nonzero gains),

and use them as basis vectors for a (pseudo)inverse fitting algorithm, the result of which scales the

original filter gains to get the final stage gains. We will demonstrate this in action after we look for

a peak EQ formulation that satisfies the Gain-Shape Requirement.

F.2.2 Looking for an EQ formulation

There are a number of different EQ formulations. A good review is given by Robert Bristow-

Johnson [28], where he shows that all 2nd-order digital peaking-EQ formulations are equivalent

in all aspects except their bandwidth definitions (and hence Q definitions). The basic idea is that

since a 2nd-order digital filter (a ‘biquad’) has five coefficients, there can be no more or less than

five design constraints. Four of the constraints are the same for all formulations: (1) the response

has a peak (i.e., it is horizontal) at the center frequency; (2) the response has a given gain at the

center frequency; (3) gain at DC is 0dB; and (4) gain at fs/2 is 0 dB.3 The remaining constraint is

used to design the width of the peak, and this is where various techniques differ: how do you define

which gain levels to measure the bandwidth of the filter? Design methods have defined bandwidth

variously at: (1) 3dB down from max gain (either the peak or 0dB, whichever is higher), (2) 3dB

towards 0dB from the peak (either boost or cut), (3) halfway (in dB) between the peak gain and

0dB, (4) various combinations of the above using 3dB, 6dB, and halfway, etc. The paper compares

which definitions which formulations have used, and derives a generic formulation which can be

used to design peaking EQs of any desired bandwidth definition.

In essence: a peak EQ formulation (usually) implicitly defines its bandwidth to be measured

at a particular gain: the gain at which the peak is the specified width (the ‘bandwidth’). The

formulations differ in their definition of what that gain is (see Figure F.5).4

Since the peak is a shape whose width increases monotonically towards 0dB, then formula-

tions with bandwidth definitions defined at gains closer to 0dB will give "narrower" peaks when

compared (at the same "bandwidth") to ones with bandwidth defined closer to the peak gain (Fig-

ure F.5).

Now, it turns out that most of the formulations do not at all preserve the peak shape as we

3The paper did not include design methods which allow gain other than 0 dB at fs/2 (that was not described until a later
paper by Orfanidis [198], but the concept that the principle differentiator is bandwidth definition still applies.

4Some formulations may even define separate gains for the upper and lower bandedges, particularly in situations where
a filter is being designed which is not symmetric about fc (such as a highpass or lowpass filter). A good example is ([57],
pp.674-675)

370 APPENDIX F. FITTING PARAMETRIC EQS

10
1

10
2

10
3

10
4

−10

−8

−6

−4

−2

0

2

4

6

8

10

log freq

ga
in

 (
dB

)

b

a

c

e

d

Figure F.5: Same Q, different bandwidth definitions: (a) 3dB down from peak, (b,d) halfway (in
dB) to 0dB, (c) 3dB down from max gain (0 dB in this case), (e) 3dB towards 0dB from peak ((a)
also fits this definition)

desire. For example, note how the shape of the peak changes drastically with a “3-dB from the

peak” definition for bandwidth (Figure F.6).

Looking back at the Gain-Shape requirement, we can note that a good idealization of the situ-

ation would be if the peak EQ shape could simply be a general scaling and stretching of a single

prototype shape, in which case as long as the horizontal scaling worked out, then the requirement

would be guaranteed to be satisfied, as there would be only one shape (only the wrong horizontal

scaling could break the requirement). Let’s say this shape is defined in log-freq/dB space by some

symmetric peak-shaped function

y(ω), y(0) = 1, y(ω) = y(−ω), monotonically decreasing away from ω = 0 (F.10)

Hence

Gideal(ω) = gidealy
(
ω − fcideal

b

)
(F.11)

Where b is some stretch factor based on Qideal and our bandwidth definition. We can simplify the

following without loss of generality by letting fcideal = 0, so that

Gideal(ω) = gidealy
(ω
b

)
(F.12)

Let’s now see how b relates to bandwidth in a 3dB formulation: Let Q = fc
bw = fc

2ω0
, where ±ω0

are the frequencies where the curve passes through the required gain. Now, if the required gain is

F.2. DERIVATION 371

10
1

10
2

10
3

10
4

0

5

10

15

20

log freq

ga
in

 (
dB

)

10
1

10
2

10
3

10
4

0

2

4

6

8

10

log freq

ga
in

 (
dB

)

Figure F.6: Upper: Peaking EQ sections using the 3dB bandwidth definition, all have Q of 1, peak
gains: 6dB, 9dB, 12dB, 18dB. Lower: All of the above responses scaled to have their peaks on 9dB.

(peak-3dB), then we solve gy(ω0/b) = g − 3 for b, and get:

b =
ω0

y−1
(
g−3
g

) (F.13)

Thus the horizontal scaling factor b is dependent on g, meaning that the shapes for two different

gains, but the same ω0 (i.e., the same Q), will have two different horizontal stretch factors, and

hence not be appropriate for the Gain-Shape requirement.

On the other hand, if we use a formulation where the bandwidth is defined at some fraction a

of the peak gain (in dB space), we get the following:

gy(ω0/b) = ag ⇒ b =
ω0

y−1(a)
(F.14)

So that b is not related to the gain, only the fraction a! Thus the stretch factor will be the same for a

given Q, regardless of g, which fits the Gain-Shape requirement.

Now, in terms of bandwidth definitions, the only fraction-based definition in common use is

372 APPENDIX F. FITTING PARAMETRIC EQS

a = 1/2. We will call this definition the “Halfway Definition” of bandwidth (where it is assumed

to be understood that this is defined in dB space).5

The above was discussed using a hypothetical ideal filter shape, but the result still applies to

real-life shapes: bandwidth definitions which are defined at gains which are not fixed fractions

of the peak gain will tend to have widths which depend on the peak gain, as can be seen in the

experimental results (Figure F.6).

This leaves the Halfway Definition as the leading contender, as we have just shown that it that

it would be a workable bandwidth definition for an ideal peaking shape, and all other standard

bandwidth definitions are not based on a fraction of the peak gain.6 Thus we ask: How closely

does a peak EQ using the halfway definition match the Gain-Scaling Requirement?

10
1

10
2

10
3

10
4

0

5

10

15

20

log freq

ga
in

 (
dB

)

10
1

10
2

10
3

10
4

0

2

4

6

8

10

log freq

ga
in

 (
dB

)

Figure F.7: Upper: Peaking EQ sections using the halfway bandwidth definition, all have Q of 1,
peak gains: 6dB, 9dB, 12dB, 18dB. Lower: All of the above responses scaled to have their peaks on
9dB.

The answer: "Close, but not exact" (Figure F.7). Note that the shape stays much more consistent

5Further research might explore the effect of a on the fitting, using actual non-ideal formulations, like Equation F.15.
There is a possibility that other values might fit better for certain values of Q, etc.

6[28] also comes to a similar conclusion about the usefulness of the halfway definition, and [198] further discusses the
properties of bandwidths defined as arithmetic or geometric means.

F.2. DERIVATION 373

than the 3dB definition, but as the difference between unscaled and scaled gain gets large, differ-

ences in the fine shape do become obvious, though they do have arguably the same widths (see

Figure F.8, in particular, all the shapes intersect at their respective halfway gains). This difference

10
1

10
2

10
3

10
4

0

2

4

6

8

10

12

log freq

ga
in

 (
dB

)

10
1

10
2

10
3

10
4

0

5

10

15

20

25

log freq

ga
in

 (
dB

)

10
1

10
2

10
3

10
4

0

1

2

3

4

5

6

7

log freq

ga
in

 (
dB

)

10
1

10
2

10
3

10
4

0

0.5

1

1.5

2

2.5

3

3.5

log freq

ga
in

 (
dB

)

Figure F.8: Differences in Shape with the Halfway Definition, small scale difference compared to
large scale difference: Left: 12dB scaled onto 6dB, Right: 24dB scaled onto 3dB

is considered sufficiently small for the purposes of the fitting algorithm, and there is a way to deal

with this lack of exactness, which we will see in the next section. We therefore choose the Halfway

Definition for our Peak EQ.

In the terminology of [28] (where F is the bandwidth-defining gain), our Peak EQ design equa-

tions are:

ki = 10gi/20

Fi = 10(gi/2)/20 (The Halfway Definition)

γi = =
√
ki

√
Fi

2 − 1

ki
2 − Fi2

tan
(
πfci
Qifs

)
(F.15)

n0i = (1 + γi
√
ki)/(1 + γi/

√
ki)

374 APPENDIX F. FITTING PARAMETRIC EQS

n1i = −2 cos(2πfci/fs)/(1 + γi/
√
ki)

n2i = (1 − γi
√
ki)/(1 + γi/

√
ki)

d1i = n1i

d2i = (1 − γi/
√
ki)/(1 + γi/

√
ki)

Hi(z) =
n0i + n1iz

−1 + n2iz
−2

1 + d1iz−1 + d2iz−2

Remember, Abel and Berners instead use an EQ design based on [198] which doesn’t have to

go back to 0dB at fs/2, but they still use the Halfway Definition for bandwidth, and it still keeps

the EQ shape close to constant for changes in gain.

We also note that the halfway definition also works for shelving filters. By analogy to the above,

we can derive formulations for first-order shelf filters using the Halfway Definition:

T = 1/fs

gdc = gain at DC in dB

gny = gain at fs/2 in dB

kdc = 10gdc/20

kny = 10gny/20

F = 10(gdc+gny)/40 =
√
kdckny

ωc = 2fs tan(πfc/fs) (F.16)

A = (1/ωc)
√
(F2 − kdc2)/(kny

2 − F2) = (1/ωc)
√
kdc/kny

n0 = (Tkdc + 2Akny)/(T + 2A)

n1 = (Tkdc − 2Akny)/(T + 2A)

d0 = (T − 2A)/(T + 2A)

H(z) =
n0 + n1z

−1

1 + d1z−1

F.3 Graphic EQ Algorithm

As noted above, we can fit to a desired response by finding the required linear combination of

fixed-(fc,Q) EQ stage shapes:

min
x1,x2,...xN

∥∥∥∥∥Gdes(zdes) −
∑
i

xiGi(zdes)

∥∥∥∥∥
2

(F.17)

F.3. GRAPHIC EQ ALGORITHM 375

By assuming that the Gain-Shape Requirement (Equation F.9) holds, solutions to the above can

be used to solve the actual design problem:

min
g
‖Gdes(zdes) −Gtot(zdes,g)‖2 (F.18)

To achieve this, we follow the following steps:

1. Initialize the stage gains, typically: gi = 1, or gi = Gdes(nearest ωdes)

2. Measure the stage frequency responses Gi(ωdes).7

3. Form matrix A from the Gi, each column being one of the responses8

4. Solve Ax = Gdes
T for x. Since the system is usually over-determined, this requires a pseudoin-

verse (x = (ATA)−1ATGdes
T), and will determine an x which fits Ax to Gdes in a least-squared

sense. In the Graphic EQ case, where Gdes is the knob settings, then the system will not be

over-determined and the final response should pass through the knob settings.

5. Since the Gain-Shape Requirement is assumed to be satisfied, adjust the stage gains as ginew =

xigiold.

6. If the Gain-Shape Requirement is not exactly satisfied, as we have noted in the previous sec-

tion, or for any further reasons, like coefficient quantization in the measurement of the stage

responses, etc., then iterate from stage 2 as desired.

