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• Terminated string

• Plucked and struck string

• Damping and dispersion

• String Loop Identification

• Nonlinear “overdrive” distortion
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Rigidly Terminated Ideal String
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Rigid Termination
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Rigid Termination

N/2 samples delay -y (n)-

-1

y (n-N/2)
+

y (nT,ξ)

• Reflection inverts for displacement, velocity, or
acceleration waves (proof below)

• Reflection non-inverting for slope or force waves

Boundary conditions:

y(t, 0) ≡ 0 y(t, L) ≡ 0 (L = string length)

Expand into Traveling-Wave Components:

y(t, 0) = yr(t) + yl(t) = y+(t/T ) + y−(t/T )

y(t, L) = yr(t− L/c) + yl(t + L/c)

Solving for outgoing waves gives

y+(n) = −y−(n)

y−(n +N/2) = −y+(n−N/2)

N
∆
= 2L/X = round-trip propagation time in samples
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Acceleration-Wave Simulation
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Initial conditions for the ideal plucked string: acceleration
or curvature waves.

Recall:

y′′ =
1

c2
ÿ

Acceleration waves are proportional to “curvature” waves.

3

Doubly Terminated Ideal Plucked String

x=0
x=L

c c
String Shape at

time t0

y(t0,x)

0

Traveling Wave

Components

Position x

A doubly terminated string, “plucked” at 1/4 its length.

• Shown short time after pluck event.

• Traveling-wave components and physical string-shape
shown.

• Note traveling-wave components sum to zero at
terminations. (Use image method.)
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http://ccrma.stanford.edu/~jos
http://ccrma.stanford.edu/
http://www.stanford.edu/group/Music/
http://www.stanford.edu/


Ideal Struck-String Velocity-Wave Simulation

(x = 0) (x = L)
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(x =  Hammer Position)

c

c

Initial conditions for the ideal struck string in a velocity

wave simulation.

Hammer strike = momentum transfer = velocity step:

mhvh(0−) = (mh +ms)vs(0+)
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External String Excitation at a Point

(x = 0) (x = L)
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+
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Delay N
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(x = striking position)

Hammer Strike f(t)

Example

Output

Filter
“Bridge”

Yielding

Termination

“Waveguide Canonical Form”

Equivalent System: Delay Consolidation

Del 2M Delay 2N

String Output

Filter

 
Hammer

Strike f(t)

Finally, we “pull out” the comb-filter component:
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Delay Consolidated System (Repeated):

Del 2M Delay 2N

String Output

Filter

 
Hammer

Strike f(t)

Equivalent System: FFCF Factored Out:

Delay 2M+2N
Hammer

Strike f(t)

Filter

 

Del 2M

g(t)

Out (from Del N)

• Extra memory needed.

• Output “tap” can be moved to delay-line output.
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Algebraic Derivation

f (n)
+
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Del M

Delay N

Delay N

Fi(z)

Output
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Hl(z)
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By inspection:

Fo(z) = z−N
{

Fi(z) + z−2M
[

Fi(z) + z−NHl(z)Fo(z)
]}

⇒ H(z)
∆
=

Fo(z)

Fi(z)
= z−N 1 + z−2M

1− z−(2M+2N)Hl(z)

=
(

1 + z−2M
) z−N

1− z−(2M+2N)Hl(z)

Delay 2M+2N
Hammer

Strike f(t)

Filter

 

Del 2M

g(t)

Out (from Del N)
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Damped Plucked String

(x = 0) (x = L)

N/2 samples delay, N/2 loss factors g

y (n-N/2)
+

y (n+N/2)

Output (non-physical)

-1         “Bridge”

Rigid Termination

y (n)
+

          “Nut”

Rigid Termination

N/2 samples delay, N/2 loss factors g -

g
N/2

g
-N/2

y (n)-

-1

Rigidly terminated string with distributed resistive losses.

• N loss factors g are embedded between the delay-line
elements.

