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Abstract

Several pitch detection algorithms are examined for use in
interactive computer-music performance. We define criteria
necessary for successful pitch tracking in real-time and sur-
vey four tracking techniques: Harmonic Product Spectrum
(HPS), Cepstrum-Biased HPS (CBHPS), Maximum Likelihood
(ML), and the Weighted Autocorrelation Function (WACF).

1 Introduction

Fundamental frequency detection is a well-researched prob-
lem often considered “solved” in the case of recorded mono-
phonic voices and instruments. However, the identification
of pitch becomes much more difficult in live concert settings.
Wrong notes cannot be fixed in retrospect during a perfor-
mance — in the recording studio you can always do a sec-
ond take. Therefore, avoiding pitch-tracking errors in real-
time audio is much more important than in non-real time au-
dio where errors can be cleaned-up with more robust sec-
ondary processing of the pitch-tracking data. The need to
avoid initial pitch-tracking errors in interactive music appli-
cations generates the following list of requirements for real-
time algorithms:

� ability to function in real time
� minimal output delay (latency)
� accuracy in the presence of noise, and
� sensitivity to musical requirements of the performance.

A pitch tracker designed for non-real time applications will
not be successful when applied to interactive music if it can-
not satisfy these requirements.

Obviously, pitch-tracking algorithms for interactive mu-
sic must be able to run in real-time. The real issue is one of
computational complexity: How much error checking can be
added to the system while still allowing the algorithm to run
in real-time? For example, several pitch-tracking algorithms
could be run in parallel to reduce the error rate, but this may
not always be practical. Errors can also be reduced if fre-
quency transforms are heavily overlapped. But there will al-
ways be a limit to the amount of processing or programming
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complexity that can be focused on reducing first-pass pitch-
tracking errors—some processor time must be left over for
using the resulting pitch measurements.

Aside from minimizing pitch errors, the latency in a pitch
detection algorithm is the next most critical factor to consider.
Note that there is a difference between attack latency and
pitch identification latency. Once a note is played, it takes
the ear at least seven cycles to accurately identify a pitch.
Therefore the perception of note onsets and note pitches are
not directly related. Guesses about the steady state pitch of a
note can be made during an attack, but if high-quality pitch in-
formation is needed, then you must wait. Real-time Pitch-to-
MIDI implementations require very low latency due to note
attack requirements, but extracting pitch for key-finding algo-
rithms that monitor what key the musician is currently play-
ing can tolerate very large latencies.

Algorithms which tolerate noisy audio input are partic-
ularly desirable in interactive music. Performance environ-
ments can contain noise from many sources, such as cheap
soundcards and sound from speakers and other instruments.
Other performance conditions and compositional requirements
cannot always be anticipated; however, we establish the fol-
lowing general criteria to cover the most common characteris-
tics of an interactive music environment needing pitch track-
ing:

� frequency resolution of at least semi-tones, including
the correct octave.
� timely recognition and quality of instantaneous pitch
for possible real-time conversion into symbolic pitch.
� instruments with well-behaved harmonics (such as
cello and flute).

No pitch algorithm can possibly cover all requirements
and unanticipated conditions in interactive music performance.
A computer-musician should be knowledgeable of a variety
of techniques and algorithmic parameters when implement-
ing real-time pitch-trackers. This paper presents four tech-
niques deemed suitable for interactive music; however, a large
number of algorithms which may work as well as or even
better cannot all be covered. Other pitch-tracking algorithms
useful to examine further include Doval and Rodet (1991),
Brown and Puckette (1992) as well as a classical paper on
time-domain pitch extraction by Gold and Rabiner (1969).



Frequency-domain algorithms are generally more robust
than time-domain algorithms. Thus, the first three techniques
examined below are based on the Discrete Fourier Transform,
although the DFT loses resolution at lower frequencies. The
ML algorithm behaves well at low frequencies regardless,
since it considers the relative position of partials without the
need to zero pad the signal frames. HPS is a more computa-
tionally efficient technique, and can therefore afford the ex-
pense of zero padding. CBHPS is not as inexpensive, but
needs less zero padding due to the enhanced low frequency
resolution provided by the frequency-indexed cepstral com-
ponent. The WACF is an accurate but computationally in-
expensive time-domain technique although its resolution is
limited by the sampling frequency.

2 Pitch Detection Algorithms

2.1 Harmonic Product Spectrum

The HPS pitch-detection algorithm (Noll 1969) is the sim-
plest method to implement and does well under a wide range
of conditions. Its primary drawback is the need to enhance
low frequency resolution with zero padding of the signal be-
fore transforming so that the spectrum can be interpolated to
the nearest semi-tone. This wastes a lot of computational
power, because high frequencies are also being unnecessar-
ily interpolated as well. However, this algorithm runs very
well in real-time tests with a 200 MHz processor.