Since the difference between the pre- and post-scaled shapes with the Halfway Definition goes

away as the difference in the scales gets small, even the second iteration will calculate a very ac-

curate A matrix, and the iterations will converge very quickly (just a few iterations). In fact, if

the difference is known to be “small enough” for the first iteration (below 6 to 12 dB, depending

on how finicky the requirements are), then only one iteration can be considered sufficient. Note

that in the actual Graphic-EQ example, one could use the Graphic-EQ knob settings as the initial

stage gains (rather than unity) to initialize the gains in step 1, which probably helps make the first

iteration even more accurate.

However, if features such as coefficient quantization are also put into the response measure-

ment, then the iteration may take longer to converge (or may not actually end up fully converging,

as the quantization causes the responses to be discontinuous in g). Also, due to limits on the ca-

pability of a digital 2nd-order filter, the shape of an EQ stage gets grossly distorted as the stage

7In order for the problem to be feasible with the chosen EQ equations (Equation F.15), the design should not place a
nonzero Gi directly on fs/2 or DC. However, if shelving stages are included in the design, this restriction is not necessary.

8An important note: if a stage gain goes to zero dB, then its response is no longer a valid basis function and step 4 will
have problems. Therefore, it is typical to replace a gi = 0 with gi = 1 at stage 2. If the actual gain should be zero, the
pseudoinverse should calculate xi = 0 for this case, and the gain will end up at zero after step 5.

376 APPENDIX F. FITTING PARAMETRIC EQS

gain gets larger than ±40 to 50 dB. As such, fits which require extremely large stage gains may not

converge, as the stage shapes no longer satisfy the Gain-Shape requirement at those gains.

Note that the sampling points ωdes should be evenly distributed in log-frequency space in order

for the pseudoinverse fits to be well weighted. If desired, explicit weighting can be added to step 4

in standard ways, and Abel and Berners derive the algorithm using weighting matrices.

10
1

10
2

10
3

10
4

−10

−8

−6

−4

−2

0

2

4

6

log freq

ga
in

 (
dB

)

Figure F.9: A Graphic-EQ design

Figure F.9 shows a Graphic EQ design. The large dots represent the front-panel knob locations,

whereas the small dots represent the internal stage gains gi. The heavy line is Gtot, and the thin

lines are the individual Gi.

Figure F.10 shows a design where several of the desired gains all boost together, which, as seen

in Figure F.2, would produce too much gain in a basic graphic EQ. Here we see that the fitting

algorithm has pulled back the central gains so that the total gain has the desired shape.

One might ask "If we have to iterate anyway, could we relax back to using an EQ formulation

which does not satisfy the Gain-Shape Requirement as nicely as the Halfway Definition, such as a

3dB definition?" The answer, based on attempts to implement such an algorithm, is that the iteration

does not easily converge if the initial condition is not very close to the final gains. There may

be extensions to the algorithm to get it to work (or more likely: a formula to convert between

halfway-definition Q and equivalent 3dB-definition Q, such that one could design with the halfway

definition and convert the result to 3dB definition stages), but that is not explored here.

F.4. PARAMETRIC EQ ALGORITHM 377

10
1

10
2

10
3

10
4

−3

−2

−1

0

1

2

3

4

5

6

7

log freq

ga
in

 (
dB

)

Figure F.10: A Graphic-EQ fit for a range of knobs all boosting together.

F.3.1 How do stage Qs affect the fit?

In the introduction, we noted that an EQ designer has to trade off a “wiggly” frequency response

against the responses adding up badly (Figure F.3). The above algorithm can alleviate that problem

in most cases, but there is still a tradeoff that must be understood: the A matrix becomes less

well-conditioned as the stage Qs get wider. This translates into the individual stage gains getting

larger, often well beyond the ranges of the final Gtot(ω) (See Figure F.11). On the other hand, if the

Qs are too narrow, the total response “droops” too much between the stage centers (Figure F.12)

Interestingly, fits with wide Qs often look very tight, it is just the extreme stage gains that hint

towards problems. However, as noted above, if the stage gains start getting larger than 40dB or so,

the filters lose their ability to keep the same shapes as the lower gains, and the iteration may no

longer converge.

F.4 Parametric EQ Algorithm

Now we attack the original problem: fitting with the stage Qs and center frequencies also being

optimization variables. The previous section derived an algorithm for fitting using fixed stages,

now we let them vary in order to try to get a better design for any particular number of stages.

However, this extended problem is non-convex, and so finding the global optimum would be quite

difficult. Here, we will instead present heuristic methods for choosing these parameters, with the

admission that they are not guaranteeing the best solutions, just ‘good’ ones.

378 APPENDIX F. FITTING PARAMETRIC EQS

10
1

10
2

10
3

10
4

−20

−15

−10

−5

0

5

10

15

20

log freq

ga
in

 (
dB

)

Figure F.11: A Graphic-EQ fit with stage Qs that are too wide. Note how the stage gains become
much larger.

10
1

10
2

10
3

10
4

−10

−5

0

5

log freq

ga
in

 (
dB

)

Figure F.12: A Graphic-EQ fit with stage Qs that are too narrow. Note how the total response droops
between the stages.

F.4. PARAMETRIC EQ ALGORITHM 379

At this stage, the author’s derivation diverges from that of Abel and Berners. We will first look

at their algorithm.

F.4.1 Selecting fc and Q, Algorithm 1

1. Optionally perform a Bark smoothing [234] on the desired curve to perceptually reduce the

complexity to just what is needed.

2. Locate all local extrema in the curve.

3. Place stages on each extremum, with center frequencies on the extrema frequencies. Band-

widths can be chosen either based on the halfway points between adjacent extrema, or based

on the locations of inflections points in the curve. Place shelves at the end points, using a

similar heuristic for the cutoff frequencies. Give each stage an initial gain (1dB, or the curve

gain, anything but 0dB).

4. Perform one or more fits of the gains to the desired curve.

This method has a slight drawback in that the shape of the curve directly determines the number

of required EQ stages. There is no built-in method for dealing with a situation where fewer stages

must be used, more rules or heuristics would become necessary to handle that case.

F.4.2 Selecting fc and Q, Algorithm 2

This algorithm is inspired by a verbal description once given for the Parks-McClellan [201] FIR fil-

ter design algorithm: “Find the largest error, increase the order and use the new degree of freedom

to zero out the error at that point, and repeat with the new error.” That description also effectively

describes this algorithm:

1. Start with no stages, hence Gtot = 0dB. Or, if the EQ architecture has a total gain parameter, let

Gtot = gtot, and it can be set in a variety of ways:

(a) Set it to some average or median of Gdes, such that the starting Gtot = mean(Gdes).

(b) If the design does not have shelf filters and Gdes(fs/2) is well away from 0dB, the gain

can be set there so that the high-frequency stages don’t have to quickly jump back to 0dB

at fs/2 or DC.

(c) Treat the total-gain parameter as a filter stage with a flat response, and add it into the

fitting algorithm described above.

2. Choose a location for a new EQ stage

(a) Compute err(ωdes) = Gtot(ωdes) −Gdes(ωdes).

380 APPENDIX F. FITTING PARAMETRIC EQS

(b) Identify the peak error location: ωpk = maxωdes
|err|

(c) Decide g and Q for a new stage centered on ωpk. In this case, we use g = 1dB9 and

search locally around the peak in err(ω) for halfway points or reversals, and assign Q

based on these frequencies.

3. Add an EQ stage with parameters decided in step 2.

4. Perform a fit of the gains of all existing stages to Gdes(ωdes) (the "Graphic EQ Algorithm"

from the previous section)

5. repeat from Step 2 until out of stages (or until |err(ωdes)| falls below some threshold if the

number of stages is not fixed).

Figure F.13 shows the first three and iterations and the final result of this algorithm fitting a

representative curve. Figure F.14 shows final fits for some other Gdes.

Looking at Figure F.13, one may conclude that this algorithm fits much like Algorithm 1, as

the stage centers are separated by inflection points. However, that does not always happen. As

we can see in the top graph in Figure F.14, there are two cases where multiple inflections occur

between stage centers (the pair just below 100 Hz, and the pair just below 1000 Hz). In this case, the

wide stage up around 25 dB is “pulling everything up”, so that these narrower downward-pulling

stages can work together, letting the “droop” between them catch a feature without requiring an

extra stage. Note that this behavior isn’t expressly designed into this algorithm as described, and

it will not attempt to specifically find these situations. Instead, these behaviors may fall out of the

fit depending on what order it chooses stages and how wide they are. As such, that indicates that

this is probably not an optimal stage-choosing heuristic, and a better algorithm might be designed

which does try to find and make use of such capabilities.

In the lower graph of Figure F.14, the wide upward stage is “off center”. This is probably

due to how the algorithm defined a “peak” in the presence of a flat-top error. It is probably an

implementation artifact, and other implementations might choose the first stage differently.

Step 2, and in particular Step 2c, are the most heuristic parts of this algorithm, and hence most

open for experimentation for trying to enhance the algorithm. As described, this algorithm tries to

knock out the peak error, and hence acts like an∞-norm optimization. Variant algorithms could in-

stead try to identify an EQ which minimizes the total mean-squared error, or covers up the "largest

area region" in the error curve, thus attempting to first capture the overall shape of Gdes, then head-

ing in to the finer details. The algorithm as shown instead relies on the fitting in stage 4 to push the

algorithm in a direction whereby the "large features" are eventually identified, but not necessarily

at the start.

9The “correct” value of g will be determined in step 4

F.4. PARAMETRIC EQ ALGORITHM 381

10
2

10
3

10
4

−15

−10

−5

0

5

log freq

ga
in

 (
dB

)

10
2

10
3

10
4

−15

−10

−5

0

5

log freq

ga
in

 (
dB

)

10
2

10
3

10
4

−15

−10

−5

0

5

log freq

ga
in

 (
dB

)

10
2

10
3

10
4

−15

−10

−5

0

5

log freq

ga
in

 (
dB

)

Figure F.13: The first three steps and final result for the Parametric EQ fitting algorithm 2 for a
particular Gdes. Dotted line: Gdes, thick line: Gtot, dashed line err(ω), thin lines: Gi, dots: gi. Six
EQ stages.

382 APPENDIX F. FITTING PARAMETRIC EQS

10
2

10
3

10
4

−30

−20

−10

0

10

20

30

log freq

ga
in

 (
dB

)

10
2

10
3

10
4

−10

−5

0

5

10

log freq

ga
in

 (
dB

)

Figure F.14: Example fits for Algorithm 2

As described, Step 2 applies only to peaking-type EQ stages. Special-case identification of shelf

stages would be added somewhere in the iterations (better early or better late is an open question)

when those types of stages are available. Typically in such designs, there would only be one or two

shelf stages, and all other stages would be peaking stages.

In cases such as “noisy” Gdes, or other such difficult situations, the algorithm may sometimes

attempt to put one stage on (exactly) the same center frequency as an existing stage. If not caught,

this could end up with a lowered rank of the A matrix, which interferes badly with the working of

the algorithm. As such, it is typical to add error-checking heuristics to the algorithm, such as: (1)

not allowing two stages with same fc, (2) adjustments for badly-calculated Qs if ωdes is sparse, etc.