Equivalent System: Gain Elements Commuted

N samples delayOutput

g N

y (n-N)
+

y (n)
+

All N loss factors g have been “pushed” through delay
elements and combined at a single point.
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Computational Savings

• fs = 50kHz, f1 = 100Hz ⇒ delay = 500

• Multiplies reduced by two orders of magnitude

• Input-output transfer function unchanged

• Round-off errors reduced
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Frequency-Dependent Damping

• Loss factors g should really be digital filters

• Gains in nature typically decrease with frequency

• Loop gain may not exceed 1 (for stability)

• Gain filters commute with delay elements (LTI)

• Typically only one gain filter used per loop

Simplest Frequency-Dependent Loop Filter

Hl(z) = b0 + b1z
−1

• Linear phase ⇒ b0 = b1 (⇒ delay = 1/2 sample)

• Zero damping at dc ⇒ b0 + b1 = 1
⇒ b0 = b1 = 1/2
⇒

Hl(e
jωT ) = cos (ωT/2) , |ω| ≤ πfs
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Karplus-Strong Algorithm

N samples delayOutput y (n)
+

z 1-

1/2

1/2

y (n-N)
+

• To play a note, the delay line is initialized with
random numbers (“white noise”)
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KS Physical Interpretation

• Rigidly terminated ideal string with the simplest
damping filter

• Damping consolidated at one point and replaced by a
one-zero filter approximation

• String shape = sum of upper and lower delay lines

• The difference of upper and lower delay lines
corresponds to a nonzero initial string velocity. To
show this, recall that f ∆

= −Ky′ so that

y′ = −
1

K
(f++f−) = −

R

K
(v+−v−) =

1

c
(v−−v+)

implying

v+ = −c(y+)′ v− = c(y−)′

• Karplus-Strong string is both “plucked” and “struck”
by random amounts along entire length of string!

• A “splucked” string?
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KS Sound Examples

• “Vintage” 8-bit sound examples:

• Original Plucked String: (AIFF) (MP3)
• Drum: (AIFF) (MP3)
• Stretched Drum: (AIFF) (MP3)

• STK Plucked String: (WAV) (MP3)

• Extended KS (EKS) Scale: (WAV) (MP3)
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Extended Karplus-Strong (EKS)
Algorithm

z−N

Hs(z)

Hp(z) Hβ(z) HL(z)

Hρ(z) Hd(z)

N = pitch period (2× string length) in samples

Hp(z) =
1− p

1− p z−1
= pick-direction lowpass filter

Hβ(z) = 1− z−βN = pick-position comb filter, β ∈ (0, 1)

Hd(z) = string-damping filter (one/two poles/zeros typical)

Hs(z) = string-stiffness allpass filter (several poles and zeros)

Hρ(z) =
ρ(N)− z−1

1− ρ(N) z−1
= first-order string-tuning allpass filter

HL(z) =
1−RL

1−RL z−1
= dynamic-level lowpass filter

15

EKS Sound Example

Bach A-Minor Concerto—Orchestra Part: (WAV) (MP3)

• Executes in real time on one Motorola DSP56001
(20 MHz clock, 128K SRAM)

• Developed for the NeXT Computer introduction at
Davies Symphony Hall, San Francisco, 1989

• Solo violin part was played live by Dan Kobialka of
the San Francisco Symphony
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http://ccrma.stanford.edu/~jos/aiff/pluck.aiff
http://ccrma.stanford.edu/~jos/mp3/pluck.mp3
http://ccrma.stanford.edu/~jos/aiff/ksdrum.aiff
http://ccrma.stanford.edu/~jos/mp3/ksdrum.mp3
http://ccrma.stanford.edu/~jos/aiff/ksdrumst.aiff
http://ccrma.stanford.edu/~jos/mp3/ksdrumst.mp3
http://ccrma.stanford.edu/~jos/wav/plucked.wav
http://ccrma.stanford.edu/~jos/mp3/plucked.mp3
http://ccrma.stanford.edu/~jos/wav/ks44k.wav
http://ccrma.stanford.edu/~jos/mp3/ks44k.mp3
http://ccrma.stanford.edu/~jos/wav/bachfugue.wav
http://ccrma.stanford.edu/~jos/mp3/bachfugue.mp3


Simplest Frequency-Dependent Loss

Recall that the two-point average used in the
Karplus-Strong algorithm can be interpreted as the
simplest possible frequency-dependent loss filter for the
otherwise ideal vibrating string:

Hl(z) =
1 + z−1

2

Next Simplest Case: Length 3 FIR Loop Filter

Hl(z) = b0 + b1z
−1 + b2z

−2

• Linear phase ⇒ b0 = b2 (⇒ delay = 1 sample)