The HPS algorithm measures the maximum coincidence
for harmonics according to equation (1) for each spectral frame,
X (!).

Y (!) =

RY
r=1

jX (!r)j (1)

Ŷ = max
!i

fY (!i)g (2)

whereR is the number of harmonics to be considered (R = 5,
for example), and frequency!i is in the range of possible fun-
damental frequencies. The resulting periodic correlation ar-
ray,Y (!), is searched for a maximum value,Ŷ , as is shown
in equation (2).

Octave errors are a common problem in pitch measure-
ments from HPS. Almost always in these error cases, the pitch
is detected one octave too high. To correct for this error, post-
processing should be done with the following rule: IF the
second peak amplitudebelowinitially chosen pitch is approx-
imately 1/2 of the chosen pitch AND the ratio of amplitudes
is above a threshold (e.g., 0.2 for 5 harmonics), THEN select
the lower octave peak as the pitch for the current frame.

Figure (1) demonstrates the HPS algorithm graphically.
The functionY (!) is shown on the far right with the max-
imum value,Ŷ , being the most likely pitch for the analysis

frame. Due to noise, frequencies below about 50 Hz should
not be searched for a pitch.

Figure 1: Overview of the HPS algorithm

2.2 Maximum Likelihood

The ML algorithm (Noll 1969) searches though a set of
possible ideal spectra and chooses the one which best matches
the shape of the input spectrum. The ideal spectrum is defined
to be an impulse train starting at frequency! convolved with
the signal window’s spectrum.

Figure 2: Generation of an ideal spectrum

This process tries to minimize the error between the spec-
tral frame and possible candidate spectra as illustrated in the
following equations.

E(!) = kY � ~Y!k
2 (3)

= kY k2 + k ~Y!k
2 � 2Y ~Y!

T

(4)

whereY is the given input spectrum, and~Y! is an ideal har-
monic spectrum with a fundamental frequency located at!.
The termkY k2 remains constant andk ~Y!k

2 remains constant
for most! frequencies of interest, so we need to find the max-
imum value of the product of the two spectra where the most
likely pitch Ŷ is to be assigned, as shown in equation (5). Fig-
ure (3) graphically shows the ML algorithm selection process
given in equation (5).

Ŷ = min
!

fE(!)g = max
!

n
Y ~Y!

T
o

(5)

Since the ML algorithm does not need to be spectrally
interpolated like HPS, smaller transform sizes may be used.
This can speed up the algorithm considerably. However, the
efficiency of the algorithm depends on how much pitch res-
olution is required. ML works well when the true pitch is
centered on a reference signal in the matrix multiply, but ML



Figure 3: Overview of Maximum Likelihood

gives erratic answers when the input signal is halfway be-
tween two cases in the reference matrix; therefore, ML works
well if the input source is in a fixed tuning. Keyboard and
woodwind instruments are more appropriate for ML than strings
or voice since the latter instruments can easily produce non-
discrete pitches, particularly in vibrato.

Specifying a limited range of possible pitches can im-
prove the efficiency in ML by lowering the number of test
signals in the reference matrix. If the true pitch is outside of
the test range by an octave, then ML will detect the correct
pitch class in the adjacent reference range. At two octaves
outside the ML range, the detection becomes less accurate in
determining the pitch class. ML is less tolerant of noise and
weak signals than the HPS method.

2.3 Cepstrum-Biased HPS

Possibly the most popular pitch tracking method in speech
analysis is the cepstral analysis technique. First, the Cep-
strum is calculated by taking the DFT of the log of the mag-
nitude spectrum of a speech frame. Then, the Cepstrum is
inspected for a peak in a limited range, corresponding to the
period of the signal, as well as for a second or third peak an
equal distance (period) away from the first or second peak.

An improved algorithm may be created by combining the
Cepstrum with the HPS function (Master 2000). This tech-
nique has been used to initialize guesses in a polyphonic pitch
detection system. Separately, the Cepstrum and HPS achieve
modest success for this task. But combined, they yield fairly
reliable results for at least the 2 pitch speech case.

Since these functions exist in different domains, the first
step is in combining them is to convert the Cepstrum to be
frequency domain indexed. To do this, Cepstrum values at
Indexcep= k are written to the Frequency Indexed Cepstrum
(or FIC) with indices ofIndexFIC = floor(N=k) where N is
the number of points in the DFT and “floor” is a function
specifying the greatest integer less than the argument. The
new index represents the frequency bin value corresponding
to the time value in the Cepstrum. Thus, a peak tending to
indicate a period at valuek in the Cepstrum now tends to
indicate a pitch with a corresponding value.