F.5 Conclusions

This chapter has explored the problem of fitting standard EQ sections to desired curves, both in

“graphical EQ” situations (i.e., all stages have predefined center frequencies and Qs), and in “para-

metric EQ” situations (where the frequencies and Qs can be designed as well). The “halfway in

F.5. CONCLUSIONS 383

dB” definition was shown to be the most useful for fitting, as it satisfied the “gain-shape require-

ment” that the shape of the EQ peak not change significantly with gain. With this definition, it

turns out that the EQ shapes can be viewed as basis functions and a standard pseud-inverse can be

used to perform least=squares fitting of the EQ gains to desired shapes. Two heuristics for choosing

EQ-stage center frequencies and Qs were also presented.

We must note that Ramos and Lopez [213] described in 2005 an algorithm that is similar to

the above algorithms in several ways. Like advocated in [1], it makes use of a psychoacoustic

pre-processing to simplify the desired-gain data (though the pre-processing is different). Also, as

in Algorithm 2 above, it attempts to place stages via an iterative “put it where it is most needed”

method. It differs in the following ways:

• It optimizes the filters by first designing a “guess” filter using standard EQ design equations,

then performs a local optimization directly on the filter coefficients (using a random-walk

method) using the fit quality as the optimization measure.

• It appears to only optimize one EQ stage at a time, and leaves it alone once optimized and

placed (though an optional re-optimization of all the filters at the end of the whole process is

mentioned).

Appendix G

Gallery

A selection of the nicer images encountered through this research.

384

385

Figure G.1: Testing Taubin’s Implicit-Function Rendering Algorithm

386 APPENDIX G. GALLERY

Figure G.2: “The Alien.” A result of incorrectly taking Taubin’s algorithm to 3D on a 2nd-order root
locus.

387

Figure G.3: Numerical problems in an implicit-function ray-tracer.

388 APPENDIX G. GALLERY

Figure G.4: Detail on a Newton’s-Method fractal on f(s) = Im(D(s)N(s∗)), which is the numerator
of the expansion of Im(D(s)/N(s)).

389

Figure G.5: Locus of feedback around an FIR filter

390 APPENDIX G. GALLERY

Figure G.6: Locus of feedback around an FIR filter, one more denominator root than Figure G.5.

391

Figure G.7: Numerical problems in a 4th-order locus rendered in Taubin’s method

392 APPENDIX G. GALLERY

Figure G.8: Numerical problems in a 4th-order locus rendered in Taubin’s method, warped axes to
(freq,Q). Same system as Figure G.7.

393

Figure G.9: Some random 4th-order loci

394 APPENDIX G. GALLERY

Figure G.10: A visualization of Taubin’s 2nd-order distance approximation to a root locus.

395

Figure G.11: A variant coloring scheme on the same technique as used in Figure G.2: incorrectly
trying to take Taubin’s method into 3D on a 2nd-order root locus.

396 APPENDIX G. GALLERY

Figure G.12: A family of 2nd-order loci.

397

Figure G.13: “The Scarab”

398 APPENDIX G. GALLERY

Figure G.14: 2nd-order loci rendered using ray-tracing of |D + kN1 + k2N2|∞ = ε. Reminiscent of
spacecraft from the TV series “Babylon 5”.

399

Figure G.15: Another implicit-surface ray-tracing bug.

400 APPENDIX G. GALLERY

Figure G.16: A gridding of possible zero locations from summing 6 poles, with two poles allowed
to vary their phase.

401

Figure G.17: A test image from attempting to take Taubin’s method to 3D in a slightly incorrect
manner.

402 APPENDIX G. GALLERY

Figure G.18: Newton-Method fractals on root loci rather than discrete-root polynomials.

403

Figure G.19: A family of loci.

404 APPENDIX G. GALLERY

Figure G.20: More 3D attempts at Taubin’s method.

405

Figure G.21: Ray-tracing δ1 = ε using Taubin’s 1st-order distance estimate to various root loci.
Left-hand images trace two different ε values at once, giving two different surfaces.

406 APPENDIX G. GALLERY

Figure G.22: More 3D attempts at Taubin’s method.

407

Figure G.23: Implicit-surface ray-tracing test.

408 APPENDIX G. GALLERY

Figure G.24: A family of 2nd-order loci.

Appendix H

Directions for Further Research

H.1 Variable Filters

There are many design variations, especially in the world of the Moog-style filters, which are still

unexplored. The research in this thesis just touches the surface on the behavior of such filters.

• Work can be done on a general theory of constant-Q filters and root-locus filters in particular.

• The fact that the various designs of the fourth-order Moog-like filters had such similar p0-

coefficient polynomial sets (after the p = p0 − 1 change of variables) probably implies more

than was touched on here.

• Moog-style filters with three feedforward onepole filters and a delay in the feedback are truly

fourth-order, and may provide fruitful designs.

• There are many other unexplored combinations and patterns for varying controllable param-

eters with fc andQ to try to achieve separation, and maybe achieve further design goals, such

as desired nonlinear behaviors.

• Exploration and classification of basic higher-order Root-Locus-Filter block diagram types,

beyond the Moog topology, the State-Variable topology and the first-order Root-Locus topol-

ogy. This would be central to the ability to truly “design” a general root locus filter, with

the ability to let the design indicate appropriate topologies, as opposed to designing for a

particular topology.

• Continue exploring optimization-based Root-Locus-Filter design. Work on optimizing in

spaces other than the z plane, which have better Q sensitivity.

• Explore from a psychoacoustic standpoint. See if there are JNDs for Q variation across an fc

sweep, or for fc variation across a Q sweep.

409

410 APPENDIX H. DIRECTIONS FOR FURTHER RESEARCH

• Nonlinear Study, beyond just using it.

– See if/how Nonlinear System Dynamics applies to the use of musical filters in overdrive.

– Find objective measures for nonlinear filter performance, probably including psychoa-

coustics (how close does a filter design sound to a reference filter?), but maybe including

non-psychoacoustic measures.

– Explore how finely must a nonlinear design model various aspects of the target filter.

Quantify tradeoffs on what can be left unmodeled (or less accurately modeled).

• As noted in the introduction, there are several filter structures which are quite close to the

State-Variable Filter structure. There are probably some very interesting comparisons that

can be done between these structures, from the standpoint of musical filtering. In particular,

comparative exploration in terms of the ease of Constant-Q design, and in terms of noise and

quantization properties.1

• An alternative proposal would be to attempt a comprehensive comparative study of all 2nd-

order digital filter forms, both known types and types which are suggested by comparisons

of known types.

• It was noted that the state-variable filter is commonly used in regions where the poles are real.

The work on Moog-style filters was done assuming all complex poles. There is probably some

work to be done exploring whether a design needs to extend into real-pole regions similar to

those of the state-variable filter, and if/how various designs might achieve that.

H.2 Bandlimited Waveform Synthesis

Vesa Välimäki’s inclusion of the frequency-loudness curve in his paper on a reduced-aliasing wave-

form algorithm [275] points to the need for more psychoacoustic research into the audibility of

waveform aliasing. It is not clear in my mind that existing masking and loudness concepts, which

in my understanding were derived and measured under the assumption that the masker and the

test were independent signals, can fully apply to the understanding of the audibility of different

parts of the same signal. Until there are good quantifiable measures of aliasing audibility, design

in this area must be done using whatever measures the designer feels like using. As we have seen,

there is a spectrum of designs between those which attempt to merely reduce the aliasing and

those which attempt to eliminate most or all aliasing. The design space in between these poles is

essentially a tradeoff space, and needs objective measures upon which to base the tradeoffs. Vesa’s

comparison of DPW techniques in [276] does appear to be heading in this direction.

1It appears that most of these structures were originally proposed specifically because of their noise and quantization
properties.

H.3. ROOT LOCUS DRAWING 411

There is probably good research to be done in hybridizing between various design techniques.

For example, using the linear-transform technique with other bandlimited wave generator. As

noted in the text, this is already in progress, with the BLEP work being an example.

H.3 Root Locus Drawing

My implementations of Taubin’s implicit-function rendering have so far used numerical approxi-

mation for deriving the derivatives that the algorithm uses. While this in some cases allowed the

rendering of non-trivial functions, one does wonder if the algorithm may be sped up in some cases

by the direct calculation of closed-form derivatives. In particular, the requirement of using a nu-

merical root finder for drawing loci of order higher than 2 really slows the algorithm down, and

work on deriving expressions for spatial derivatives of imaginary parts of the roots might be able

to significantly speed up rendering.

As seen, Taubin’s method has numerical problems in certain ranges of operation. This may

be partially due to the numerical approximation of the derivatives, but not completely. Taubin’s

papers do discuss handling such issues, but I have not yet done more than the most basic im-

plementation of the algorithm and further development and research can probably enhance the

rendering significantly.

In later papers, Taubin describes variations on the algorithm which have heuristics for reducing

the probability of holes in the curve. As noted, I have only made use of the basic algorithm, and

there is quite a bit of further work that can be done implementing such variations.

The Root-Locus Explorers which I have implemented have turned out to be very nice tools for

gaining root-locus intuition, and there are many directions in which they could be extended. These

may have use as teaching aids in classical control-systems courses, as well as in variable-filter work.

There is a chance that some of the research in rendering algorithms may have application in the

area of drawing robust root loci. I have run across a paper [269] which presents a new algorithm

for drawing robust loci which doesn’t rely purely on sampling the parameter space, and which

produces much cleaner looking loci. I have a feeling there is a conceptual connection between it

and some of ideas behind the ray-tracing-based renderers.

The adaptive-step-size algorithms have quite a few areas of further research (this includes the

predictor-corrector methods as well as the root-finder methods) Currently, I have implemented

quite a few heuristics to get around various ways in which the algorithms have problems, which

should be replaced with non-heuristic rules. For example, it should be possible to use the local root-

sensitivity function to identify the location of singularities in fewer subdivisions than the current

blind subdivision algorithms I am using.

Bibliography

[1] J. S. Abel and D. P. Berners, “Filter design using second-order peaking and shelving sections,”

in Proceedings of the 2004 International Computer Music Conference, Miami, Florida, Computer

Music Association, 2004.

[2] M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, New York: Dover,

1965.

[3] J.-M. Adrien, “The missing link: Modal synthesis,” in Representations of Musical Signals (G. De

Poli, A. Picialli, and C. Roads, eds.), pp. 269–297, Cambridge, MA: MIT Press, 1991.

[4] R. Agarwal and C. S. Burrus, “New recursive digital filter structures having very low sensi-

tivity and roundoff noise,” IEEE Transactions on Circuits and Systems—I: Fundamental Theory

and Applications, vol. 22, pp. 921–927, Dec. 1975.

[5] S. T. Alexander and V. L. Stonick, “Fast adaptive polynomial root tracking using a homotopy

continuation method,” in Proceedings of the International Conference on Acoustics, Speech, and

Signal Processing, Minneapolis, vol. 3, (New York), pp. 480–483, IEEE Press, Apr. 1993.

[6] E. L. Allgower and K. Georg, “Continuation and path following,” Acta Numerica, pp. 1–64,

1992.

[7] E. L. Allgower and K. Georg, “Numerical path following,” in Handbook of Numerical Analysis

(P. G. Ciarlent and J. L. Lions, eds.), vol. 5, pp. 3–207, North-Holland, 1997.

[8] E. L. Allgower and K. Georg, Introduction to Numerical Continuation Methods, SIAM Classics

in Applied Mathematics 45, SIAM, 2002, Reprint, originally published in 1979 by John Wiley

and Sons.

[9] D. K. Arrowsmith and C. M. Place, An Introduction to Dynamical Systems, Cambridge Univer-

sity Press, 1990.