• Unity dc gain ⇒ b0 + b1 + b2 = 2b0 + b1 = 1 ⇒

Hl(e
jωT ) = e−jωT [(1− 2b0) + 2b0 cos(ωT )]

• Remaining degree of freedom = damping control
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Length 3 FIR Loop Filter with Variable DC Gain

Relaxing the unity-dc-gain restriction, but keeping linear
phase, we have

Hl(z) = b0 + b1z
−1 + b0z

−2 (linear phase)

We can use the remaining two degrees of freedom for
brightness B & sustain S:

g0
∆
= e−6.91P/S

b0 = g0(1− B)/4 = b2
b1 = g0(1 + B)/2

where

P = period in seconds (total loop delay)

S = desired sustain time in seconds

B = brightness parameter in the interval [0, 1]

Sustain time S is defined here as the time to decay 60 dB
(or 6.91 time-constants) when brightness B is maximum
(B = 1). At minimum brightness (B = 0), we have

|Hl(e
jωT )| = g0

1 + cos(ωT )

2
= g0 cos

2(ωT )
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Loop Filter Identification

For loop-filter design, we wish to minimize the error in

• partial decay time (set by amplitude response)

• partial overtone tuning (set by phase response)

Simple and effective method (MUS421 style):

• Estimate pitch (elaborated next page)

• Set Hamming FFT-window length to four periods

• Compute the short-time Fourier transform (STFT)

• Detect peaks in each spectral frame

• Connect peaks through time (amplitude envelopes)

• Amplitude envelopes must decay exponentially

• On a dB scale, exponential decay is a straight line

• Slope of straight line determines decay time-constant

• Can use 1st-order polyfit in Matlab or Octave

• For beating decay, connect amplitude envelope peaks

• Decay rates determine ideal amplitude response

• Partial tuning determines ideal phase response
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Plucked/Struck String Pitch Estimation

• Take FFT of middle third of plucked string tone

• Detect spectral peaks

• Form histogram of peak spacing ∆fi

• Pitch estimate f̂0
∆
= most common spacing ∆fi

• Refine f̂0 with gradient search using harmonic comb:

f̂0
∆
= argmax

f̂0

K
∑

k=1

log
∣

∣

∣
X(kf̂0)

∣

∣

∣

= argmax
f̂0

K
∏

k=1

∣

∣

∣
X(kf̂0)

∣

∣

∣

where

K = number of peaks, and

k = harmonic number of kth peak

(valid method for non-stiff strings)

Must skip over any missing harmonics,
i.e., omit k whenever |X(kf̂0)| ≈ 0.

The text provides further details and pointers to recent
papers on pitch estimation.
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Nonlinear “Overdrive”

A popular type of distortion, used in electric guitars, is
clipping of the guitar waveform.

Hard Clipper

f (x) =











−1, x ≤ −1

x, −1 ≤ x ≤ 1

1, x ≥ 1

where x denotes the current input sample x(n), and f (x)
denotes the output of the nonlinearity.
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Soft Clipper

f (x) =











−2
3, x ≤ −1

x− x3

3 , −1 ≤ x ≤ 1
2
3, x ≥ 1
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x=−1:0.01:1; plot([−(2/3)*ones(1,100), x−x.

3
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x
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Amplifier Distortion + Amplifier Feedback

Post-distortion gain

Gain
Feedback
Amplifier

Nonlinear Distortion

Amplifier Feedback Delay

String 1

String N

Output...

Direct-signal gain

Pre-distortion gain

Distorted Electric Guitar with Amplifier Feedback

• Distortion can be preceded and followed by EQ
E.g., integrator “pre” and differentiator “post”

• Distortion output signal often further filtered by an
amplifier cabinet filter, representing speaker cabinet,
driver responses, etc.

• In Class A tube amplifiers, there should be duty-cycle
modulation as a function of signal level1

– 50% at low levels (no duty-cycle modulation)

– 55-65% duty cycle observed at high levels
⇒ even harmonics come in

– Example: Distortion input can offset by a constant

(e.g., input RMS level times some scaling)
1http://www.trueaudio.com/at eetjlm.htm
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http://www.trueaudio.com/at_eetjlm.htm