The FIC function and the HPS are then multiplied to cre-
ate a new function, the Cepstrum-Biased HPS (CBHPS). In

the CBHPS, spurious peaks in the pitch-doubling-robust FIC
tend to be canceled out by corresponding low values in the
pitch-halving-robust HPS function, and vice versa. Thus, the
peaks seen in the new function have been generally very re-
liable for the 2 voice speech case. In that case, peaks were
chosen as pitch indicators if their frequencies were not mul-
tiples of a lower frequency peak, and if their magnitude was
at least 15% of the largest peaks’ magnitude. CBHPS is good
for application in multi-pitch detection, since it robustly han-
dles noise and pitch errors.

2.4 Weighted Autocorrelation Function

One popular time domain technique is to pick peaks in the
autocorrelation function, or ACF. The ACF is created from
the equation:

�(�) =
1

N

N�1X
n=0

x(n)x(n + �)

and measures the extent to which a signal correlates with a
time offset (� ) version of itself. Because a periodic signal will
correlate strongly with itself when offset by the fundamental
period, we can expect to find a peak in the ACF at the value
corresponding to a period.

An alternate to the ACF is the Average Magnitude Dif-
ference Function. The AMDF looks not at the product of a
signal with a time offset version of itself, but rather at the
difference. Thus, the AMDF tends to have valleys where the
ACF has peaks. Calculation of the AMDF is less computa-
tionally expensive than the ACF due to the lack of multipli-
cation operations (Niesler and Robinson ).

The equation for the AMDF is given as:

 (�) =
1

N

N�1X
n=0

jx(n)� x(n+ �)j

As noted by Kobayashi and Shimamura (1995), these two
functions have independent statistics, and may be combined
to produce a more noise-robust estimate of pitch, especially
in cases where gross pitch error (more than 10 Hz error) is
possible. For purposes of singleF0 detection, this method
was shown by those authors to be substantially more effective
in noisy environments than either the ACF or AMDF alone, or
the popular cepstral technique described above. The function
described by these authors is:

f(�) =
�(�)

 (�) + k

where optimal results were achieved withk = 1 regardless of
SNR.



3 Real-Time Tracking Issues

Pitch tracking in real-time situations usually involves ad-
ditional steps beyond frame-by-frame pitch detection to en-
hance the quality of the measured pitch. The pitch detection
algorithms defined above generate the instantaneous pitch for
the input signal which will invariably contain some tracking
errors. In particular, if the input signal changes pitch during
an analysis frame or there is any significant transient due to
a note attack, the resulting pitch measurement may be mis-
leading. Figure (4) shows the results of HPS pitch tracking
a melody performed on a cello. Notice the discontinuities in
the pitch detection at transients between notes which must be
compensated for in real-time.

Figure 4: Cello pitch tracking analysis with transient errors

Depending on the application, pitch data can remain con-
tinuous or be converted into discrete symbolic form such as
MIDI where there are discrete note-on and note-off times for
each pitch. For instantaneous pitch control, it is usually suf-
ficient to filter out spikes in the pitch data due to transients
and octave errors. It even may not be necessary to remove er-
roneous pitch depending on the noise tolerances of the appli-
cation. The pitch algorithm, instrument, and computer setup
will determine the required level of error correction measures.

As a model tracking example, figure (5) shows the results
of continuous pitch tracking for a slurred chromatic melody
(Flight of the Bumble-Bee) performed on a flute. The indi-
vidual pitches are well separated with no transients, resulting
in good data for 12-tone quantization without any secondary
error correction necessary.

A good way to prevent accidental pitch assignment to
transient regions is to monitor the steady-state behavior and
amplitude of the detected pitch over several spectral frames.
However, to minimize the latency in the determination of
a new note, as few frames as possible must be considered.
Since the pitch detection algorithm does not involve re-synthesis
of a signal, the signal frame overlap can be done at any arbi-
trary overlap factor. Correct new pitch updates need to be
made within about 30-40 milliseconds to avoid significant
perceptual delay. An overlap factor at about 10 milliseconds

Figure 5: Flute pitch tracking analysis

per frame usually leaves enough time to recover from tran-
sients.

Musical instruments are not always tuned to a set pitch,
and can drift due to temperature and humidity. Some algo-
rithms such as ML are sensitive to tuning. The pitch algo-
rithms should be tuned so that they will not inadvertently os-
cillate between two tones a minor second apart when only one
note is actually being played (hysteresis). This can be com-
pensated somewhat with an initial tuning calibration, or by
monitoring the interval size between successive notes to keep
the center frequencies of the note well within the range of a
twelve-tone quantization of the pitch.
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