[10] R. H. Ash and G. R. Ash, “Numerical computation of root-loci using the Newton-Raphson

technique,” IEEE Transactions on Automatic Control, pp. 576–582, Oct. 1968.

412

BIBLIOGRAPHY 413

[11] A. Askenfelt, ed., Five Lectures on the Acoustics of the Piano, Stockholm: Royal Swedish

Academy of Music, 1990, lectures by H. A. Conklin, Anders Askenfelt and E. Jansson, D.

E. Hall, G. Weinreich, and K. Wogram. Sound example CD included. Publication number 64.

http://www.speech.kth.se/music/5_lectures/.

[12] B. R. Barmish and R. Tempo, “The robust root locus,” in Proceedings of the 27th IEEE Conference

on Decision and Control, pp. 1386–1391, 1988.

[13] P. Beckmann and T. Stilson, “An efficient asynchronous sampling-rate conversion algorithm

for multi-channel audio applications,” Audio Engineering Society Convention, Preprint 6553,

Oct. 2005.

[14] M. Bellanger, “Improved design of long FIR filters using the frequency masking technique,”

in Proceedings of the International Conference on Acoustics, Speech, and Signal Processing, Atlanta,

(New York), IEEE Press, May 1996, Paper DSP1.1.

[15] G. A. Bendrikov and K. F. Teodorchik, “The analytic theory of constructing root loci,” Av-

tomatika i Telemekhanika (Russia), vol. 20, no. 3, pp. 355–358, 1959.

[16] S. Bilbao, Wave and Scattering Methods for the Numerical Integration of Partial Differential Equa-

tions, PhD thesis, Stanford University, June 2001, http://ccrma.stanford.edu/˜bilbao/.

[17] S. Bilbao, Wave and Scattering Methods for Numerical Simulation, New York: John Wiley and

Sons, Inc., July 2004.

[18] S. Bilbao, “Time-varying generalizations of all-pass filters,” IEEE Signal Processing Letters,

vol. 12, pp. 376–379, May 2005.

[19] R. Bjorkman, “A brief note on polygon filters,” Electronotes, vol. 97, pp. 7–9.

[20] J. Bloomenthal, Introduction to Implicit Surfaces, Morgan Kaufmann, 1997.

[21] O. J. Bonello, “Modular parametric equalizer-filter, a new way to synthesize the frequency

response,” Audio Engineering Society Convention, Preprint 1170, Oct. 1976.

[22] R. C. Boulanger, ed., The Csound Book: Perspectives in Software Synthesis, Sound Design, Signal

Processing, and Programming, MIT Press, Mar. 2000.

[23] P. Bowron, M. R. J. Motlagh, and A. A. Muhieddine, “Harmonic characterisation of feedback

systems incorporating saturation nonlinearities,” Electronics Letters, vol. 27, pp. 1865–1867,

Sept. 1991.

[24] S. Boyd, “Personal communication,” 2006, Description of a method for multivariable rational

fitting via convex optimization, and its application to variable filter design.

414 BIBLIOGRAPHY

[25] S. Boyd and L. Vandenberghe, Convex Optimization, Cambridge University Press, Feb. 2004,

http://www.stanford.edu/˜boyd/cvxbook.html.

[26] R. Bracewell, The Fourier Transform and its Applications, New York: McGraw-Hill, 1965.

[27] E. Brandt, “Hard sync without aliasing,” in Proceedings of the 2001

International Computer Music Conference, Havana, 2001, URL =

http://www-2.cs.cmu.edu/˜eli/papers/icmc01-hardsync.pdf.

[28] R. Bristow-Johnson, “The equivalence of various methods of computing biquad co-

efficients for audio parametric equalizers,” Audio Engineering Society Convention,

1994, http://www.harmony-central.com/Effects/Articles/EQ_Coefficients/-

EQ-Coefficients.pdf.

[29] J. W. Bruce and P. J. Giblin, Curves And Singularities, Cambridge University Press, 2 ed., 1992.

[30] P. Burk, “JSyn — audio synthesis API for Java and C,” in Proceedings of the 1998 International

Computer Music Conference, Michigan, Computer Music Association, 1998.

[31] P. Burk, “Bandlimited oscillators using wave table synthesis,” in Audio Anecdotes II (K. Green-

baum and R. Barzel, eds.), Wellesley, MA: A. K. Peters, Ltd., 2004.

[32] C. I. Byrnes and D. S. Gilliam, “Asymptotic properties of root locus for distributed param-

eter systems,” in Proceedings of the 27th Conference on Decision and Control, Austin, TX, vol. 3,

pp. 45–51, Dec. 1988.

[33] C. I. Byrnes, D. S. Gilliam, and J. He, “Root-locus and boundary feedback design for a class

of distributed parameter systems,” SIAM Journal of Control and Optimization, pp. 1364–1427,

Sept. 1994.

[34] C. Cadoz, A. Luciani, and J. L. Florens, “Cordis-anima: A modeling and simulation sys-

tem for sound and image synthesis. the general formalism,” Computer Music Journal, vol. 17,

pp. 19–29, Winter 1993.

[35] T. J. Cavicci, “Phase-root locus and relative stability,” IEEE Control Systems, pp. 69–77, Aug.

1996.

[36] J. Chadabe, Electric Sound - The Past And Promise of Electronic Music, Upper Saddle River, NJ:

Prentice Hall, 1997.

[37] H. Chamberlin, Musical Applications of Microprocessors, New Jersey: Hayden Book Co., Inc.,

1980.

[38] C. S. Chang, “An analytical method for obtaining the root locus with positive and negative

gain,” IEEE Transactions on Automatic Control, pp. 92–94, Jan. 1965.

BIBLIOGRAPHY 415

[39] C. F. Chen and M. M. Chen, “A scanning method for drawing root loci for sampled-data

feedback systems,” in Proceedings of the 1985 American Control Conference, Boston, MA, vol. 2,

pp. 1020–1025, June 1985.

[40] J.-J. Chen and C. Hwang, “Characterization of robust root loci of polytopes of polynomials,”

Journal of Scientific Computing, vol. 11, no. 2, pp. 155–166, 1996.

[41] B. Chidlaw, “A fourth-order state-variable filter,” Electronotes, vol. 99, pp. 3–12.

[42] J. M. Chowning, “The synthesis of complex audio spectra by means of frequency modula-

tion,” Journal of the Acoustical Society of America, vol. 21, no. 7, pp. 526–534, 1973, reprinted in

[223].

[43] I. D. Chusid, editor, Manhattan Research Inc., Basta Records, 2000.

[44] A. G. Constantinides, “Frequency transformations for digital filters,” Electronics Letters,

vol. 3, pp. 487–489, 1967.

[45] A. G. Constantinides, “Frequency transformations for digital filters,” Electronics Letters,

vol. 4, pp. 115–116, 1968.

[46] A. G. Constantinides, “Spectral transformations for digital filters,” Proceedings of the IEE,

vol. 117, pp. 1585–1590, Aug. 1970.

[47] P. Cook, “Physically informed sonic modeling (PhISM): Percussive synthesis,” in Proceedings

of the 1996 International Computer Music Conference, Hong Kong, 1996.

[48] P. Cook, “Physically informed sonic modeling (PhISM): Synthesis of percussive sounds,”

Computer Music Journal, vol. 21, no. 3, 1997.

[49] P. R. Cook, 1995, Personal discussion.

[50] P. R. Cook, “A hierarchical system for controlling synthesis by physical modeling,” in Pro-

ceedings of the 1995 International Computer Music Conference, Banff, pp. 108–109, Computer

Music Association, 1995.

[51] D. Cox, J. Little, , and D. O’Shea, Ideals, Varieties, and Algorithms: An Introduction to Com-

putational Algebraic Geometry And Commutative Algebra, New York: Springer Verlag, 2 ed.,

1997.

[52] R. E. Crochiere and L. R. Rabiner, “On the properties of frequency transformations for vari-

able cutoff linear phase digital filters,” IEEE Transactions on Circuits and Systems, pp. 684–686,

Nov. 1976.

416 BIBLIOGRAPHY

[53] R. Crochiere and L. R. Rabiner, Multirate Digital Signal Processing, Englewood Cliffs, NJ:

Prentice-Hall, Inc., 1983.

[54] C. Cross, “Verbal story of using rubber sheet to assist root locus.” Part of the presentation of

root-locus in a control-systems class at Walla Walla College, 1991.

[55] T. Darter and G. Armbtuster, The Art of Electronic Music, The Instruments, Designers, and Mu-

sicians Behind the Artistic and Popular Explosion of Electronic Music, A KEYBOARD Book, New

York: GPI Books, 2002.

[56] J. Dattorro, “The implementation of recursive digital filters for high-fidelity audio,” Journal

of the Audio Engineering Society, vol. 36, pp. 851–878, Nov. 1988, Comments, ibid. (Letters to

the Editor), vol. 37, p. 486 (1989 June); Comments, ibid. (Letters to the Editor), vol. 38, pp.

149-151 (1990 Mar.).

[57] J. Dattorro, “Effect design, part 1: Reverberator and other filters,” Journal of the Audio Engi-

neering Society, vol. 45, pp. 660–684, September 1997.

[58] J. Dattorro, “Effect design, part 2: Delay-line modulation and chorus,” Journal of the Audio

Engineering Society, vol. 45, pp. 764–788, Oct. 1997.

[59] J. J. D’Azzo, C. H. Houpis, and S. N. Sheldon, Linear Control System Analysis and Design with

MATLAB, Control Engineering Series, New York: Marcel Dekker, 2003.

[60] T.-B. Deng, “Design of recursive 1-D variable filters with guaranteed stability,” IEEE Trans-

actions on Circuits and Systems—II: Analog and Digital Signal Processing, vol. 44, pp. 689–695,

Sept. 1997.

[61] T.-B. Deng, “Variable fractional-delay filter design using weighted least-squares singular-

value decomposition,” in Proceedings ICSP’04: 2004 7th International Conference on Signal Pro-

cessing, vol. 1, pp. 54–57, 2004.

[62] T. Deng, “Design of complex-coefficient variable digital filters using successive vector-array

decomposition,” IEEE Transactions on Circuits and Systems, vol. 52, pp. 932–942, May 2005.

[63] T.-B. Deng and T. Soma, “Variable digital filter design using the outer product expansion,”

IEE Journal of the Vis. Image Signal Processing, vol. 141, pp. 123–128, Apr. 1994.

[64] Y. Ding and D. Rossum, “Filter morphing of parametric equalizers and shelving filters for

audio signal processing,” Journal of the Audio Engineering Society, vol. 43, pp. 821–826, Oct.

1995.

[65] C. Dodge and T. A. Jerse, Computer Music, New York: Schirmer, 1985.

BIBLIOGRAPHY 417

[66] R. C. Dorf and R. H. Bishop, Modern Control Systems, New Jersey: Prentice Hall, 10 ed., 2005.

[67] P. Dransfield and D. F. Haber, Introducing Root Locus, Massachusetts: Cambridge University

Press, 1973.

[68] P. Dutilleux, “Simple to operate digital time varying filters,” Audio Engineering Society Con-

vention, Preprint 2757, Mar. 1899.

[69] P. Dutilleux, Vers la Machine à Sculpter le Son Modification en Temps Réel des Caractéristiques

Fréquentielles et Temporelles des Sons, PhD thesis, Université d’Aix-Marseille II, Institut de

Mécanique de Marseille, May 1991.

[70] S. C. Dutta Roy and S. S. Ahuja, “Frequency transformations for linear phase variable-cutoff

digital filters,” IEEE Transactions on Circuits and Systems, vol. CAS-26, no. 1, pp. 73–75, 1979.

[71] S. A. V. Duyne, “Coupled mode synthesis,” in Proceedings of the 1997 International Computer

Music Conference, Greece, Computer Music Association, Oct. 1997.

[72] G. W. Evans, “Bringing root locus to the classroom,” IEEE Control Systems Magazine, vol. 24,

Dec. 2004.

[73] W. R. Evans, “Graphical analysis of control systems,” Transactions of the AIEE, vol. 67, pp. 547–

551, 1948.

[74] W. R. Evans, “Control system synthesis by root locus method,” Transactions of the AIEE,

vol. 69, 1950.

[75] W. R. Evans, Control-System Dynamics, New York: McGraw-Hill, 1954.

[76] A. M. Eydgahi and M. Ghavamzadeh, “Complementary root locus revisited,” IEEE Transac-

tions on Education, vol. 44, pp. 137–143, May 2001.

[77] C. W. Farrow, “A continuously variable digital delay element,” in Proceedings of the IEEE

Conference on Circuits and Systems, Espoo, Finland, vol. 3, pp. 2641–2645, June 7–9 1988.

[78] A. Fettweis, “Digital filters related to classical structures,” AEU: Archive für Elektronik und

Übertragungstechnik, vol. 25, pp. 79–89, Feb 1971, see also U.S. Patent 3,967,099, 1976, now

expired.

[79] A. Fettweis, “Some principles of designing digital filters imitating classical filter structures,”

IEEE Transactions on Circuit Theory, vol. 18, pp. 314–316, Mar. 1971.

[80] A. Fettweis, “Pseudopassivity, sensitivity, and stability of wave digital filters,” IEEE Transac-

tions on Circuit Theory, vol. 19, pp. 668–673, Nov. 1972.

418 BIBLIOGRAPHY

[81] A. Fettweis, “Wave digital filters: Theory and practice,” Proceedings of the IEEE, vol. 74,

pp. 270–327, Feb. 1986.

[82] A. Feuer and G. C. Goodwin, Sampling in Digital Signal Processing and Control, Systems and

Control: Foundations and Applications, Boston: Birkhäuser, 1996.

[83] I. M. Filanovsky, “The root loci equation and its application,” International Journal of Electrical

Engineering Education, vol. 29, no. 2, pp. 133–138, 1992.

[84] J. D. Foley, A. van Dam, et al., Computer Graphics: Principles and Practice, Reading MA:

Addison-Wesley, 2 ed., 1995.

[85] Y. K. Foo and Y. C. Soh, “Characterization of zero locations of polytopes of real polynomials,”

IEEE Transactions on Automatic Control, vol. 37, no. 8, pp. 1227–1230, 1992.

[86] G. F. Franklin and J. D. Powell, Digital Control of Dynamic Systems, Reading MA: Addison-

Wesley, 1980.

[87] G. F. Franklin, J. D. Powell, and M. L. Workman, Digital Control of Dynamic Systems, Third

Edition, Englewood Cliffs, NJ: Prentice-Hall, 1998.

[88] G. F. Franklin, J. D. Powell, and A. Emami-Naeini, Feedback Control of Dynamic Systems, New

Jersey: Prentice Hall, 4 ed., 2002.

[89] D. R. Frey, “Low-cost alternatives in high-quality state-variable filters,” Journal of the Audio

Engineering Society, vol. 27, pp. 750–756, Oct. 1979.

[90] J. Glaría, R. Rojas, and M. Salgado, “Logarithmic root loci for continuous-time loops,” IEEE

Control Systems, pp. 47–52, Apr. 1994.

[91] A. S. Glassner, An Introduction to Ray Tracing, The Morgan Kaufmann Series in Computer

Graphics, Morgan Kaufmann, 1989.

[92] T. E. Goeddel and S. C. Bass, “High quality synthesis of musical voices in discrete time,”

IEEE Transactions on Acoustics, Speech, Signal Processing, vol. 32, pp. 623–633, June 1984.

[93] B. Gold and C. M. Rader, Digital Processing of Signals, New Yotrk: McGraw Hill, 1969.

[94] R. M. Goodall and B. J. Donoghue, “Very high sample rate digital filters using the δ operator,”

Proceedings of the IEE G, pp. 199–206, June 1993.

[95] G. C. Goodwin, R. H. Middleton, and H. V. Poor, “High-speed digital signal processing,”

Proceedings of the IEEE, pp. 240–259, June 1993.

BIBLIOGRAPHY 419

[96] M. Goodwin and A. Kogon, “Overlap-add synthesis of nonstationary sinusoids,” in Proceed-

ings of the 1995 International Computer Music Conference, Banff, Computer Music Association,

1995.

[97] A. H. Gray and J. D. Markel, “Digital lattice and ladder filter synthesis,” IEEE Transactions on

Audio and Electroacoustics, vol. AU-21, pp. 491–500, Dec. 1973.

[98] A. H. Gray and J. D. Markel, “A normalized digital filter structure,” IEEE Transactions on

Acoustics, Speech, Signal Processing, vol. ASSP-23, pp. 268–277, June 1975.

[99] J. J. Gribble, “Modified root locus plots for SISO systems with time delay,” IEEE Control

Systems, pp. 54–56, Feb. 1993.

[100] P. Griffiths and J. Harris, Principles of Algebraic Geometry, Wiley Classics Library, New York:

John Wiley and Sons, Inc., 1994, Reprint, 1st ed. 1978.

[101] T. Gunji, S. Kim, M. Kojima, et al., “PHoM — a polyhedral homotopy continuation method

for polynomial systems,” tech. rep., Department of Mathematical and Computing Sciences,

Tokyo Institute of Technology, Dec. 2002.

[102] H. Hahn, “Higher-order root-locus technique with applications in control system design,”

in Advances in Control Systems and Signal Processing, Vol. 2 (I. Hartmann, ed.), Braunschweig,

Weisbaden: Vieweg, 1981.

[103] C. Hanna, “Real-time control of DSP parametric equalizers,” Audio Engineering Society Con-

vention, Nov. 1994.

[104] F. Harris and E. Brooking, “A versatile parametric filter using imbedded all-pass subfilter

to independently adjust bandwidth, center frequency,and boost or cut,” Audio Engineering

Society Convention, Preprint 3757, Oct. 1993.

[105] J. Harris, Algebraic Geometry, Graduate Texts in Mathematics, New York: Springer Verlag,

1992.

[106] A. Helzer, M. Barzohar, and D. Malah, “Stable fitting of 2d curves and 3d surfaces by implicit

polynomials,” IEEE Transactions on Pattern Analysis and Machine Intellignece, vol. 26, pp. 1283–

1294, Oct. 2004.

[107] D. T. Horn, The Beginner’s Book of Electronic Music, Blue Ridge Summit, PA: Tab Books, 1982.

[108] D. T. Horn, Music Synthesizers: A Manual of Design and Construction, Blue Ridge Summit, PA:

Tab Books, 1984.

[109] T. Hundley, H. Benioff, and D. W. Martin, “Factors contributing to the multiple rate of piano

tone decay,” Journal of the Acoustical Society of America, vol. 64, pp. 1303–1309, Nov. 1978.

420 BIBLIOGRAPHY

[110] A. Huovilainen, “Nonlinear digital implementation of the Moog ladder filter,” in Proceedings

of the Conference on Digital Audio Effects (DAFx-04), Naples, Italy, pp. 61–64, 2004, http://-

dafx04.na.infn.it/.

[111] A. Huovilainen and V. Välimäki, “New approaches to digital subtractive synthesis,” in Pro-

ceedings of the 2005 International Computer Music Conference, Barcelona, Spain, Computer Music

Association, 2005.

[112] A. Hurwitz, “On the conditions under which an equation has only roots with negative real

parts,” in Selected Papers on Mathematical Trends in Control Theory (I. Hartmann, ed.), pp. 70–

82, New York: Dover, 1964, Originally Published in Mathematische Annalen 46, 1895, pp.

273–284.

[113] B. Hutchins, “Additional design ideas for voltage-controlled filters,” Electronotes, vol. 85,

pp. 5–17.

[114] B. Hutchins, “The effect of feedback on four-pole filters with differing pole frequencies,”

Electronotes, vol. 105, pp. 3–12.

[115] B. Hutchins, “A few more notes on polygon filters,” Electronotes, vol. 97, pp. 9–10.

[116] B. Hutchins, “A few more notes on polygon filters,” Electronotes, vol. 97, pp. 10–17.

[117] B. Hutchins, “The migration of poles as a function of feedback in a class of voltage-controlled

filters,” Electronotes, vol. 95, pp. 3–15.

[118] B. Hutchins, “A four-pole voltage-controlled network; analysis, design, and application as a

low-pass filter and a quadrature VCO,” Electronotes, vol. 41, pp. 1–7, July 1974, Reprinted in

[119, ch. 5d].

[119] B. Hutchins, Musical Engineer’s Handbook, Ithaca, New York: Electronotes, 1975.

[120] B. Hutchins, “A four-pole variable digital filter with fixed clock rate,” Electronotes, vol. 15F,

pp. 70–79, 1984.

[121] B. Hutchins, “On the implementation of variable digital filters with fixed clock rate,” Elec-

tronotes, vol. 15E, pp. 18–34, 1984.

[122] C. Hwang and J.-J. Chen, “Plotting robust root loci for linear systems with multilinearly para-

metric uncertainties,” in Proceedings of the American Control Conference, Philadelphia, Pennsyl-

vania, pp. 1958–1962, June 1998.

[123] C. Hwang and S.-F. Yang, “The robust root locus of polynomial families with multilinear

parameter dependence,” in Proceedings of the 2001 IEEE International Conference on Control

Applications, pp. 847–852, Sept. 2001.

BIBLIOGRAPHY 421

[124] M. Ikehara, S. ichi Takahashi, and M. Kato, “Construction of variable cuttof digital filter

based on changeover of taps,” Electronics and Communications in Japan, Part 3, vol. 72, no. 12,

pp. 13–21, 1989.

[125] L. B. Jackson, “Roundoff-noise analysis for fixed-point digital filters realized in cascade or

parallel form,” IEEE Transactions on Audio and Acoustics, vol. AU-18, pp. 107–122, June 1970.

[126] L. B. Jackson, “A correction to impulse invariance,” IEEE Signal Processing Letters, vol. 7,

pp. 273–275, Oct. 2000.

[127] L. B. Jackson, “A narrowband IIR digital filter with low sensitivity an roundoff noise,” IEEE

Signal Processing Letters, vol. 10, pp. 164–167, June 2003.

[128] D. A. Jaffe and J. O. Smith, “Extensions of the Karplus-Strong plucked string algorithm,”

Computer Music Journal, vol. 7, no. 2, pp. 56–69, 1983, Reprinted in [220, pp. 481–494].

[129] D. A. Jaffe and J. O. Smith, “Performance expression in commuted waveguide synthesis

of bowed strings,” in Proceedings of the 1995 International Computer Music Conference, Banff,

pp. 343–346, Computer Music Association, 1995.

[130] P. Jarske, Y. Neuvo, and S. K. Mitra, “A simple approach to the design of linear-phase FIR

digital filters with variable characteristics,” Signal Processing, vol. 14, pp. 313–326, 1988.

[131] H. Johansson and P. Löwenborg, “On the design of adjustable fractional delay FIR filters,”

IEEE Transactions on Circuits and Systems—II: Analog and Digital Signal Processing, vol. 50,

pp. 164–169, Apr. 2003.

[132] D. H. Johnson, “Variable digital filters having a recursive stucture,” IEEE Transactions on

Acoustics, Speech, Signal Processing, vol. 27, Feb. 1979.

[133] Kaegi, W., and S. Tempelaars, “VOSIM—a new sound synthesis system,” Journal of the Audio

Engineering Society, vol. 26, no. 6, pp. 418–24, 1978.

[134] H. K. Kahlil, Nonlinear Systems, New Jersey: Prentice Hall, 2 ed., 1996.

[135] T. Kailath, Linear Systems, Englewood Cliffs, NJ: Prentice-Hall, Inc., 1980.

[136] R. Kalaba and L. Tesfation, “Solving nonlinear equations by adaptive homotopy continua-

tion,” Applied Mathematics and Computation, vol. 41, pp. 99–115, 1991.

[137] M. Karjalainen, A. Harma, U. K. Laine, and J. Huopaniemi, “Warped filters and their audio

applications,” in Proceedings of the IEEE Workshop on Applications of Signal Processing to Audio

and Acoustics, New Paltz, NY, (New York), IEEE Press, Oct. 1997, Session 11, paper 2, 4 pages.

422 BIBLIOGRAPHY

[138] M. Karjalainen, E. Piirilä, A. Jävinen, and J. Huopaniemi, “Comparison of loudspeaker equal-

ization methods based on dsp techniques,” Journal of the Audio Engineering Society, vol. 49,

pp. 14–31, Jan. 1999.

[139] R. B. Kearfott and Z. Xing, “An interval step control for continuation methods,” SIAM Journal

of Numerical Analysis, vol. 31, pp. 892–914, 1994.

[140] W. J. Kerwin, L. P. Huelsman, and R. W. Newcomb, “State-variable synthesis for insensitive

integrated-circuit transfer functions,” IEEE Journal of the Solid-State Circuits, vol. SC-2, pp. 87–

92, Sept. 1967.

[141] S. Kim and M. Kojima, “Numerical stability of path tracing in polyhedral homotopy contin-

uation methods,” tech. rep., Department of Mathematical and Computing Sciences, Tokyo

Institute of Technology, Mar. 2003.

[142] F. Kirwan, Complex Algebraic Curves, London Mathematical Society Student Texts 23, Cam-

bridge University Press, 1992.

[143] P. Kleczkowski, “Group additive synthesis,” Computer Music Journal, vol. 13, no. 1, pp. 12–20,

1989.

[144] J. Konopacki, “The frequency transformation by matrix operation and its application in IIR

filters design,” IEEE Signal Processing Letters, vol. 12, pp. 5–8, Jan. 2005.

[145] V. Krishnamurthy and M. Levoy, “Fitting smooth surfaces to dense polygon meshes,” in

Proceedings of the ACM SIGGRAPH Conference on Computer Graphics, pp. 313–324, Aug. 1996.

[146] V. Krishnan, “Semi-analytic approach to root locus,” IEEE Transactions on Automatic Control,

vol. AC-11, pp. 326–332, Jan. 1966.

[147] T. R. Kurfess and M. L. Nagurka, “Understanding root locus using gain plots,” IEEE Control

Systems, pp. 37–40, Aug. 1991.

[148] T. R. Kurfess and M. L. Nagurka, “Geometric links among classical controls tools,” IEEE

Transactions on Education, pp. 77–83, Feb. 1994.

[149] T. I. Laakso, V. Välimäki, M. Karjalainen, and U. K. Laine, “Splitting the Unit Delay—Tools

for Fractional Delay Filter Design,” IEEE Signal Processing Magazine, vol. 13, pp. 30–60, Jan.

1996.

[150] J. Lane, D. Hoory, E. Martinez, and P. Wang, “Modeling analog synthesis with DSPs,” Comp-

uter Music Journal, vol. 21, pp. 23–41, Winter 1997.

[151] J. Laroche, “Using resonant filters for the synthesis of time-varying sinusoids,” Audio Engi-

neering Society Convention, Preprint 4782, Sept. 1998.

BIBLIOGRAPHY 423

[152] J. Laroche, “A modified lattice structure with pleasing scaling properties,” IEEE Transactions

on Signal Processing, vol. 64, pp. 3423–3425, Dec. 1999.

[153] J. Laroche, “Synthesis of sinusoids via non-overlapping inverse fourier transform,” IEEE

Transactions on Speech and Audio Processing, vol. 8, pp. 471–477, July 2000.

[154] J. Laroche and M. Dolson, “New phase-vocoder techniques for pitch-shifting, harmonizing,

and other exotic effects,” in Proceedings of the IEEE Workshop on Applications of Signal Processing

to Audio and Acoustics, New Paltz, NY, (New York), pp. 91–94, IEEE Press, Oct. 17–20, 1999.

[155] Z. Lei and D. B. Cooper, “New, faster, more controlled fitting of implicit polynomial 2D

curves and 3D surfaces to data,” ACM Transactions on Graphics, vol. 12, pp. 327–347, Oct.

1993.

[156] E. Lindemann, “Music synthesis with reconstructive phrase modeling,” IEEE Signal Process-

ing Magazine, submitted for publication.

[157] B. Liu, “Effect of finite word lenth on the accuracy of digital filters — a review,” IEEE Trans-

actions on Circuit Theory, vol. CT-18, pp. 670–677, Nov. 1971.

[158] W. Lorenson and H. Cline, “Marching cubes: A high-resolution 3D surface construction al-

gorithm,” Computer Graphics, vol. 21, pp. 163–169, 1987.

[159] W.-S. Lu and T.-B. Deng, “An improved weighted least-squares design for variable fractional

delay FIR filters,” IEEE Transactions on Circuits and Systems—II: Analog and Digital Signal Pro-

cessing, vol. 49, pp. 1035–1040, Aug. 1999.

[160] K. H. Lundberg, “Pole-zero phase maps,” IEEE Control Systems Magazine, pp. 84–87, Feb.

2005.

[161] M. Makundi, T. Laakso, and V. Valimaki, “Efficient tunable IIR and allpass structures,” Elec-

tronics Letters, vol. 37, pp. 344–345, Mar. 2001.

[162] D. C. Massie, “An engineering study of the four-multiply normalized ladder filter,” Journal

of the Audio Engineering Society, vol. 41, pp. 564–582, July 1993.

[163] M. V. Mathews, The Technology of Computer Music, Cambridge, MA: MIT Press, 1969.

[164] R. J. Y. McLeod and M. L. Baart, Geometry and Interpolation of Curves and Surfaces, Cambridge

University Press, 1998.

[165] M. McNabb, “Clarinet,” 1994, Unpublished clarinet model.

[166] W. F. G. Mecklenbrauker, “Remarks on and correction to the impulse invariant method for

the design of IIR digital filters,” Signal Processing, vol. 80, pp. 1687–1690, Aug. 2000.

424 BIBLIOGRAPHY

[167] R. H. Middleton and G. C. Goodwin, “Improved finite word length characteristics in digital

control using delta operators,” IEEE Transactions on Automatic Control, pp. 1015–1021, Nov.

1986.

[168] R. H. Middleton and G. C. Goodwin, Digital Control and Estimation: A Unified Approach, New

Jersey: Prentice Hall, 1990.

[169] J. R. Mitchell and W. L. McDaniel, Jr., “A generalized root locus following technique,” IEEE

Transactions on Automatic Control, pp. 483–486, Aug. 1970.

[170] S. K. Mitra, Digital Signal Processing: A Computer-Based Approach, New York: McGraw Hill,

3 ed., 2006.

[171] S. K. Mitra, Y. Neuvo, and H. Roivainen, “Design of recursive digital filters with variable

characteristics,” International Journal of Circuit Theory and Applications, vol. 18, pp. 107–119,

1990.

[172] R. A. Moog, “Voltage-controlled electronic music modules,” Journal of the Audio Engineering

Society, vol. 13, pp. 200–206, July 1965, see also [173].

[173] R. A. Moog, “A voltage-controlled low-pass high-pass filter for audio signal processing,”

Audio Engineering Society Convention, Preprint 413, Oct. 1965.

[174] F. R. Moore, “Table lookup noise for sinusoidal digital oscillators,” in Foundations of Computer

Music (C. Roads and J. Strawn, eds.), pp. 326–334, Cambridge, MA: MIT Press, 1985.

[175] J. A. Moorer, “The synthesis of complex audio spectra by means of discrete summation for-

mulae,” Journal of the Audio Engineering Society, vol. 24, pp. 717–727, Dec. 1975, Also svailable

as CCRMA Report no. STAN-M-5.

[176] J. A. Moorer, “The manifold joys of conformal mapping: Applications to digital filtering in

the studio,” Journal of the Audio Engineering Society, vol. 31, pp. 826–841, Nov 1983.

[177] A. Morgan, Solving Polynomial Systems Using Continuation for Engineering and Scientific Com-

putations, Englewood Cliffs, NJ: Prentice-Hall, Inc., 1987.

[178] A. Morgan and A. Sommese, “Computing all solutions to polynomial systems using homo-

topy continuation,” Applied Mathematics and Computation, vol. 24, pp. 115–138, 1987.

[179] A. Morgan and A. Sommese, “A homotopy for solving general polynomial systems that

respects m-homogeneous structures,” Applied Mathematics and Computation, vol. 24, pp. 101–

113, 1987.

[180] P. M. Morse, Vibration and Sound, American Institute of Physics, for the Acoustical Society of

America, 1948, 1st edition 1936, last author’s edition 1948, ASA edition 1981.

BIBLIOGRAPHY 425

[181] J. N. Mourjopoulos, E. D. Kyriakis-Bitzaros, and C. E. Goutis, “Theory and real-time im-

plementation of time-varying digital audio filters,” Journal of the Audio Engineering Society,

vol. 38, pp. 523–536, July 1990.

[182] J. N. Mourjopoulos, “Digital equalization of room acoustics,” Journal of the Audio Engineering

Society, vol. 42, pp. 864–900, Nov. 1994.

[183] C. T. Mullis and R. A. Roberts, “Roundoff noise in digital filters: Frequency transformations

and invariants,” IEEE Transactions on Acoustics, Speech, Signal Processing, vol. ASSP-24, Dec.

1976.

[184] D. C. Munson, Jr. and B. Liu, “Low-noise realizations for narrow-band recursive digital fil-

ters,” IEEE Transactions on Acoustics, Speech, Signal Processing, vol. 28, Feb. 1980.

[185] N. Murakoshi, E. Watanabe, and A. Nishihara, “A synthesis of variable IIR digital filters,”

IEICE Transactions on Fundamentals, vol. E75-A, pp. 362–368, Mar. 1992.

[186] N. Murakoshi, A. Nishihara, and E. Watanabe, “Synthesis of variable IIR digital filters with

complex coefficients,” Electronics and Communications in Japan, Part 3, vol. 77, no. 5, pp. 46–56,

1994.

[187] I. Nakamura, “Fundamental theory and computer simulation of the decay characteristics of

piano sound,” Journal of the Acoustical Society of Japan (E), vol. 10, no. 5, pp. 289–297, 1989.

[188] A. H. Nayfeh and B. Balachandran, Applied Nonlinear Dynamics, Wiley Series in Nonlinear

Science, New York: John Wiley and Sons, Inc., 1995.

[189] Z. Nehari, Conformal Mapping, New York: Dover, 1952.

[190] C. P. Neuman, “The two-pole two-zero root locus,” IEEE Transactions on Education, pp. 369–

370, Nov. 1994.

[191] K. Nishioka, N. Adachi, and K. Takeuchi, “Simple pivoting algorithm for root-locus method

of linear systems with delay,” IEEE Transactions on Automatic Control, pp. 576–582, Oct. 1968.

[192] J. R. O’Donnell and D. Frederick, “Extensions to the Ash algorithm for finding root loci,” in

Proceedings of the 1987 American Control Conference, Minneapolis, MN, vol. 3, pp. 1943–1944,

June 1987.

[193] J. R. O’Donnell and D. Frederick, “MATLAB implementation of the extended Ash algorithm

for finding root loci,” in Computer Aided Design in Control Systems. Selected Papers from the

IFAC Symposium, pp. 341–346, July 1991.

[194] H. F. Olson and H. Belar, “Electronic music synthesizer,” Journal of the Acoustical Society of

America, vol. 27, pp. 595–612, May 1955.

426 BIBLIOGRAPHY

[195] A. V. Oppenheim, Discrete-Time Signal Processing, Englewood Cliffs, NJ: Prentice-Hall, Inc.,

1989.

[196] A. V. Oppenheim and R. W. Schafer, Discrete-Time Signal Processing, Englewood Cliffs, NJ:

Prentice-Hall, Inc., 1989.

[197] A. V. Oppenheim, W. F. G. Mecklenbräuker, and R. M. Mersereau, “Variable-cutoff linear-

phase digital filters,” IEEE Transactions on Circuits and Systems, vol. CAS-23, no. 4, pp. 199–

203, 1976.

[198] S. J. Orfanidis, “Digital parametric equalizer design with prescribed Nyquist-frequency

gain,” Journal of the Audio Engineering Society, vol. 45, pp. 444–455, June 1997.

[199] C. T. Pan and K. S. Chao, “A computer-aided root-locus method,” IEEE Transactions on Auto-

matic Control, vol. AC-23, pp. 876–860, Oct. 1978.

[200] A. Papoulis, Signal Analysis, New York: McGraw-Hill, 1977.

[201] T. W. Parks and J. H. McClellan, “Chebyshev approximation for nonrecursive digital filters

with linear phase,” IEEE Transactions on Circuit Theory, pp. 189–194, Mar. 1972.

[202] D. K. Phillips, “Multirate additive synthesis,” Computer Music Journal, vol. 23, no. 1, pp. 28–

40, 1999.

[203] D. A. Pierre, “Robustness issues concerning dipole and doublet root loci,” in Proceedings of

the 1993 American Control Conference, vol. 3, pp. 2750–2754, June 1993.

[204] T. Pinch and F. Trocco, Analog Days: The Invention and Impact of the Moog Synthesizer, Cam-

bridge, MA: Harvard University Press, 2002.

[205] H. Power, “Application of bilinear transformation to root locus plotting,” IEEE Transactions

on Automatic Control, pp. 693–694, Dec. 1970.

[206] M. Prendergast, Ambient Century: From Mahler to Trance — The Evolution of Sound in the Elec-

tronic Age, New York: Bloomsbury, 2000.

[207] O. Prokhorova and I. M. Filanovsky, “Multivariable system design and optimization using

root locus method,” in 33rd Midwest Symposium on Circuits and Systems, Calgary, Alberta, vol. 1,

pp. 523–526, Aug. 1991.

[208] F. D. Pryashnikov, “Distribution of the roots of a characteristic polyonomival with respect to

a polygonal domain,” Tekh. Kibern. (Russia), vol. 6, pp. 67–75, 1991.

[209] B. Pšenička and F. Garcia-Ugalde, “z transform from lowpass to bandpass by Pascal matrix,”

IEEE Signal Processing Letters, vol. 11, pp. 282–284, Feb. 2004.

BIBLIOGRAPHY 427

[210] B. Pšenička, F. Garcia-Ugalde, and A. Herrera-Camacho, “The bilinear z transform by Pascal

matrix and its application in the design of digital filters,” IEEE Signal Processing Letters, vol. 9,

pp. 368–370, Nov. 2002.

[211] C. K. S. Pun, S. C. Chan, K. S. Yeung, and K. L. Ho, “On the design and implementation of FIR

and IIR digital filters with variable frequency characteristics,” IEEE Transactions on Circuits

and Systems—II: Analog and Digital Signal Processing, vol. 49, pp. 689–703, Nov. 2002.

[212] L. R. Rabiner and B. Gold, Theory and Application of Digital Signal Processing, Englewood

Cliffs, NJ: Prentice-Hall, Inc., 1975.

[213] G. Ramos and J. J. Lopez, “Low order IIR parametric loudspeaker equalization, a psychoa-

coustic approach,” Audio Engineering Society Convention, Preprint 6454, May 2005.

[214] J. Rauhala and V. Välimäki, “Tunable dispersion filter design for piano synthesis,” IEEE

Transactions on Acoustics, Speech, Signal Processing, vol. 34, pp. 1557–1564, Nov. 1987.

[215] N. J. Redding, “Fitting implicit polynomials to use as features in image understanding,” in

Proceedings of the 1996 Australian New Zealand Conference on Intelligent Information Systems,

Adelaide, Australia, Nov. 1996.

[216] N. J. Redding and G. N. Newsam, “A merging procedure for connecting fitted implicit poly-

nomials for features,” in Proceedings of the 1996 Australian New Zealand Conference on Intelligent

Information Systems, Adelaide, Australia, Nov. 1996.

[217] P. A. Regalia and S. K. Mitra, “Tunable digital frequency response equalization filters,” IEEE

Transactions on Acoustics, Speech, Signal Processing, vol. ASSP-35, p. 118, 1987.

[218] C. M. Richter and C. P. Bottura, “Riemann k-surfaces in multivariable control systems,” in

Proceedings of the 1999 American Control Conference, San Diego, CA, vol. 4, pp. 2869–2870, June

1999.

[219] J. H. F. Ritzerfeld, “Noise gain expressions for low noise second-order digital filter struc-

tures,” IEEE Transactions on Circuits and Systems—II: Analog and Digital Signal Processing,

vol. 12, pp. 5–8, Jan. 2005.

[220] C. Roads, ed., The Music Machine, Cambridge, MA: MIT Press, 1989.

[221] C. Roads, The Computer Music Tutorial, Cambridge, MA: MIT Press, 1996.

[222] C. Roads, Microsound, Cambridge, MA: MIT Press, 2001.

[223] C. Roads and J. Strawn, eds., Foundations of Computer Music, Cambridge, MA: MIT Press,

1985.

428 BIBLIOGRAPHY

[224] X. Rodet and P. Depalle, “Spectral envelopes and inverse FFT synthesis,” Proc. 93rd Conven-

tion of the Audio Engineering Society, San Francisco, 1992, Preprint 3393 (H-3).

[225] X. Rodet, Y. Potard, and J. Barrière, “The CHANT Project: From the synthesis of the singing

voice to synthesis in general,” in The Music Machine (C. Roads, ed.), pp. 449–465, Cambridge,

MA: MIT Press, 1989.

[226] E. J. Routh, Dynamics of a System of Rigid Bodies, New York: MacMillan, 1892.

[227] R. W. Schafer and L. R. Rabiner, “A digital signal processing approach to interpolation,”

Proceedings of the IEEE, vol. 61, pp. 692–702, June 1973.

[228] T. Schanze, “Sinc interpolation of discrete periodic signals,” IEEE Transactions on Signal Pro-

cessing, vol. 43, pp. 1502–1503, June 1995.

[229] W. Schüssler and W. Winkelkemper, “Variable digital filters,” Arch. Elek. Übertragung, vol. 24,

pp. 524–525, 1970.

[230] I. R. Shafarevich, Basic Algebraic Geometry I, New York: Springer Verlag, 2 ed., 1994.

[231] I. R. Shafarevich, Basic Algebraic Geometry II, New York: Springer Verlag, 2 ed., 1997.

[232] P. Shapiro, Modulations: A History of Electronic Music — Throbbing Words on Sound, New York:

Caipirinha Productions, 2000.

[233] J.-J. E. Slotine and W. Li, Applied Nonlinear Control, New Jersey: Prentice Hall, 1991.

[234] J. O. Smith, Techniques for Digital Filter Design and System Identification with Application to the Vi-

olin, PhD thesis, Elec. Engineering Dept., Stanford University (CCRMA), June 1983, CCRMA

Technical Report STAN-M-14, http://ccrma.stanford.edu/STANM/stanms/stanm14/.

[235] J. O. Smith, “Music applications of digital waveguides,” Tech. Rep. STAN-M-39, CCRMA,

Music Department, Stanford University, 1987, CCRMA Technical Report STAN-M-39,

http://ccrma.stanford.edu/STANM/stanms/stanm39/.

[236] J. O. Smith, “Physical modeling using digital waveguides,” Computer Music Journal, vol. 16,

pp. 74–91, Winter 1992, special issue: Physical Modeling of Musical Instruments, Part I.

http://ccrma.stanford.edu/˜jos/pmudw/.

[237] J. O. Smith, “Efficient synthesis of stringed musical instruments,” in Proceedings of the 1993

International Computer Music Conference, Tokyo, pp. 64–71, Computer Music Association, 1993,

incorporated into [240].

[238] J. O. Smith, Introduction to Digital Filters, http://ccrma.stanford.edu/˜jos/filters05/,

September 2005.

BIBLIOGRAPHY 429

[239] J. O. Smith, Physical Audio Signal Processing — for Virtual Musical Instruments and Digital Audio

Effects, http://ccrma.stanford.edu/˜jos/pasp05/, Dec. 2005.

[240] J. O. Smith, Physical Audio Signal Processing: Digital Waveguide Modeling of Musical Instruments

and Audio Effects, http://ccrma.stanford.edu/˜jos/pasp/, Dec. 2005.

[241] J. O. Smith and P. R. Cook, “The second-order digital waveguide oscillator,” in Proceedings

of the 1992 International Computer Music Conference, San Jose, pp. 150–153, Computer Music

Association, 1992, http://ccrma.stanford.edu/˜jos/wgo/.

[242] J. O. Smith and P. Gossett, “A flexible sampling-rate conversion method,” in Proceed-

ings of the International Conference on Acoustics, Speech, and Signal Processing, San Diego,

vol. 2, (New York), pp. 19.4.1–19.4.2, IEEE Press, Mar. 1984, expanded tutorial and as-

sociated free software available at the Digital Audio Resampling Home Page: http://-

ccrma.stanford.edu/˜jos/resample/.

[243] D. L. Spencer, L. Philipp, and B. Philipp, “Root loci design using Dickson’s technique,” IEEE

Transactions on Education, vol. 44, pp. 176–184, May 2001.

[244] K. Steiglitz, “An analytical approach to root loci,” IRE Transactions on Automatic Control,

pp. 326–332, Sept. 1961.

[245] K. Steiglitz, “A note on variable recursive digital filters,” IEEE Transactions on Acoustics,

Speech, Signal Processing, vol. ASSP-28, pp. 111–112, Feb. 1980.

[246] T. Stilson, “Use of a simple control system for the improvement of simplified physical-

modeling synthesis algorithms,” 1996, Presented at the 1996 Acoustical Society of

America Conference, Waikiki, Hawaii. Annotated viewgraphs are available athttp://-

ccrma.stanford.edu/˜stilti/.

[247] T. Stilson, “Applying root-locus techniques to the analysis of coupled modes in piano

strings,” in Proceedings of the 1997 International Computer Music Conference, Greece, pp. 462–

464, 1997, A version of this paper was also presented at the Acoustical Society of Amer-

ica Conferece, December 1996, Hawaii. An expanded version of the paper can be found at

http://ccrma.stanford.edu/˜stilti/.

[248] T. Stilson and J. O. Smith, “Alias-free synthesis of classic analog waveforms,” in Proceedings

of the 1996 International Computer Music Conference, Hong Kong, Computer Music Association,

1996, http://ccrma.stanford.edu/˜stilti/.

[249] T. Stilson and J. O. Smith, “Analyzing the Moog VCF with considerations for digital im-

plementation,” in Proceedings of the 1996 International Computer Music Conference, Hong Kong,

Computer Music Association, 1996, http://ccrma.stanford.edu/˜stilti/.

430 BIBLIOGRAPHY

[250] T. Stilson and J. O. Smith, “Virtual analog,” May 1997, Lecture Overheads for Music 421,

Spring 1997, http://ccrma.stanford.edu/˜stilti/.

[251] T. Stilson and H. Thornburg, “Examples of using amplitude control systems in music syn-

thesis,” in Proceedings of the 1998 International Computer Music Conference, Michigan, Computer

Music Association, 1998.

[252] V. L. Stonick and S. T. Alexander, “A relationship between the recursive least-squares up-

date and homotopy continuations methods,” IEEE Transactions on Signal Processing, vol. 39,

pp. 530–532, Feb. 1991.

[253] V. L. Stonick and S. T. Alexander, “Globally optimal rational approximation using homotopy

continuation methods,” IEEE Transactions on Signal Processing, vol. 49, pp. 2358–2361, Sept.

1992.

[254] G. Strang, Linear Algebra and Its Applications, Orlando: Harcourt Brace Jovanovich, Inc., 3 ed.,

1988.

[255] I. H. Suh and Z. Bien, “A root-locus technique for linear systems with delay,” IEEE Transac-

tions on Automatic Control, vol. AC-27, pp. 205–208, Feb. 1982.

[256] M. N. S. Swamy and K. S. Thyagarajan, “Digital bandpass and bandstop filters with variable

center frequency and bandwidth,” Proceedings of the IEEE, vol. 47, pp. 1642–1634, Nov. 1976.

[257] A. Tarczyński, G. D. Cain, E. Hermanowicz, and M. Rojewski, “WLS design of variable fre-

quency response FIR filters,” in IEEE International Symposium on Circuits and Systems, Hong

Kong, 1997.

[258] G. Taubin, “Constrained implicit function fitting,” in ICPR ’92: International Conference on

Pattern Recognition, The Hague, Holland, Sept. 1992.

[259] G. Taubin, “An improved algorithm for algebraic curve and surface fitting,” in ICCV ’93:

International Conference on Computer Vision, Berlin, Germany, May 1993.

[260] G. Taubin, “Distance approximations for rasterizing implicit curves,” ACM Transactions on

Graphics, vol. 13, pp. 3–42, Jan. 1994.

[261] G. Taubin, “Estimation of planar cuvrves, surfaces, and nonplanar space curves defined by

implicit equations with applications to edge and range image segmenataion,” IEEE Transac-

tions on Pattern Analysis and Machine Intellignece, vol. 13, pp. 14–23, Mar. 1994.

[262] G. Taubin, “Rasterizing algrebraic curves and surfaces,” IEEE Computer Graphics and Applica-

tions, vol. 13, pp. 14–23, Mar. 1994.

BIBLIOGRAPHY 431

[263] G. Taubin, F. Cukierman, S. Sullivan, J. Ponce, and D. J. Kriegman, “Parameterized families

of polynomials for bounded algebraic curve and surface fitting,” IEEE Transactions on Pattern

Analysis and Machine Intellignece, vol. 16, pp. 287–303, Mar. 1994.

[264] P. A. Taylor, A. Black, and R. Caley, “The architecture of the Festival speech synthesis sys-

tem,” in The Third ESCA Workshop oin Speech Synthesis, Jenolan Caves, Australia, pp. 147–151,

1998.

[265] M. C. M. Teixeira, E. Assunção, and E. R. M. D. Machado, “A method for plotting the comple-

mentary root locus using the root-locus (positive gain) rules,” IEEE Transactions on Education,

vol. 47, pp. 405–409, Aug. 2004.

[266] S. W. Tento, “The implicit function theorem and robust root locus,” in Proceedings of the Amer-

ican Control Conference, 1991, vol. 1, pp. 869–870, 1991.

[267] J.-P. Thiran, “Recursive digital filters with maximally flat group delay,” IEEE Transactions on

Circuits and Systems, vol. 18, pp. 659–664, Nov. 1971.

[268] H. Thornburg, “Digital Moog filter distortion experiments.” CCRMA DSP Seminar Presen-

tation, 1997.

[269] Y. Tong and N. K. Sinha, “A computational technique for the robust root locus,” IEEE Trans-

actions on Industrial Electronics, vol. 41, pp. 79–85, Feb. 1994.

[270] C. Tseng, “Digital integrator design using Simpson rule and fractional delay filter,” IEE Jour-

nal of the Vis. Image Signal Processing, pp. 189–194, Mar. 1972.

[271] P. Tsiotras, “The relation between the 3-D Bode diagram and the root locus,” IEEE Control

Systems Magazine, pp. 88–96, Feb. 2005.

[272] J. Tupper, “Graphing equations with generalized interval arithmetic,” Master’s thesis, Grad-

uate Department of Computer Science, University of Toronto, 1996.

[273] C. W. Ueberhuber, Numerical Computation: Methods, Software and Analysis, vol. 2, New York:

Springer Verlag, 1997.

[274] V. Välikmäki and T. Laakso, “Suppression of transients in variable recursive digital filters

with a novel and efficient cancellation method,” IEEE Transactions on Signal Processing, vol. 46,

pp. 3408–3414, Dec. 1998.

[275] V. Välimäki, “Discrete-time synthesis of the sawtooth waveform with reduced aliasing,”

IEEE Signal Processing Letters, vol. 12, no. 3, pp. 214–217, 2005.

[276] V. Välimäki and A. Huovilainen, “Antialiasing oscillators in subtractive synthesis,” IEEE

Signal Processing Magazine, submitted for publication.

432 BIBLIOGRAPHY

[277] V. Välimäki and A. Huovilainen, “Oscillator and filter algorithms for virtual analog synthe-

sis,” Computer Music Journal, pp. 21–33, 2006.

[278] V. Välimäki, T. I. Laakso, and J. Mackenzie, “Elimination of transients in time-varying allpass

fractional delay filters with application to digital waveguide modeling,” in Proceedings of the

1995 International Computer Music Conference, Banff, pp. 327–334, Computer Music Associa-

tion, 1995.

[279] A. Vaněček and S. Čelikovský, “Chaos synthesis via root locus,” IEEE Transactions on Circuits

and Systems—I: Fundamental Theory and Applications, pp. 59–60, Jan. 199.

[280] A. Vaněček and S. Čelikovský, “Root locus of chaotic attractors,” in UKACC International

Conference on CONTROL ’96, pp. 1220–1225, Sept. 1996.

[281] J. M. Varah, “Least squares data fitting with implicit functions,” BIT, vol. 36, no. 4, pp. 842–

854, 1996.

[282] Various, “Virtual analog page at musicdsp.org’s wiki.”

http://www.musicdsp.org/phpWiki/index.php/VirtualAnalog.

[283] J. Vesma, “A frequency-domain approach to polynomial-based interpolation and the Farrow

structure,” IEEE Transactions on Circuits and Systems—II: Analog and Digital Signal Processing,

vol. 47, Mar. 2000.

[284] J. Vesma and T. Saramäki, “Design and properties of polynomial-based fractional-delay fil-

ters,” in ISCAS 2000 — IEEE International Symposium on Circuis and Systems, Geneva, Switzer-

land, (New York), pp. I–104 – 107, IEEE Press, May 2000.

[285] M. Vidyasagar, Nonlinear Systems Analysis, New Jersey: Prentice Hall, 2 ed., 1993.

[286] R. Vijayan, H. V. Poor, J. B. Moore, and G. C. Goodwin, “A Levinson-type algorithm for

modeling fast-sampled data,” IEEE Transactions on Automatic Control, pp. 314–321, Mar. 1991.

[287] A. Watt and M. Watt, Advanced Animation and Rendering Techniques: Theory and Practice, Read-

ing MA: Addison-Wesley, 1992.

[288] G. Weinreich, “Coupled piano strings,” Journal of the Acoustical Society of America, vol. 62,

pp. 1474–1484, Dec 1977, see also [11] and Scientific American, vol. 240, p. 94, 1979.

[289] L. Williams, “Pyramidal parametrics,” Computer Graphics, vol. 17, pp. 1–11, July 1983, (Proc.

SIGGRAPH ’83).

[290] S. E. Williamson and W. F. Lovering, “The root-loci of four pole systems,” International Journal

of Control, vol. 10, pp. 625–643, Dec. 1969.

BIBLIOGRAPHY 433

[291] R. Wilson, “Filter topologies,” Journal of the Audio Engineering Society, vol. 41, Sept. 1993.

[292] G. Winham and K. Steiglitz, “Input generators for digital sound synthesis,” Journal of the

Acoustical Society of America, vol. 47, no. 2, pp. 665–666, 1970.

[293] D. K. Wise, “The recursive allpass as a resonance filter,” in Proceedings of the 1998 International

Computer Music Conference, Michigan, Computer Music Association, 1998.

[294] G.-T. Yan and S. K. Mitra, “Modified coupled-form digital-filter structures,” Proceedings of the

IEEE, vol. 70, July 1982.

[295] C.-D. Yang and C.-H. Wei, “Root-locus dynamics,” in 2005 American Control Conference, Port-

land, OR, pp. 63–68, June 2005.

[296] C.-D. Yang and F.-B. Yeh, “On modeling root-locus behavior,” in Proceedings of the 33rd Con-

ference on Decision and Control, Lake Buena Vista, Florida, pp. 2151–2156, Dec. 1994.

[297] K. S. Yeung and W. T. Wong, “Root-locus plots of systems with time delay,” Electronics Letters,

pp. 480–481, May 1982.

[298] T. Yoshida, A. Nishihara, and N. FUjii, “A design method of variable FIR filters using multi-

dimensional filters,” IEICE Transactions on Fundamentals, vol. E75-A, pp. 964–971, Aug. 1992.

[299] R. Zarour and M. M. Fahmy, “A design techinique for variable digital filters,” IEEE Transac-

tions on Circuits and Systems, vol. 36, pp. 1473–1477, Nov. 1989.

[300] L. H. Zetterberg and Q. Zhang, “Elimination of transients in adaptive filters with application

to speech coding,” Signal Processing, vol. 15, no. 4, pp. 419–428, 1988.

[301] U. Zölzer and T. Boltze, “Parametric digital filter structures,” Audio Engineering Society Con-

vention, Preprint 4099, Oct. 1995.

